182
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Conformational and Quantitative Characterization of Lysozyme Extracted from Galyfilcon and Senofilcon Silicone Hydrogel Contact Lenses

, , , &
Pages 1-11 | Received 05 Sep 2007, Accepted 19 Nov 2007, Published online: 02 Jul 2009

REFERENCES

  • Baines M G, Cai F, Backman H A. Adsorption and removal of protein bound to hydrogel contact lenses. Optom Vis Sci 1990; 67: 807–810
  • Bohnert J L, Horbett T A, Ratner B D, Royce F H. Adsorption of proteins from artificial tear solutions to contact lens materials. Invest Ophthalmol Vis Sci. 1988; 29: 362–373
  • Myers R I, Larsen D W, Tsao M, Castellano C, Becherer L D, Fontana F, Ghormley N R, Meier G. Quantity of protein deposited on hydrogel contact lenses and its relation to visible protein deposits. Optom Vis Sci. 1991; 68: 776–782
  • Sack R A, Jones B, Antignani A, Libow R, Harvey H. Specificity and biological activity of the protein deposited on the hydrogel surface. Relationship of polymer structure to biofilm formation. Invest Ophthalmol Vis Sci 1987; 28: 842–849
  • Keith D, Hong B, Christensen M. A novel procedure for the extraction of protein deposits from soft hydrophilic contact lenses for analysis. Curr Eye Res. 1997; 16: 503–510
  • Bontempo A R, Rapp J. Protein and lipid deposition onto hydrophilic contact lenses in vivo. CLAO J. 2001; 27: 75–80
  • Jones L, Evans K, Sariri R, Franklin V, Tighe B. Lipid and protein deposition of N-vinyl pyrrolidone-containing group II and group IV frequent replacement contact lenses. CLAO J. 1997; 23: 122–126
  • Rapp J, Broich J R. Lipid deposits on worn soft contact lenses. CLAO J. 1984; 10: 235–239
  • Castillo E J, Koenig J L, Anderson J M, Jentoft N. Protein adsorption on soft contact lenses. III. Mucin. Biomaterials 1986; 7: 9–16
  • Berry M, Harris A, Corfield A P. Patterns of mucin adherence to contact lenses. Invest Ophthalmol Vis Sci. 2003; 44: 567–572
  • Mirejovsky D, Patel A S, Rodriguez D D. Effect of proteins on water and transport properties of various hydrogel contact lens materials. Curr Eye Res. 1991; 10: 187–196
  • Pritchard N, Fonn D, Weed K. Ocular and subjective responses to frequent replacement of daily wear soft contact lenses. CLAO J. 1996; 22: 53–59
  • Bleshoy H, Guillon M, Shah D. Influence of contact lens material surface characteristics on replacement frequency. Int Contact Lens Clin. 1994; 21: 82–94
  • Gellatly K W, Brennan N A, Efron N. Visual decrement with deposit accumulation of HEMA contact lenses. Am J Optom Physiol Opt. 1988; 65: 937–941
  • Richard N R, Anderson J A, Tasevska Z G, Binder P S. Evaluation of tear protein deposits on contact lenses from patients with and without giant papillary conjunctivitis. CLAO J. 1992; 18: 143–147
  • Jones B, Sack R. Immunoglobulin deposition on soft contact lenses: Relationship to hydrogel structure and mode of use and giant papillary conjunctivitis. CLAO J. 1990; 16: 43–48
  • Donshik P C, Porazinski A D. Giant papillary conjunctivitis in frequent replacement contact lens wearers: A retrospective study. Trans Am Ophthalmol Soc 1999; 97: 205–216, Discussion 216–220
  • Alvord L, Court J, Davis T, Morgan C F, Schindhelm K, Vogt J, Winterton L. Oxygen permeability of a new type of high Dk soft contact lens material. Optom Vis Sci. 1998; 75: 30–36
  • Tighe B. Silicone hydrogels: Structure, properties and behaviour. Silicone Hydrogels: Continuous-wear Contact Lenses, D F Sweeney. Butterworth-Heinemann, London 2004; 1–27
