12,141
Views
109
CrossRef citations to date
0
Altmetric
Reviews

Water-soluble fullerenes for medical applications

ORCID Icon
Pages 777-794 | Received 29 Jan 2016, Accepted 22 May 2016, Published online: 28 Jun 2016

References

  • R. Taylor and D. R. M. Walton: Nature, 1993, 363, (6431), 685–693.
  • K. M. Kadish and R. S. Ruoff: ‘Fullerenes: chemistry, physics, and technology’, 2000, New York, Wiley.
  • R. C. Haddon, R. E. Palmer, H. W. Kroto and P. A. Sermon: ‘The fullerenes: powerful carbon-based electron acceptors’, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 1993, 343, (1667), 53–62.
  • P. W. Fowler and D. E. Manolopoulos: ‘An Atlas of fullerenes’, ‘Dover books on chemistry’, 2006, New York, Dover Publications.
  • Q. Xie, E. Perez-Cordero and L. Echegoyen: ‘Electrochemical detection of C606- and C706-: enhanced stability of fullerides in solution’, J. Am. Chem. Soc., 1992, 114, (10), 3978–3980.
  • M. P. Gasper and D. W. Armstrong: ‘A comparative study of buckminsterfullerene and higher fullerene separations by HPLC’, J. Liq. Chromatogr., 1995, 18, (6), 1047–1076.
  • F. Diederich, R. Ettl, Y. Rubin, R. L. Whetten, R. Beck, M. Alvarez, S. Anz, D. Sensharma, F. Wudl, K. C. Khemani and A. Koch: ‘The Higher Fullerenes: Isolation and Characterization of C76, C84, C90, C94, and C70O, an Oxide of D5h-C70’, Science, 1991, 252, (5005), 548–551.
  • F. Cataldo and T. Da Ros: ‘Medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes, ‘Carbon materials: chemistry and physics’, 2008, Berlin, Springer Science+Business Media.
  • K. N. Semenov, N. A. Charykov, V. A. Keskinov, A. K. Piartman, A. A. Blokhin and A. A. Kopyrin: ‘Solubility of light fullerenes in organic solvents’, J. Chem. Eng. Data, 2010, 55, (1), 13–36.
  • X. Zhou, J. Liu, Z. Jin, Z. Gu, Y. Wu and Y. Sun: ‘Solubility of fullerene C60 and C70 in toluene, o-xylene and carbon disulfide at various temperatures’, Fullerene Sci. Technol., 1997, 5, (1), 285–290.
  • C. Bingel and H. Schiffer: ‘Biscyclopropanation of C70’, Liebigs Ann., 1995, 1551–1553.
  • N. S. Goroff: ‘Mechanism of fullerene formation’, Acc. Chem. Res., 1996, 48824, (8), 77–83.
  • H. Murayama, S. Tomonoh, J. M. Alford and M. E. Karpuk: ‘Fullerene production in tons and more: from science to industry’, Fuller. Nanotub. Car. N., 2005, 12, (February 2015), 1–9.
  • W. Kratschmer, L. D. Lamb, K. Fostiropoulos and D. R. Huffman: ‘Solid C60: a new form of carbon’, Nature, 1990, 347, 354–358.
  • H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley: ‘C60: buckminsterfullerene’, Nature, 1985, 318, (6042), 162–163.
  • A. Hirsch, M. Brettreich and F. Wudl: ‘Fullerenes: chemistry and reactions’, 2006, Weinheim, Wiley.
  • M. Maggini, G. Scorrano and M. Prato: ‘Addition of azomethine ylides to C60: synthesis, characterization, and functionalization of fullerene pyrrolidines’, J. Am. Chem. Soc., 1993, 115, (21), 9798–9799.
  • C. Bingel: ‘Cyclopropanierung von fullerenen’, Chemische Berichte, 1993, 126, (8), 1957–1959.
  • V. Georgakilas, K. Kordatos, M. Prato, D. M. Guldi, M. Holzinger and A. Hirsch: ‘Organic functionalization of carbon nanotubes’, J. Am. Chem. Soc., 2002, 124, (5), 760–761.
  • K. S. Coleman, S. R. Bailey, S. Fogden and M. L. H. Green: ‘Functionalization of single-walled carbon nanotubes via the bingel reaction’, J. Am. Chem. Soc., 2003, 125, (29), 8722–8723.
