210
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

MgFe2O4 thin films for detection of ethanol and acetone vapours

&
Pages 711-720 | Received 14 Jun 2017, Accepted 19 Sep 2017, Published online: 06 Oct 2017

References

  • Manivasaham A, Ravichandran K, Subha K. Light intensity effects on the sensitivity of ZnO:Cr gas sensor. Surf Eng 2017. DOI: 10.1080/02670844.2017.1331724
  • Kotresh S, Ravikiran YT, Vijayakumari SC, et al. Interfacial p-n heterojunction of polyaniline-nickel ferrite nanocomposite as room temperature liquefied petroleum gas sensor. Compos Interfaces. 2016. doi: 10.1080/09276440.2017.1241523
  • Zhang J, Qin Z, Zeng D, Xie C. Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration. Phys Chem Chem Phys 2017. DOI: 10.1039/C6CP07799D
  • Park JY, Kim H, Rana D, et al. Surface-area-controlled synthesis of porous TiO2 thin films for gas-sensing applications. Nanotechnology. 2017;28:095502. doi: 10.1088/1361-6528/aa5836
  • Park S, Kim S, Sun GJ, et al. Synthesis, structure, and ethanol gas sensing properties of In2O3 nanorods decorated with Bi2O3 nanoparticles. ACS Appl Mater Interfaces. 2015;7(15):8138–8146. doi: 10.1021/acsami.5b00972
  • Maziarz W, Kusior A, Trenczek-Zajac A. Nanostructured TiO2-based gas sensors with enhanced sensitivity to reducing gases. Beilstein J Nanotechnol. 2016;7:1718–1726. doi: 10.3762/bjnano.7.164
  • Dhahri R, Hjiri M, El Mir L, et al. CO sensing characteristics of in-doped ZnO semiconductor nanoparticles. JSAMD. 2017;2:34–40.
  • Fedorenko G, Oleksenko L, Maksymovych N, et al. Semiconductor gas sensors based on Pd/SnO2 nanomaterials for methane detection in air. Nanoscale Res Lett. 2017;12:537. doi: 10.1186/s11671-017-2102-0
  • Zhao Y, Zhang S-Y, Wen G-F, et al. Optical fiber gas sensor based on graphene nanometer functional materials. I Instrum Sci Technol. 2017. doi: 10.1080/10739149.2017.1326936
  • Yuan Y, Wang Y, Wang M, et al. Effect of unsaturated Sn atoms on gas-sensing property in hydrogenated SnO2 nanocrystals and sensing mechanism. Sci Rep. 2017;7:11609. doi: 10.1038/s41598-017-11944-0
  • Lopez J, Aguirre-Contreras WR, Gómez ME, et al. Zn concentration influence on the structure, morphology and magnetic properties of Co (1-X) ZnxFe2O4 nanoparticles in ferrofluids. IASET. 2017;6:47–60.
  • Godbole R, Rao P, Bhagwat S. Magnesium ferrite nanoparticles: a rapid gas sensor for alcohol. Mater Res Express. 2017;4:025032. doi: 10.1088/2053-1591/aa5ec7
  • Zheng B, Wu S, Yang X, et al. Room temperature CO oxidation over Pt/MgFe2O4: a stable inverse spinel oxide support for preparing highly efficient Pt catalyst. ACS Appl Mater Interfaces. 2016;8:26683–26689. doi: 10.1021/acsami.6b06501
  • Qin J, Cui Z, Yang X, et al. Three-dimensionally ordered macroporous La1-xMgxFeO3 as high performance gas sensor to methanol. J Alloys Compd. 2015;635:194–202. doi: 10.1016/j.jallcom.2015.01.226
  • Hankarea PP, Jadhava SD, Sankpal UB, et al. Gas sensing properties of magnesium ferrite prepared by co-precipitation method. J Alloys Compd. 2009;488:270–272. doi: 10.1016/j.jallcom.2009.08.103
  • Jeyaprakash BG, Pandeeswari R. Study of structural, morphological, optical and electrical properties of spray-deposited gallium oxide thin films: a comparative approach. Adv Sci Lett. 2016;22:730–738. doi: 10.1166/asl.2016.6967
  • Trends in surface science research, ed. C. P. Norris, Nova science publishers, Pub. Date: 2005, ISBN: 1-59454-178-7, p. 88.
  • Liu SF, Lin S, Swager TM. An organocobalt–carbon nanotube chemiresistive carbon monoxide detector. ACS Sens. 2016;1(4):354–357. doi: 10.1021/acssensors.6b00005
  • Kim HG, Borse PH, Jang JS, et al. Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis. Chem Commun. 2009;47:5889–5891. doi: 10.1039/b911805e
  • Nipan GD, Ketsko VA, Stognij AI, et al. Properties of Mg(Fe1–xGax)2O4+δ solid solutions in stable and metastable states. Inorg Mater. 2010;46:429–433. doi: 10.1134/S0020168510040199
  • Akamatsu M, Mori T, Okamoto K, et al. Detection of ethanol in alcoholic beverages or vapor phase using fluorescent molecules embedded in a nanofibrous polymer. ACS Appl Mater Interfaces. 2015;7:6189–6194. doi: 10.1021/acsami.5b00289
  • Silveira JL, Martinelli VJ, Vane LF, et al. Incorporation of hydrogen production process in a sugar cane industry: steam reforming of ethanol. Appl Therm Eng. 2014;71:94–103. doi: 10.1016/j.applthermaleng.2014.06.032
  • Alzeer J, Hadeed KA. Ethanol and its halal status in food industries. Trends Food Sci Technol. 2016;58:14–20. doi: 10.1016/j.tifs.2016.10.018
