144
Views
0
CrossRef citations to date
0
Altmetric
Articles

Vanadium promoted ZnO films: effects on optical and photocatalytic properties

ORCID Icon & ORCID Icon
Pages 852-859 | Received 21 Jun 2023, Accepted 22 Sep 2023, Published online: 07 Oct 2023

References

  • Hamrit S, Djessas K, Medjnoun K, et al. Realization of high transparent conductive vanadium-doped zinc oxide thin films onto flexible PEN substrates by RF-magnetron sputtering using nanopowders targets. Ceram Int. 2021;47(16):22881–22888. doi:10.1016/j.ceramint.2021.04.308
  • Asgharinezhad M, Eshaghi A, Arab A. Fabrication and characterization of optical and electrical properties of vanadium doped titanium dioxide nanostructured thin film. Optik (Stuttg). 2016;127(19):8130–8134. doi:10.1016/j.ijleo.2016.06.008
  • Racca L, Rosso G, Carofiglio M, et al. Effective combination of biocompatible zinc oxide nanocrystals and high-energy shock waves for the treatment of colorectal cancer. Cancer Nanotechnol. 2023;14:37. doi:10.1186/s12645-023-00195-6
  • Nguyen T, Adjeroud N, Guennou M, et al. Controlling electrical and optical properties of zinc oxide thin films grown by thermal atomic layer deposition with oxygen gas. Res Mater. 2020;6:100088. doi:10.1016/j.rinma.2020.100088
  • Al-Shomar SM, Akl AA, Mansour D, et al. Structural, optical ellipsometry, and magnetic characteristics of iron-doped zinc oxide thin films for spintronic applications. J Mater Sci: Mater Electron. 2023;34:878. doi:10.1007/s10854-023-10294-0
  • Kundu Roy T, Sanyal D, Bhowmick D, et al. Temperature dependent resistivity study on zinc oxide and the role of defects. Mater Sci Semicond Process. 2013;16(2):332–336. doi:10.1016/j.mssp.2012.09.018
  • Khan SH, Pathak B. Zinc oxide based photocatalytic degradation of persistent pesticides: a comprehensive review. Environ Nanotechnol Monit Manag. 2020;13:100290. doi:10.1016/j.enmm.2020.100290
  • Kumar R, Al-Dossary O, Kumar G, et al. Zinc oxide nanostructures for NO2 gas-sensor applications: a review. Nanomicro Lett. 2014;7:97–120. doi:10.1007/s40820-014-0023-3
  • Nakano M, Matsui H, Nakagawa S, et al. Control of the resistive switching voltage and reduction of the high-resistive-state current of zinc oxide by self-assembled monolayers. Chem Comm. 2023;59:5761.
  • Manivasaham A, Ravichandran K, Subha K. Light intensity effects on the sensitivity of ZnO:Cr gas sensor. Surf Eng. 2017;33(11):866–876. doi:10.1080/02670844.2017.1331724
  • Rahmah MI, Sabry RS, Aziz WJ. Preparation of superhydrophobic Ag/Fe2O3/ZnO surfaces with photocatalytic activity. Surf Eng. 2021;37(10):1320–1327. doi:10.1080/02670844.2021.1948156
  • Youness RA, Zawrah MF, Taha MA. Synthesis of ZnO-containing calcium silicate nano powders: a study on sinterability, mechanical and electrical properties. Silicon. 2023;15:4943–4957. doi:10.1007/s12633-023-02406-6
  • Syrek K, Tynkevych O, Wojtas M, et al. Room-temperature electrochemical deposition of nanostructured ZnO films on FTO substrate and their photoelectrochemical activity. J Ind Eng Chem. 2023;126:171–180. doi:10.1016/j.jiec.2023.06.007
  • Acharya TR, Chaudhary DK, Gautam S, et al. Influence of nanoparticle size on the characterization of ZnO thin films for formaldehyde sensing at room temperature. Sens Actuators A: Phys. 2023;351:114175. doi:10.1016/j.sna.2023.114175
  • Rati Y, Hendri YN, Waluyo R, et al. Visible light assisted degradation of Rhodamin B by reusable S-doped ZnO thin film photocatalyst. Opt Mater. 2023;135:113370. doi:10.1016/j.optmat.2022.113370
  • Sugiyama H, Nakamura N, Watanabe S, et al. Electronic promotion of methanol synthesis over Cu-loaded ZnO-based catalysts. J Phys Chem Lett. 2023;14(5):1259–1264. doi:10.1021/acs.jpclett.2c03427
  • Starowicz Z, Zieba A, Ostapko J, et al. Synthesis and characterization of Al-doped ZnO and Al/F co-doped ZnO thin films prepared by atomic layer deposition. Mater Sci Eng B. 2023;292:116405. doi:10.1016/j.mseb.2023.116405