  • F. Wudl, A. Hirsch, K. C. Khemani, T. Suzuki, P-M. Allemand, A. Koch, H. Eckert, G. Srdanov and H. M. Webb: ‘Survey of chemical reactivity of C60, electrophile, and dienopolarophile par excellence’ in ‘Synthesis, properties, and chemsitry of large carbon clusters’, (ed. G. S. Hammond and V. J. Kuck), chap. 11, ACS Symposium Series 481, 161–176; 1992, Washington, DC, American Chemical Society.
  • R. Seshadri, A. Govindaraj, R. Nagarajan, T. Pradeep and C. N. R. Rao: ‘Addition of amines and halogens to fullerenes C60 and C70’, Tetrahedron Lett., 1992, 33, (15), 2069–2070.
  • V. Brezova, A. Stasko, P. Rapta, G. Domschke, A. Bartl and L. Dunsch: ‘Fullerene anion formation by electron transfer from amino donor to photoexcited C60. Electron paramagnetic resonance study’, J. Phys. Chem., 1995, 99, (44), 16234–16241.
  • O. Amelines-Sarria and V. A. Basiuk: ‘A DFT study of methylamine polyaddition to C80 fullerene’, Superlattice Microst., 2009, 46, (1–2), 302–305.
  • L. Y. Chiang, J. W. Swirczewski, C. S. Hsu, S. K. Chowdhury, S. Cameron and K. Creegan: ‘Multi-hydroxy additions onto C60 fullerene molecules’, J. Chem. Soc. Chem. Commun., 1992, 1791–1793.
  • J. Li, A. Takeuchi, M. Ozawa, X. Li, K. Saigo and K. Kitazawa: ‘C60 fullerol formation catalysed by quaternary ammonium hydroxides’, J. Chem. Soc. Chem. Commun., 1993, 1784–1785.
  • N. S. Schneider, A. D. Darwish, H. W. Kroto, R. Taylor and D. R. M. Walton: ‘Formation of fullerols via hydroboration of fullerene-C60’, J. Chem. Soc. Chem. Commun., 1994, 463–464.
  • A. Arrais and E. Diana: ‘Highly water soluble C60 derivatives: a new synthesis’, Fullerene Nanotub. Carb. N., 2003, 11, (1), 35–46.
  • F. Scarel: ‘Fullerene-stoppered rotaxane : a multifunctional supramolecular material’, PhD thesis, Freiburg Institute of Advanced Studies, 2012.
  • C. M. Cardona, B. Elliott and L. Echegoyen: ‘Unexpected chemical and electrochemical properties of M3N@C80 (M = Sc, Y, Er)’, J. Am. Chem. Soc., 2006, 128, (19), 6480–6485.
  • D. Milic and M. Prato: ‘Fullerene unsymmetrical bis-adducts as models for novel peptidomimetics’, Eur. J. Org. Chem., 2010, 476–483.
  • N. Chhabra, M. L. Aseri and D. Padmanabhan: ‘A review of drug isomerism and its significance’, Int. J. Appl. Basic Med. Res., 2013, 3, (1), 16–18.
  • Q. Lu, D. I. Schuster and S. R. Wilson: ‘Preparation and characterization of six bis(N-methylpyrrolidine)-C60 isomers: magnetic deshielding in isomeric bisadducts of C60’, J. Organ. Chem., 1996, 61 (24), 4764–4768.
  • Z. Zhou and S. Wilson: ‘Tether-directed multiple functionalization of fullerene[60]’, Curr. Organ. Chem., 2005, 9, (8), 789–811.
  • J.-F. Nierengarten and J.-F. Nicoud: ‘cyciopropanation of C60 with malonic acid mono-esters’, Tetrahedron Lett., 1997, 38, (44), 7737–7740.
  • X. Camps and A. Hirsch: ‘Efficient cyclopropanation of C60 starting from malonates’, J. Chem. Soc. Perkin Trans. 1, 1997 (11), 1595–1596.
  • A. Hirsch, I. Lamparth and H. R. Karfunkel: ‘Fullerene chemistry in three dimensions: isolation of seven regioisomeric bisadducts and chiral trisadducts of C60 and Di(ethoxycarbonyl)methylene’, Angew. Chem. Int. Ed. Engl., 1994, 33, (4), 437–438.
  • D. Sigwalt, F. Schillinger, S. Guerra, M. Holler, M. Berville and J-F. Nierengarten: ‘An expeditious regioselective synthesis of [60]fullerene e,e,e tris-adduct building blocks’, Tetrahedron Lett., 2013, 54, (32), 4241–4244.
  • Á. Duarte-Ruiz, L. Echegoyen, A. Aya and F. Gomez-Baquero: J. Mex. Chem. Soc., 2009, 53, (3), 169–173.