  • Jones L. Modern contact lens materials: A clinical performance update. Contact Lens Spectrum. 2002; 17: 24–35
  • Garrett Q, Garrett R W, Milthorpe B K. Lysozyme sorption in hydrogel contact lenses. Invest Ophthalmol Vis Sci. 1999; 40: 897–903
  • Garrett Q, Griesser H J, Milthorpe B K, Garrett R W. Irreversible adsorption of human serum albumin to hydrogel contact lenses: A study using electron spin resonance spectroscopy. Biomaterials. 1999; 20: 1345–1356
  • Sariri R, Sabbaghzadeh R. Competitive adsorption of proteins on hydrogel contact lenses. CLAO J. 2001; 27: 159–162
  • Garrett Q, Chatelier R C, Griesser H J, Milthorpe B K. Effect of charged groups on the adsorption and penetration of proteins onto and into carboxymethylated poly(HEMA) hydrogels. Biomaterials. 1998; 19: 2175–2186
  • Minarik L, Rapp J. Protein deposits on individual hydrophilic contact lenses: Effects of water and ionicity. CLAO J. 1989; 15: 185–188
  • Garrett Q, Laycock B, Garrett R W. Hydrogel lens monomer constituents modulate protein sorption. Invest Ophthalmol Vis Sci. 2000; 41: 1687–1695
  • Tomlinson A, Caroline P. Comparative evaluation of surface deposits on high water content hydrogel contact lens polymers. CLAO J. 1990; 16: 121–127
  • Leahy C D, Mandell R B, Lin S T. Initial in vivo tear protein deposition on individual hydrogel contact lenses. Optom Vis Sci. 1990; 67: 504–511
  • Minno G E, Eckel L, Groemminger S, Minno B, Wrzosek T. Quantitative analysis of protein deposits on hydrophilic soft contact lenses: I. Comparison to visual methods of analysis. II. Deposit variation among FDA lens material groups. Optom Vis Sci 1991; 68: 865–872
  • Keith D J, Christensen M T, Barry J R, Stein J M. Determination of the lysozyme deposit curve in soft contact lenses. Eye Contact Lens. 2003; 29: 79–82
  • Subbaraman L N, Glasier M A, Senchyna M, Sheardown H, Jones L. Kinetics of in vitro lysozyme deposition on silicone hydrogel, PMMA, and FDA groups I, II, and IV contact lens materials. Curr Eye Res. 2006; 31: 787–796
  • Fonn D, Dumbleton K, Jones L, du Toit R, Sweeney D. Silicone hydrogel material and surface properties. Contact Lens Spectrum 2002; 17(24)26–28
  • Kunzler J. Silicone-based hydrogels for contact lens applications. Contact Lens Spectrum. 1999; 14: 9–11
  • McNally J, McKenney C. A clinical look at a silicone hydrogel extended wear lens. Contact Lens Spectrum. 2002; 17: 38–41
  • Jones L, Senchyna M, Glasier M A, Schickler J, Forbes I, Louie D, May C. Lysozyme and lipid deposition on silicone hydrogel contact lens materials. Eye Contact Lens 2003; 29: S75–79, Discussion S83–74, S192–194
  • Senchyna M, Jones L, Louie D, May C, Forbes I, Glasier M. Quantitative and conformational characterization of lysozyme deposited on balafilcon and etafilcon contact lens materials. Curr Eye Res. 2004; 28: 25–36
  • Suwala M, Glasier M A, Subbaraman L N, Jones L. Quantity and conformation of lysozyme deposited on conventional and silicone hydrogel contact lens materials using an in vitro model. Eye Contact Lens. 2007; 33: 138–143
  • Nicolson P C, Vogt J. Soft contact lens polymers: An evolution. Biomaterials. 2001; 22: 3273–3283
  • Weikart C M, Matsuzawa Y, Winterton L, Yasuda H K. Evaluation of plasma polymer-coated contact lenses by electrochemical impedance spectroscopy. J Biomed Mater Res. 2001; 54: 597–607
  • Lopez-Alemany A, Compan V, Refojo M F. Porous structure of Purevision versus Focus Night&Day and conventional hydrogel contact lenses. J Biomed Mater Res. 2002; 63: 319–325
  • Steffen R, Schnider C. A next-generation silicone hydrogel lens for daily wear. Optician. 2004; 227: 23–25