  • Lee SL, Wang MF, Lee AI, et al. The metabolic role of human ADH3 functioning as ethanol dehydrogenase. FEBS Lett. 2003;544:143–147. doi: 10.1016/S0014-5793(03)00492-7
  • Zhang H, Shang Y, Zhao J, et al. Enhanced electrocatalytic activity of ethanol oxidation reaction on palladium-silver nanoparticles via removable surface ligands. ACS Appl Mater Interfaces. 2017;9:16635–16643. doi: 10.1021/acsami.7b01874
  • Chandiramouli R, Jeyaprakash BG. Operating temperature dependent ethanol and formaldehyde detection of spray deposited mixed CdO and MnO2 thin films. RSC Adv. 2015;5:43930–43940. doi: 10.1039/C5RA00734H
  • Das P, Mondal B, Mukherjee K. Simultaneous adsorption−desorption processes in the conductance transient of anatase titania for sensing ethanol: a distinctive feature with kinetic perception. J Phys Chem C. 2017;121:1146–1152. doi: 10.1021/acs.jpcc.6b10041
  • Leonardi SG. Two-Dimensional zinc oxide nanostructures for gas sensor applications. Chemosensors. 2017;5:17. doi: 10.3390/chemosensors5020017
  • Wang Y, Liu L, Meng C, et al. A novel ethanol gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures. Sci Rep. 2016;6:33092. doi: 10.1038/srep33092
  • Gadkari AB, Shinde TJ, Vasambekar PN. Ethanol sensor based on nanocrystallite cadmium ferrite. AIP Conf Proc. 2015;1665:050001. doi: 10.1063/1.4917642
  • Karmakar M, Das P, Pal M, et al. Acetone and ethanol sensing characteristics of magnesium zinc ferrite nano-particulate chemi-resistive sensor. J Mater Sci. 2014;49:5766–5771. doi: 10.1007/s10853-014-8302-4
  • Ma J, Cai Y, Li X, et al. Synthesis of hierarchical ZnO/ZnFe2O4 nanoforests with enhanced gas-sensing performance toward ethanol. CrystEngComm. 2015;17:8683–8688. doi: 10.1039/C5CE01919B
  • Lakhane M, Khairnar R, Mahabole M. Metal oxide blended ZSM-5 nanocomposites as ethanol sensors. Bull Mater Sci. 2016;39:1483–1492. doi: 10.1007/s12034-016-1286-8
  • Wang F, Li H, Yuan Z, et al. A highly sensitive gas sensor based on CuO nanoparticles synthetized via a sol–gel method. RSC Adv. 2016;6:79343–79349. doi: 10.1039/C6RA13876D
  • Darvishnejad MH, Firooz AA, Beheshtiana J, et al. Highly sensitive and selective ethanol and acetone gas sensors by adding some dopants (Mn, Fe, Co, Ni) onto hexagonal ZnO plates. RSC Adv. 2016;6:7838–7845. doi: 10.1039/C5RA24169C
  • Nguyen TB. Vacuum desiccator as a simple, robust, and inexpensive NMR tube cleaner. Org Process Res Dev. 2016;20(2):319–319. doi: 10.1021/acs.oprd.6b00001
  • Shammari SA, Almeida GC, Rocco MLM, et al. Dissociative recombination of acetone fragments, adducts, and dimer ions. J Phys Chem A. 2017;121(21):4114–4122. doi: 10.1021/acs.jpca.7b00987
  • Lippmann M, Cohen MD, Chen LC. Health effects of World Trade Center (WTC) dust: an unprecedented disaster with inadequate risk management. Crit Rev Toxicol. 2015;45(6):492–530. doi: 10.3109/10408444.2015.1044601
  • Anderson JC. Measuring breath acetone for monitoring fat loss: review. Obesity. 2015;23(12):2327–2334. doi: 10.1002/oby.21242
  • Cao Z, Murayama K, Aoki K. Thickness-shear-mode acoustic wave sensor for acetone vapour coated with C-ethylcalix[4]resorcinarene and C–H⋯π interactions as a molecular recognition mechanism. Anal Chim Acta. 2001;448:47–59. doi: 10.1016/S0003-2670(01)01325-3
  • Zhang Y, Zhang J, Liu Q. Gas sensors based on molecular imprinting technology. Sensors. 2017;17(7):1567. doi: 10.3390/s17071567
  • Wu J, Tao K, Miao J, et al. Improved selectivity and sensitivity of gas sensing using a 3D reduced graphene oxide hydrogel with an integrated microheater. ACS Appl Mater Interfaces. 2015;7(49):27502–27510. doi: 10.1021/acsami.5b09695
  • Chen W, Qin Z, Liu Y, et al. Promotion on acetone sensing of single SnO2 nanobelt by Eu doping. Nanoscale Res Lett. 2017;12:10131.
  • Jaisutti R, Kim J, Park SK, et al. Low-temperature photochemically activated amorphous indium-gallium-zinc oxide for highly stable room-temperature gas sensors. ACS Appl Mater Interfaces. 2016;8:20192–20199. doi: 10.1021/acsami.6b05724
  • Zhang H, Cen Y, Du Y, et al. Enhanced acetone sensing characteristics of ZnO/graphene composites. Sensors. 2016;16:1876. doi: 10.3390/s16111876
  • Li X, Wang C, Guo H, et al. Double-Shell architectures of ZnFe2O4 nanosheets on ZnO hollow spheres for high-performance gas sensors. ACS Appl Mater Interfaces. 2015;7(32):17811–17818. doi: 10.1021/acsami.5b04118
  • Righettoni M, Tricoli A, Pratsinis SE. Si:WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal Chem. 2010;82:3581–3587. doi: 10.1021/ac902695n

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.