  • H. Li, S. A. Haque, A. Kitaygorodskiy, M. J. Meziani, M. Torres-Castillo and Y. P. Sun: ‘Alternatively modified Bingel reaction for efficient syntheses of C60 hexakis-adducts’, Org. Lett., 2006, 8, (24), 5641–5643.
  • I. Lamparth and A. Hirsch: ‘Water-soluble malonic acid derivatives of C60 with a defined three-dimensional structure’, J. Chem. Soc. Chem. Commun., 1994, 1727–1728.
  • B. Jin, J. Shen, R. Peng, R Zheng and S. Chu: ‘Efficient cyclopropanation of [60]fullerene starting from bromo-substituted active methylene compounds without using a basic catalyst’, Tetrahedron Lett., 2014, 55, (36), 5007–5010.
  • Y. Chai, T. Cuo, C. Jin, R. E. Haufler, L. P. F. Chibante, J. Fure, L. Wang, J. M. Alford and R. E. Smalley: ‘Fullerenes wlth metals inside’, J. Phys. Chem., 1991, 95, (9), 7564–7568.
  • A. Krachmalnicoff, M. H. Levitt and R. J. Whitby: ‘An optimised scalable synthesis of H2O@C60 and a new synthesis of H2@C60’, Chem. Commun., 2014, 50, (86), 13037–13040.
  • A. Popov, S. Yang and L. Dunsch: Endohedral Fullerenes, Chem. Rev., 2013, 113, (8), 5989–6113.
  • P. Dallas, I. Rasovic, G. Rogers et al.: in ‘Carbon nanomaterials sourcebook: graphene, fullerenes, nanotubes and nanodiamonds,’ (ed. K. Sattler), chap. 10, 255–270; 2016, Boca Raton, Taylor & Francis.
  • J. R. Heath, S. C. O'Brien, Q. Zhang, Y. Liu, R. F. Curl, F. K. Tittel and R. E. Smalley: ‘Lanthanum complexes of spheroidal carbon shells’, J. Am. Chem. Soc., 1985, 107, (25), 7779–7780.
  • Y. Saito, S. Yokoyama, M. Inakuma and H. Shinohara: ‘An ESR study of the formation of La@C82 isomers in arc synthesis’, Chem. Phys. Lett., 1996, 250, (1), 80–84.
  • H. Shinohara: ‘Endohedral metallofullerenes’, Rep. Prog. Phys., 2000, 63, (6), 843–892.
  • V. S. Kozlov, M. V. Suyasova and V. T. Lebedev: ‘Synthesis, extraction, and chromatographic purification of higher empty fullerenes and endohedral gadolinium metallofullerenes’, Russ. J. Appl. Chem., 2014, 87, (2), 121–127.
  • S. Stevenson, G. Rice, T. Glass, K. Harich, F. Cromer, M. R. Jordan, J. Craft and H. C. Dorn: ‘Metallofullerenes in high yield and purity’, Nature, 1999, 80, 80–82.
  • L. Dunsch, M. Krause, J. Noack and P. Georgi: ‘Endohedral nitride cluster fullerenes: formation and spectroscopic analysis’, J. Phys. Chem. Solids, 2004, 65, 309–315.
  • V. Bezmelnitsyn, S. Davis and Z. Zhou: ‘Efficient synthesis of endohedral metallofullerenes in 3-phase arc discharge’, Fullerene Nanotub. Carb. N., 2014, 23, 612–617.
  • Q. Deng and A. A. Popov: ‘Prato and bingel-hirsch cycloaddition to heptagon-containing LaSc2N@Cs(hept)-C80: importance of pentalene units’, Chem. Commun., 2015, 51, (26), 5637–5640.
  • V. K. Koltover: ‘Spin-leakage of the fullerene shell of endometallofullerenes: EPR, ENDOR and NMR evidences’, Carbon, 2004, 42, 1179–1183.
  • B. Cao, T. Wakahara, Y. Maeda, A. Han, T. Akasaka, T. Kato, K. Kobayashi and S. Nagase: ‘Lanthanum endohedral metallofulleropyrrolidines: synthesis, isolation, and EPR characterization’, Chem. Eur. J., 2004, 10, (3), 716–720.
  • R. Bolskar, A. Benedetto, L. Husebo, R. Price, E. Jackson, S. Wallace, L. Wilson and M. Alford: ‘First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C60 [C(COOH)2]10 as a MRI contrast agent’, J. Am. Chem. Soc., 2003, 125, (18), 5471–5478.