  • Tamseel M, Mahmood K, Ali A, et al. Controlled growth of Ag-ZnO thin films by thermal evaporation technique for optimized thermoelectric power generation. J Alloys Compd. 2023;938:168507. doi:10.1016/j.jallcom.2022.168507
  • Zhang SB, Zuo DW, Lu WZ. Influence of film thickness on structural and optical-switching properties of vanadium pentoxide films. Surf Eng. 2017;33(4):292–298. doi:10.1080/02670844.2016.1252897
  • Navidpour AH, Fakhrzad M, Tahari M, et al. Novel photocatalytic coatings based on tin oxide semiconductor. Surf Eng. 2019;35(3):216–226. doi:10.1080/02670844.2018.1477559
  • Ravichandran K, Sindhuja E, Uma R, et al. Photocatalytic efficacy of ZnO films – light intensity and thickness effects. Surf Eng. 2017;33(7):512–520. doi:10.1080/02670844.2016.1270797
  • Ye W, Fang K. Comparative study on structure and properties of ZnO thin films prepared by RF magnetron sputtering using pure metallic Zn target and ZnO ceramic target. Surf Eng. 2018;36(1):49–54. doi:10.1080/02670844.2018.1555214
  • Sinha A, Kumar Sahu S, Biswas S, et al. Synthesis of CeO2/ZrO2/ZnO nano alloy oxide and investigation of photocatalysis of naphtol orange under sunlight. RSC Adv. 2023;13:22029–22042. doi:10.1039/D3RA03579D
  • Xin M. Growth temperature on ZnO:Al thin films morphology and optical properties. Surf Eng. 2021;37(11):1476–1483. doi:10.1080/02670844.2021.1976021
  • Sathya M, Selvan G, Karunakaran M, et al. Synthesis and characterization of cadmium doped on ZnO thin films prepared by SILAR method for photocatalytic degradation properties of MB under UV irradiation. Eur Phys J Plus. 2023;138:67. doi:10.1140/epjp/s13360-023-03667-1
  • Meena PL, Poswal K, Surela AK, et al. Synthesis of graphitic carbon nitride/zinc oxide (g-C3N4/ZnO) hybrid nanostructures and investigation of the effect of ZnO on the photodegradation activity of g-C3N4 against the brilliant cresyl blue (BCB) dye under visible light irradiation. Adv Compos. 2022;6:16. doi:10.1007/s42114-022-00577-1
  • Harpal A, Pandy P. Green synthesis of ZnO nanoparticles: a critical review. J Surv Fish Sci. 2023;10(2S):3100–3112. doi:10.17762/sfs.v10i2S.1483
  • Azarin K, Usatov A, Minkina T, et al. Effects of ZnO nanoparticles and its bulk form on growth, antioxidant defense system and expression of oxidative stress related genes in Hordeum vulgare L. Chemosphere. 2022;287:132167. doi:10.1016/j.chemosphere.2021.132167
  • Qin M, Mawignon FJ, Hussain M, et al. Economic friendly ZnO-based UV sensors using hydrothermal growth: a review. Materials (Basel). 2021;14(15):4083. doi:10.3390/ma14154083
  • Quynh NPLP, Thi TUD, Tran KM, et al. Improving memory performance of PVA:ZnO nanocomposite: the experimental and theoretical approaches. Appl Suf Sci. 2021;537:148000. doi:10.1016/j.apsusc.2020.148000
  • Yoshida T, Komatsu D, Shimokawa N, et al. Mechanism of cathodic electrodeposition of zinc oxide thin films from aqueous zinc nitrate baths. Thin Solid Films. 2004;451-452:166–169. doi:10.1016/j.tsf.2003.10.097
  • Benrezgua E, Deghfel B, Zoukel A, et al. Synthesis and properties of copper doped zinc oxide thin films by sol-gel, spin coating and dipping: a characterization review. J Mol Struct. 2022;1267:133639. doi:10.1016/j.molstruc.2022.133639
  • Machado G, Guerra DN, Leinen D, et al. Indium doped zinc oxide thin films obtained by electrodeposition. Thin Solid Films. 2005;490(2):124–131. doi:10.1016/j.tsf.2005.04.042
  • Gartner M, Stroescu H, Mitrea D, et al. Various applications of ZnO thin films obtained by chemical routes in the last decade. Molecules. 2023;28(12):4674, doi:10.3390/molecules28124674
  • Liao B, Chen L, Luo J, et al. Photoelectrochemical and photocatalytic activities of improved TiO2 nanotubes using Ag+ ion implantation and RGO deposition. Surf Eng. 2022;38(1):79–90. doi:10.1080/02670844.2022.2045786
  • Yang J, Lu YX, Ji HH, et al. Substrate temperature and thickness dependence of properties of boron and gallium co-doped ZnO films. Surf Eng. 2017;33(4):270–275. doi:10.1080/02670844.2016.1235006