  • Jones L, Dumbleton K. Contact lens fitting today Part 5: Silicone hydrogels Part 1: Tehnological developments. Optometry Today 2005; 23–29, November 18
  • Lin S T, Mandell R B, Leahy C D, Newell J O. Protein accumulation on disposable extended wear lenses. CLAO J. 1991; 17: 44–50
  • Tripathi P C, Tripathi R C. Analysis of glycoprotein deposits on disposable soft contact lenses. Invest Ophthalmol Vis Sci. 1992; 33: 121–125
  • Wedler F C. Analysis of biomaterials deposited on soft contact lenses. J Biomed Mater Res. 1977; 11: 525–535
  • Yan G, Nyquist G, Caldwell K D, Payor R, McCraw E C. Quantitation of total protein deposits on contact lenses by means of amino acid analysis. Invest Ophthalmol Vis Sci. 1993; 34: 1804–1813
  • Canfield R E, Kammerman S, Sobel J H, Morgan F J. Primary structure of lysozymes from man and goose. Nat New Biol. 1971; 232: 16–17
  • Lu J R, Su T J, Thirtle P N, Thomas R K, Rennie A R, Cubitt R. The denaturation of lysozyme layers adsorbed at the hydrophobic solid/liquid surface studied by neutron reflection. J Colloid Interface Sci. 1998; 206: 212–223
  • Chang J Y, Li L. The unfolding mechanism and the disulfide structures of denatured lysozyme. FEBS Lett. 2002; 511: 73–78
  • Gekko K, Ohmae E, Kameyama K, Takagi T. Acetonitrile-protein interactions:amino acid solubility and preferential solvation. Biochim Biophys Acta. 1998; 1387: 195–205
  • Shugar D. The measurement of lysozyme activity and the ultra-violet inactivation of lysozyme. Biochim Biophys Acta. 1952; 8: 302–309
  • Morsky P. Turbidimetric determination of lysozyme with Micrococcus lysodeikticus cells: Reexamination of reaction conditions. Anal Biochem. 1983; 128: 77–85
  • Gorin G, Wang S F, Papapavlou L. Assay of lysozyme by its lytic action on M. lysodeikticus cells. Anal Biochem 1971; 39: 113–127
  • Houser M T. Improved turbidimetric assay for lysozyme in urine. Clin Chem. 1983; 29: 1488–1493
  • Kingshott P, St John H A, Griesser H J. Direct detection of proteins adsorbed on synthetic materials by matrix-assisted laser desorption ionization-mass spectrometry. Anal Biochem. 1999; 273: 156–162
  • McArthur S L, McLean K M, St John H A, Griesser H J. XPS and surface-MALDI-MS characterisation of worn HEMA-based contact lenses. Biomaterials. 2001; 22: 3295–3304
  • Meadows D L, Paugh J R. Use of confocal microscopy to determine matrix and surface protein deposition profiles in hydrogel contact lenses. CLAO J 1994; 20: 237–241
  • Bhatia S, Goldberg E P, Enns J B. Examination of contact lens surfaces by Atomic Force Microscope (AFM). CLAO J 1997; 23: 264–269
  • Baguet J, Sommer F, Claudon-Eyl V, Duc T M. Characterization of lacrymal component accumulation on worn soft contact lens surfaces by atomic force microscopy. Biomaterials 1995; 16: 3–9
  • Bontempo A R, Rapp J. Protein-lipid interaction on the surface of a hydrophilic contact lens in vitro. Curr Eye Res 1997; 16: 776–781
  • Cerulli L, Pocobelli A, Ricci F, Missiroli A, Sabbatini L, Zambonin P. Two methods of examining protein deposits on hydrophilic contact lenses. CLAO J. 1992; 18: 101–104
  • Morris C A, Holden B A, Papas E, Griesser H J, Bolis S, Anderton P, Carney F. The ocular surface, the tear film, and the wettability of contact lenses. Adv Exp Med Biol. 1998; 438: 717–722
  • Subbaraman L N, Glasier M A, Senchyna M, Jones L. Stabilization of lysozyme mass extracted from lotrafilcon silicone hydrogel contact lenses. Optom Vis Sci. 2005; 82: 209–214