  • S. Kunsági-Máté, K. Szabó, I. Bitter, G. Nagy and L. Kollar: ‘Complex formation between water-soluble sulfonated calixarenes and C60 fullerene’, Tetrahedron Lett., 2004, 45, (7), 1387–1390.
  • F. Giacalone, N. Martín and F. Wudl: in ‘Fullerene polymers,’ chap. 1, 1–14; 2009, Weinheim, Wiley-VCH.
  • Y. Iwamoto and Y. Yamakoshi: ‘A highly water-soluble C60-NVP copolymer: a potential material for photodynamic therapy’, Chem. Commun., 2006, 4805–4807.
  • F. Beuerle, R. Lebovitz and A. Hirsch: in ‘Medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes’, (ed. F. Cataldo & T. Da Ros), Vol. 1, chap. 3, 51–78; 2008, Berlin, Springer Science+Business Media.
  • M. Brettreich and A. Hirsch: ‘A highly water-soluble dendro[60]-fullerene’, Tetrahedron Lett., 1998, 39, (18), 2731–2734.
  • T. Da Ros, M. Prato, F. Novello, M. Maggini and E. Banfi: ‘Easy access to water-soluble fullerene derivatives via 1,3-dipolar cycloadditions of azomethine ylides to C60’, J. Organ. Chem., 1996, 61, (25), 9070–9072.
  • S. Aroua, W. B. Schweizer and Y. Yamakoshi: ‘C60 pyrrolidine bis-carboxylic acid derivative as a versatile precursor for biocompatible fullerenes’, Organ. Lett., 2014, 16, 1688–1691.
  • C. Chen, G. Xing, J. Wang, Y. Zhao, B. Li, J. Tang, G. Jia, T. Wang, J. Sun, L. Xing, H. Yuan, Z. Chen, F. Zhao, Z. Chai and X. Fang: ‘Multihydroxylated [Gd@C82(OH)22]n nanoparticles: antineoplastic activity of high efficiency and low toxicity’, Nano Lett., 2005, 82(10), 2050–2057.
  • S. Kunjachan, J. Ehling, G. Storm, F. Kiessling and T. Lammers: ‘Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects’, Chem. Rev., 2015, 115, (19), 10907–10937.
  • G. Hagberg and K. Scheffler: ‘Effect of r1 and r2 relaxivity of gadolinium-based contrast agents on the T1-weighted MR signal at increasing magnetic field strengths’, Contrast Media Mol. Imaging, 2013, 8, (6), 456–465.
  • A. J. Amoroso and S. J. A. Pope: ‘Using lanthanide ions in molecular bioimaging’, Chem. Soc. Rev., 2015, 44, 4723–4742.
  • P. Caravan, J. Ellison, T. McMurry and R. Lauffer: ‘Gadolinium-(III) chelates as MRI contrast agents: structure, dynamics, and applications’, Chem. Rev., 1999, 99, (9), 2293–2352.
  • P. Caravan: ‘Strategies for increasing the sensitivity of gadolinium based MRI contrast agents’, Chem. Soc. Rev., 2006, 35, (6), 512–523.
  • P. H. Kuo, E. Kanal, A. K. Abu-Alfa and S. E. Cowper: ‘Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis’, Radiology, 2007, 242, 647–649.
  • J. G. Penfield and R. F. Reilly: ‘What nephrologists need to know about gadolinium’, Nat. Clin. Pract. Nephrol., 2007, 3, (12), 654–668.
  • K. Hartman and L. Wilson: ‘Carbon nanostructures as a new high-performance platform for MR molecular imaging’ in Bio-applications of nanoparticles’, (ed. W. Chan), Vol. 620, chap. 6, 74–84; 2007, New York, Springer-Verlag.
  • B. Sitharaman, R. D. Bolskar, I. Rusakova and L. J. Wilson: ‘Gd@C60[C(COOH)2]10 and Gd@C60(OH)x : nanoscale aggregation studies of two metallofullerene MRI contrast agents in aqueous solution’, Nano Lett., 2004, 4, (12), 2373–2378.
  • J. Zhang, C. Shu, J. Reid, L. S. Owens, T. Cai, W. Gibson, G. L. Long, F. D Corwin, Z.-J. Chen, P. P. Fatouros and H. C. Dorn: ‘High relaxivity trimetallic nitride (Gd3N) metallofullerene MRI contrast agents with optimized functionality’, Bioconjug Chem., 2010, 21, (4), 610–615.
  • D. Yang, Y. Zhao, H. Guo, Y. Li, P. Tewary and G. Xing: ‘Nanoparticles, [Gd@C82(OH)22]n, induces dendritic cell maturation and activates Th1 immune responses’, ACS Nano, 2011, 4, (2), 1178–1186.