  • Islam MR, Azam MG. Enhanced photocatalytic activity of Mg-doped ZnO thin films prepared by sol-gel method. Surf Eng. 2021;37(6):775–783. doi:10.1080/02670844.2020.1801143
  • Srivastava T, Bajpal G, Rathore G, et al. Vanadium substitution: a simple and economic way to improve UV sensing in ZnO. J Appl Phys. 2018;123:161407, doi:10.1063/1.5012877
  • Ola O, Maroto-Valer MM. Transition metal oxide based TiO2 nanoparticles for visible light induced CO2 photoreduction. Appl Catal. 2015;502:114–121. doi:10.1016/j.apcata.2015.06.007
  • Baig F, Khattak YH, Jemai S, et al. Hydrothermal syntheses of vanadium doped α- Fe2O3 cubic particles with enhanced photoelectrochemical activity. Sol Energy. 2019;182:332–339. doi:10.1016/j.solener.2019.02.066
  • Shahi DM, Hassanzadeh-Tabrizi SA, Saffar-Teluri A. Microemulsion synthesis, optical and photocatalytic properties of vanadium-doped nano ZnO. Int J Appl Ceram Technol. 2018;15(2):479–488. doi:10.1111/ijac.12810
  • Weckhuysen BM, Keller DE. Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis. Catal Today. 2003;78(1–2):25, doi:10.1016/S0920-5861(02)00323-1
  • Momeni MM, Ghayeb Y, Mohammadi F. Fe2O3 nanotube films prepared by anodization as visible light photocatalytic. Surf Eng. 2015;31(6):452–457. doi:10.1179/1743294414Y.0000000425
  • Bera S, Haldar A, Pal M, et al. Zinc-indium-oxide sol-gel thin film surface patterning, morphology and photocatalytic activity. Surf Eng. 2015;31(7):492–501. doi:10.1179/1743294414Y.0000000414
  • Yao Q, Sun J, Zhu Y, et al. TiO2coating prepared by mechanical alloying treatment for photocatalytic degradation. Surf Eng. 2019;35(11):927–932. doi:10.1080/02670844.2018.1554738
  • Slama R, Ghribi F, Houas A, et al. Visible photocatalytic properties of vanadium doped zinc oxide aerogel nanopowder. Thin Solid Films. 2011;519(17):5792–5795. doi:10.1016/j.tsf.2010.12.197
  • Danish M, Rasool Z, Iqbal H, et al. A comparative study on the photo-removal of a few selected priority organic pollutants in aqueous suspension using vanadium-doped-ZnO/MWCNT. Mater Adv. 2023;4:3506–3520. doi:10.1039/D3MA00162H
  • Dharmana G, Srinivasa Rao MP, Potukuchi DM. Visible light driven robust photocatalytic activity in vanadium-doped ZnO/SnS core-shell nanocomposites for decolorization of MB dye towards wastewater treatment. Inorg Nano-Met. 2022;52(8):1059–1076. doi:10.1080/24701556.2022.2075386
  • Saravanan S, Gupta VK, Mosquera E, et al. Preparation and characterization of V2O5/ZnO nanocomposite system for photocatalytic application. J Mol Liq. 2014;198:409–412. doi:10.1016/j.molliq.2014.07.030
  • Banerjee P, Chen X, Gregorczyk K, et al. Mixed mode, ionic-electronic diode using atomic layer deposition of V2O5 and ZnO films. J Mater Chem. 2011;21:15391–15397. doi:10.1039/c1jm12595h
  • Khezami L, Taha KK, Ghiloufi I, et al. Adsorption and photocatalytic degradation of malachite green by vanadium doped zinc oxide nanoparticles. Water Sci Technol. 2016;73(4):881–889. doi:10.2166/wst.2015.555
  • Mondal, US, Das S, Somu P, et al. Silica sand-supported nano zinc oxide-graphene oxide composite induced rapid photocatalytic decolorization of azo dyes under sunlight and improved antimicrobial activity. Environ Sci Pollut Res. 2023;30:17226–17244. doi:10.1007/s11356-022-23248-6
  • Yuan, LD, Deng HX, Li SS, et al. Unified theory of direct or indirect band-gap nature of conventional semiconductors. Phys Rev. 2018;98:245203, doi:10.1103/PhysRevB.98.245203
  • Niu X, Li Y, Shu H, et al. Efficient carrier separation in graphitic zinc oxide and blue phosphorus van der waals heterostructure. J Phys Chem C. 2017;121(6):3648–3653. doi:10.1021/acs.jpcc.6b12613
  • Silversmit G, Depla D, Poelman H, et al. Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V 0+). J Electron Spectros Relat Phenomena. 2004;135(2-3):167–175. doi:10.1016/j.elspec.2004.03.004
  • Mendialdua J, Casanova R, Barbaux Y. XPS studies of V2O5, V6O13, VO2 and V2O3. J Electron Spectros Relat Phenomena. 1995;71(3):249–261. doi:10.1016/0368-2048(94)02291-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.