  • Subbaraman L N, Glasier M A, Lorentz H, Senchyna M, Jones L. Rewetting drops containing surface active agents improve the clinical performance of silicone hydrogel contact lenses. Optom Vis Sci. 2006; 83: 143–151
  • Starcher B. A ninhydrin-based assay to quantitate the total protein content of tissue samples. Anal Biochem. 2001; 292: 125–129
  • Pande S V, Murthy M S. A modified micro-Bradford procedure for elimination of interference from sodium dodecyl sulfate, other detergents, and lipids. Anal Biochem. 1994; 220: 424–426
  • Zuo S S, Lundahl P. A micro-Bradford membrane protein assay. Anal Biochem. 2000; 284: 162–164
  • Glasier M A, Subbaraman L N, Senchyna M, Jones L. A solid-phase assay for the quantitation of total protein eluted from balafilcon, lotrafilcon and etafilcon contact lenses. Curr Eye Res 2007, in submission
  • Osserman E F, Canfield R E, Beychok S. Lysozyme. Academic Press, New York 1974
  • Blake C C, Koenig D F, Mair G A, North A C, Phillips D C, Sarma V R. Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Angstrom resolution. Nature 1965; 206: 757–761
  • Blake C C, Swan I D. X-ray analysis of structure of human lysozyme at 6 A resolution. Nat New Biol. 1971; 232: 12–15
  • Halper J P, Latovitzki N, Bernstein H, Beychok S. Optical activity of human lysozyme. Proc Natl Acad Sci USA. 1971; 68: 517–522
  • Ikeda K, Hamaguchi K, Miwa S, Nishina T. Circular dichroism of human lysozyme. J Biochem (Tokyo) 1972; 71: 371–378
  • Saint-Blancard J, Chuzel P, Mathieu Y, Perrot J, Jolles P. Influence of pH and ionic strength of the lysis of Micrococcus lysodeikticus cells by six human and four avian lysozymes. Biochim Biophys Acta 1970; 220: 300–306
  • Maiden A C, Vanderlann D G, Turner D C, Love R N, Ford J D, Molock F F, Steffen R B, Hill G A, Alli A, McCabe K P. Hydrogel with internal wetting agent. US Patent No. 6,367,929, 2002
  • Molyneux P. Water-Soluble Synthetic Polymers: Properties and Behavior. Vol. 1 of 2. CRC Press, Inc., Boca Raton, Florida 1983
  • McDonald C C, Phillips W D, Glickson J D. Nuclear magnetic resonance study of the mechanism of reversible denaturation of lysozyme. J Am Chem Soc. 1971; 93: 235–246
  • Davies R C, Neuberger A, Wilson B M. The dependence of lysozyme activity on pH and ionic strength. Biochim Biophys Acta. 1969; 178: 294–305
  • Bonincontro A, De Francesco A, Onori G. Influence of pH on lysozyme conformation revealed by dielectric spectroscopy. Colloids and Surfaces B, Biointerfaces. 1998; 12: 1–5
  • Singh S, Singh J. Effect of polyols on the conformational stability and biological activity of a model protein lysozyme. AAPS Pharm Sci Tech 2003; 4: E42
  • Castillo E J, Koenig J L, Anderson J M, Lo J. Protein adsorption on hydrogels. II. Reversible and irreversible interactions between lysozyme and soft contact lens surfaces. Biomaterials 1985; 6: 338–345
  • Castillo E J, Koenig J L, Anderson J M, Lo J. Characterization of protein adsorption on soft contact lenses. I. Conformational changes of adsorbed human serum albumin. Biomaterials 1984; 5: 319–325
  • Su T J, Lu J R, Thomas R K, Cui Z F, Penfold J. The Adsorption of Lysozyme at the Silica-Water Interface:A Neutron Reflection Study. J Colloid Interface Sci. 1998; 203: 419–429
  • Fullard R J, Kissner D M. Purification of the isoforms of tear specific prealbumin. Curr Eye Res. 1991; 10: 613–628
  • Bright A M, Tighe B J. The composition and interfacial properties of tears, tear substitutes and tear models. J Brit Contact Lens Assoc. 1993; 16: 57–66

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.