  • S. Laus, B. Sitharaman, É. Tóth, R. D. Bolskar, L. Helm, S. Asokan, M. S. Wong, L. J. Wilson and A. E. Merbach: ‘Destroying gadofullerene aggregates by salt addition in aqueous solution of Gd@C60(OH)x and Gd@C60 [C(COOH2)]10’, J. Chem. Soc., 2005, 127, (26), 10–13.
  • M. Mikawa, H. Kato, M. Okumura, M. Narazaki, Y. Kanazawa, N. Miwa and H. Shinohara: ‘Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents’, Bioconjugate Chem., 2001, 12, (4), 510–514.
  • C. Shu, F. D. Corwin, J. Zhang, Z. Chen, J. E. Reid, M. Sun, W. Xu, J. H. Sim, C. Wang, P. P. Fatouros, R. Alan, H. W. Gibson and H. C. Dorn: ‘Facile preparation of a new gadofullerene-based magnetic resonance imaging contrast agent with high1H relaxivity’, Bioconjug Chem., 2009, 20, (6), 1186–1193.
  • P. P. Fatouros, F. D. Corwin, Z.-J. Chen, W. C. Broaddus, J. L. Tatum, B. Kettenmann, Z. Ge, H. W. Gibson, J. L. Russ, A. P. Leonard, J. C. Duchamp and H. C. Dorn: ‘In vitro and in vivo imaging studies of a new endohedral metallofullerene nanoparticle’, Radiology, 2006, 240, (3), 756–764.
  • K. B. Ghiassi, M. M. Olmstead and A. L. Balch: ‘Gadolinium-containing endohedral fullerenes: structures and function as magnetic resonance imaging (MRI) agents’, Dalton Trans., 2014, 43, 7346–7358.
  • E.-Y. Zhang, C.-Y. Shu, L. Feng and C.-R. Wang: ‘Preparation and characterization of two new water-soluble endohedral metallofullerenes as magnetic resonance imaging contrast agents’, J. Phys. Chem. B, 2007, 111, 14223–14226.
  • R. Cui, J. Li, H. Huang, M. Zhang, X. Guo, Y. Chang, M. Li, J. Dong, B. Sun and G. Xing: ‘Novel carbon nanohybrids as highly efficient magnetic resonance imaging contrast agents’, Nano Res., 2015, 8, (4), 1259–1268.
  • L. Wang, X. Zhu, X. Tang, C. Wu, Z. Zhou, C. Sun, S.-L. Deng, H. Ai and J. Gao: ‘A multiple gadolinium complex decorated fullerene as a highly sensitive T1 contrast agent’, Chem. Commun., 2015, 51, (21), 4390–4393.
  • T. Wharton and L. J. Wilson: ‘Highly-iodinated fullerene as a contrast agent for X-ray imaging’, Bioorg. Med. Chem., 2002, 10, (11), 3545–3554.
  • A. Miyamoto, H. Okimoto, H. Shinohara and Y. Shibamoto: ‘Development of water-soluble metallofullerenes as x-ray contrast media’, Eur. Radiol., 2006, 16, (5), 1050–1053.
  • S. H. Friedman, D. L. Decamp, R. P. Sijbesma, G. Srdanov, F. Wudl and G. L. Kenyon: ‘Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification’, J. Am. Chem. Soc., 1993, 115, (5), 6506–6509.
  • H. Tzoupis, G. Leonis, S. Durdagi, V. Mouchlis, T. Mavromoustakos and M. G. Papadopoulos: ‘Binding of novel fullerene inhibitors to HIV-1 protease: insight through molecular dynamics and molecular mechanics Poisson-Boltzmann surface area calculations’, J. Computer Aided Mol. Des., 2011, 25, (10), 959–976.
  • T. A. Strom, S. Durdagi, S. S. Ersoz, R. E. Salmas, C. T. Supuran and A. R. Barron: ‘Fullerene-based inhibitors of HIV-1 protease’, J. Peptide Sci., 2015, 21, (12), 862–870.
  • S. Tanimoto, S. Sakai, S. Matsumura, D. Takahashi and K. Toshima: ‘Target-selective photo-degradation of HIV-1 protease by a fullerene-sugar hybrid’, Chem. Commun., 2008 (44), 5767.
  • A. A. Alfadda and R. M. Sallam: ‘Reactive oxygen species in health and disease’, J. Biomed. Biotechnol., 2012, 2012, 1–14.
  • J. F. Turrens: ‘Mitochondrial formation of reactive oxygen species’, J. Physiol., 2003, 552, 335–344.
  • P. D. Ray, B. W. Huang and Y. Tsuji: ‘Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling’, Cell. Signal., 2012, 24, (5), 981–990.
  • K. Ishikawa, K. Takenaga, M. Akimoto, N. Koshikawa, A. Yamaguchi, H. Imanishi, K. Nakada, Y. Honma and J.-I. Hayashi: ‘ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis’, Science, 2008, 320, (5876), 661–664.
  • V. Shukla, S. K. Mishra and H. C. Pant: ‘Oxidative Stress in Neurodegeneration’, Adv. Pharmacol. Sci., 20111–13.
  • B. N. Ames, M. K. Shigenaga and T. M. Hagen: ‘Oxidants, antioxidants, and the degenerative diseases of aging’, Proc. Natl. Acad. Sci. U.S.A., 1993, 90, (17), 7915–7922.
  • L. L. Dugan, D. M. Turetsky, C. Du, M. Wheeler, C. R. Almli, C. K. Shen, T. Y. Luh, D. W. Choi and T. S. Lin: ‘Carboxyfullerenes as neuroprotective agents’, Proc. Natl. Acad. Sci. U.S.A., 1997, 94, (17), 9434–9439.
  • L. L. Dugan, E. G. Lovett, K. L. Quick, J. Lotharius, T. T. Lin and K. L. O'Malley: ‘Fullerene-based antioxidants and neurodegenerative disorders’, Parkinsonism Relat. Disord., 2001, 7, (3), 243–246.
  • L. L. Dugan, L. Tian, K. L. Quick, J. I. Hardt, M. Karimi, C. Brown, S. Loftin, H. Flores, S. M. Moerlein, J. Polich, S. D. Tabbal, J. W. Mink and J. S. Perlmutter: ‘Carboxyfullerene neuroprotection postinjury in Parkinsonian nonhuman primates’, Ann. Neurol., 2014, 76, (3), 393–402.
  • P. Witte, F. Beuerle, U. Hartnagel, R. Lebovitz, A. Savouchkina, S. Sali, D. Guldi, N. Chronakis and A. Hirsch: ‘Water solubility, antioxidant activity and cytochrome C binding of four families of exohedral adducts of C60 and C70’, Org. Biomol. Chem., 2007, 5, (22), 3599–3613.
  • J. J. Yin, F. Lao, P. P. Fu, W. G. Wamer, Y. Zhao, P. C. Wang, Y. Qiu, B. Sun, G. Xing, J. Dong, X. J. Liang and C. Chen: ‘The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials’, Biomaterials, 2009, 30, (4), 611–621.
  • Q. Liu, L. Jin, B. H. Mahon, M. D. Chordia, F. H. Shen and X. Li: ‘Novel treatment of neuroinflammation against low back pain by soluble fullerol nanoparticles’, Spine, 2013, 38, (17), 1443–1451.
  • F. Stewart, P. Baas and W. Star: ‘What does photodynamic therapy have to offer radiation oncologists (or their cancer patients)?’, Radiother. Oncol., 1998, 48, (3), 233–248.
  • F. Wilkinson, W. P. Helman and A. B. Ross: ‘Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution’, J. Phys. Chem. Ref. Data, 1993, 22, (1993), 113.
  • S. Wang, R. Gao, F. Zhou and M. Selke: ‘Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy’, J. Mater. Chem., 2004, 14, (4), 487.
  • J. W. Arbogast, A. P. Darmanyan, C. S. Foote, Y. Rubin, F. N. Diederich, M. M. Alvarez, S. J. Anz and R. L. Whetten: ‘Photophysical properties of C60’, J. Phys. Chem., 1991 (95), 11–12.
  • T. Hamano, K. Okuda, T. Mashino, M. Hirobe, K. Arakane, A. Ryu, S. Mashiko and T. Nagano: ‘Singlet oxygen production from fullerene derivatives: effect of sequential functionalization of the fullerene core’, Chem. Commun., 1997, 21–22.
  • Y. Yamakoshi, N. Umezawa, A. Ryu, K. Arakane, N. Miyata, Y. Goda, T. Masumizu and T. Nagano: ‘Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2-• versus 1O2’, J. Am. Chem. Soc., 2003, 125, (42), 12803–12809.
  • P. Mroz, G. P. Tegos, H. Gali, T. Wharton, T. Sarna and M. R. Hamblin: ‘Fullerenes as photosensitizers in photodynamic therapy’ in ‘Medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes’, (ed. F. Cataldo and T. Da Ros), Vol. 1, chap. 4, 79–106; 2008, Berlin, Springer Science+Business Media.
  • S.-G. Kang, G. Zhou, P. Yang, Y. Liu, B. Sun, T. Huynh, H. Meng, L. Zhao, G. Xing, C. Chen, Y. Zhao and R. Zhou: ‘Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C82(OH)22 and its implication for de novo design of nanomedicine’, Proc. Natl. Acad. Sci., 2012, 109, (38), 15431–15436.
  • Y. Pan, L. Wang, S.-G. Kang, Y. Lu, Z. Yang, T. Huynh, C. Chen, R. Zhou, M. Guo and Y. Zhao: ‘Gd-metallofullerenol nanomaterial suppresses pancreatic cancer metastasis by inhibiting the interaction of histone deacetylase 1 and metastasis-associated protein 1’, ACS Nano, 2015, 9, (7), 6826–6836.
  • Y. Liu, C. Chen, P. Qian, X. Lu, B. Sun, X. Zhang, L. Wang, X. Gao, H. Li, Z. Chen, J. Tang, W. Zhang, J. Dong, R. Bai, P. E. Lobie, Q. Wu, S. Liu, H. Zhang, F. Zhao, M. S. Wicha, T. Zhu and Y. Zhao: ‘Gd-metallofullerenol nanomaterial as non-toxic breast cancer stem cell-specific inhibitor’, Nat. Commun., 2015, 6, 5988.
  • C. Chen, G. Xing, J. Wang, Y. Zhao, B. Li, J. Tang, G. Jia, T. Wang, J. Sun, L. Xing, H. Yuan, Y. Gao, H. Meng, Z. Chen, F. Zhao, Z. Chai and X. Fang: ‘Multihydroxylated [Gd@C82(OH)22]n nanoparticles: antineoplastic activity of high efficiency and low toxicity’, Nano Lett., 2005, 5, (10), 2050–2057.
  • Z. Chen, L. Ma, Y. Liu and C. Chen: ‘Applications of functionalized fullerenes in tumor theranostics’, Theranostics, 2012, 2, (3), 238–250.
  • S. S. Kelkar and T. M. Reineke: ‘Theranostics: combining imaging and therapy’, Bioconjug. Chem., 2011, 22, 1879–1903.
  • E.-K. Lim, T. Kim, S. Paik, S. Haam, Y.-M. Huh and K. Lee: ‘Nanomaterials for theranostics: recent advances and future challenges’, Chem. Rev., 2015, 115, (1), 327–394.
  • V. Krishna, A. Singh, P. Sharma, N. Iwakuma, Q. Wang, Q. Zhang, J. Knapik, H. Jiang, S. R. Grobmyer, B. Koopman and B. Moudgil: ‘Polyhydroxy fullerenes for non-invasive cancer imaging and therapy’, Small, 2010, 6, (20), 2236–2241.
  • M. D. Shultz, J. D. Wilson, C. E. Fuller, J. Zhang, H. C. Dorn and P. P. Fatouros: ‘Metallofullerene-based nanoplatform for brain tumor brachytherapy and longitudinal imaging in a murine orthotopic xenograft model’, Radiology, 2011, 261, (1), 136–143.
  • M. D. Shultz, J. C. Duchamp, J. D. Wilson, C. Y. Shu, J. Ge, J. Zhang, H. W. Gibson, H. L. Fillmore, J. I. Hirsch, H. C. Dorn and P. P. Fatouros: ‘Encapsulation of a radiolabeled cluster inside a fullerene cage, 177Lux Lu(3-x)N@C80: an interleukin-13-conjugated radiolabeled metallofullerene platform’, J. Am. Chem. Soc., 2010, 132, (14), 4980–4981.
  • E. B. Iezzi, J. C. Duchamp, K. R. Fletcher, T. E. Glass and H. C. Dorn: ‘Lutetium-based trimetallic nitride endohedral metallofullerenes: new contrast agents’, Nano Lett., 2002, 2, (11), 1187–1190.
  • J. Luo, J. D. Wilson, J. Zhang, J. I. Hirsch, H. C. Dorn, P. P. Fatouros and M. D. Shultz: ‘A dual PET/MR imaging nanoprobe: 124I Labeled Gd3N@C80’, Appl. Sci., 2012, 2, (2), 465–478.
  • J. Potocnik: ‘On a code of conduct for responsible nanosciences and nanotechnologies research’, 2009, EUR 23906, ISBN 978-92-79-11605-6 Luxembourg, European Commission.
  • V. Stone, S. Hankin, R. Aitken, K. Aschberger, A. Baun, F. M. Christense, T. F. Fernandes, S. F. Hansen, N. B. Hartmann, G. R. Hutchison, H. Johnson, C. Micheletti, S. Read, B. Ross, B. Sokull-Kluettgen, D. Stark and L. Tran: ‘ENRHES: Engineered nanoparticles: review of health and environmental safety’, 2010, Brussels, European Commission.
  • G. Szekely, M. C. Amores de Sousa, M. Gil, F. Castelo Ferreira and W. Heggie: ‘Genotoxic impurities in pharmaceutical manufacturing: sources, regulations, and mitigation’, Chem. Rev., 2015, 115, (16), 8182–8229.
  • A. Sharma, S. V. Madhunapantula and G. P. Robertson: ‘Toxicological considerations when creating nanoparticle-based drugs and drug delivery systems’, Expert Opin. Drug Metab. Toxicol., 2012, 8, 47–69.
  • E. A. Kyzyma, A. A. Tomchuk, L. A. Bulavin, V. I. Petrenko, L. Almasy, M. V. Korobov, D. S. Volkov, I. V. Mikheev, I. V. Koshlan, N. A. Koshlan, P. Blaha, M. V. Avdeev and V. L. Aksenov: ‘Structure and toxicity of aqueous fullerene C60 solutions’, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2015, 9, (1), 1–5.
  • C. M. Sayes, J. D. Fortner, W. Guo, D. Lyon, A. M. Boyd, K. D. Ausman, Y. J. Tao, B. Sitharaman, L. J. Wilson, J. B. Hughes, J. L. West and V. L. Colvin: ‘The differential cytotoxicity of water-soluble fullerenes’, Nano Lett., 2004, 4, (10), 1881–1887.
  • J. Gao, Y. Wang, K. M. Folta, V. Krishna, W. Bai, P. Indeglia, A. Georgieva, H. Nakamura, B. Koopman and B. Moudgil: ‘Polyhydroxy fullerenes (fullerols or fullerenols): beneficial effects on growth and lifespan in diverse biological models’, PLoS ONE, 2011, 6, (5), 1–8.
  • A. Djordjevic and G. Bogdanovic: ‘Fullerenol: a new nanopharmaceutic?’, Arch. Oncol., 2008, 16, (3–4), 42–45.
  • B. Srdjenovic, V. Milic-Torres, N. Grujic, K. Stankov, A. Djordjevic and V. Vasovic: ‘Antioxidant properties of fullerenol C60(OH)24 in rat kidneys, testes, and lungs treated with doxorubicin’, Toxicol. Mech. Method, 2010, 20, (6), 298–305.
  • J. Fan, G. Fang, F. Zeng, X. Wang and F. Wu: ‘Water-dispersible fullerene aggregates as a targeted anticancer prodrug with both chemo- and photodynamic therapeutic actions’, Small, 2013, 9, 613–621.
  • K. K. Jain: ‘The handbook of nanomedicine’, 2nd edn, 2012, New York, Springer.
  • J. Besley: ‘Current research on public perceptions of nanotechnology’, Emerg. Health Threats J., 2010, 3, e8.
  • N. Pidgeon, B. H. Harthorn, K. Bryant and T. Rogers-Hayden, ‘Deliberating the risks of nanotechnologies for energy and health applications in the United States and United Kingdom’, Nat. Nanotechnol., 2009, 4, (2), 95–98.
  • M. Siegrist, A. Wiek, A. Helland and H. Kastenholz: ‘Risks and nanotechnology: the public is more concerned than experts and industry’, Nat. Nanotechnol., 2007, 2, (2), 67.
  • H. Rauscher, B. Sokull-Klüttgen and H. Stamm: ‘The European commission's recommendation on the definition of nanomaterial makes an impact’, Nanotoxicology, 2012, 7, 1–3.
  • R. H. Baughman, A. A. Zakhidov and W. A. de Heer: ‘Carbon nanotubes on the route toward applications’, Science, 2002, 297, 787.
  • H. Shen, L. Zhang, M. Liu and Z. Zhang: ‘Biomedical applications of graphene’, Theranostics, 2012, 2, (3), 283–294.
  • I. L. Medintz, H. Mattoussi and A. R. Clapp: ‘Potential clinical applications of quantum dots’, Int. J. Nanomed., 2008, 3, (2), 151–167.
  • M. Mahmoudi, S. Sant, B. Wang, S. Laurent and T. Sen: ‘Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy’,Adv. Drug Deliv. Rev., 2011, 63, (1–2), 24–46.