460
Views
0
CrossRef citations to date
0
Altmetric
Retina and Choroid

Neuroprotective Effects of Psalmotoxin-1, an Acid-Sensing Ion Channel (ASIC) Inhibitor, in Ischemia Reperfusion in Mouse Eyes

, , &
Pages 921-933 | Received 29 Jan 2018, Accepted 14 Mar 2018, Published online: 29 Mar 2018

References

  • Minhas G, Morishita R, Anand A. Preclinical models to investigate retinal ischemia: advances and drawbacks. Front Neurol. 2012. doi:10.3389/fneur.2012.00075.
  • Hughes WF. Quantitation of ischemic damage in the rat retina. Exp Eye Res. 1991;53:573–82. doi:10.1016/0014-4835(91)90215-Z.
  • Zhang C, Rosenbaum D, Shaikh A, Li Q, Rosenbaum P, Pelham D, Roth S. Ischemic preconditioning attenuates apoptotic cell death in the rat retina. Invest Ophthalmol VisSci. 2002;43:3059–66.
  • Joo C, Choi J, Ko H, Park K, Sohn S, Chun M, Oh Y, Gwag B. Necrosis and apoptosis after retinal ischemia: involvement of NMDA-mediated excitotoxicity and p53. Invest Ophthalmol Vis Sci. 1999;40:713–20.
  • Osborne N, Casson R, Wood J, Chidlow G, Graham M, Melena J. Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Ret Eye Res. 2004;23:91–147. doi:10.1016/j.preteyeres.2003.12.001.
  • Dvoriantchikova G, Degterev A, Ivanov D. Retinal ganglion cell (RGC) programmed necrosis contributes to ischemia-reperfusion-induced retinal damage. Exp Eye Res. 2014;123:1–7. doi:10.1016/j.exer.2014.04.009.
  • Liu B, Neufeld A. Nitric oxide synthase-2 in human optic nerve head astrocytes induced by elevated pressure in vitro. Arch Ophthalmol. 2001;119:240–45.
  • Tezel G, Seigel G, Wax M. Density-dependent resistance to apoptosis in retinal cells. Curr Eye Res. 1999;19:377–88. doi:10.1076/ceyr.19.5.377.5293.
  • Chen X, Gründer S. Permeating protons contribute to tachyphylaxis of the acid-sensing ion channel (ASIC) 1a. J Physiol. 2007;579:657–70. doi:10.1113/jphysiol.2006.120733.
  • Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M. A proton-gated cation channel involved in acid-sensing. Nat. 1997;386:173–77. doi:10.1038/386173a0.
  • Hoagland E, Sherwood T, Lee K, Walker C, Askwith C. Identification of a calcium permeable human acid-sensing ion channel 1 transcript variant. J Biol Chem. 2010;285:41852–62. doi:10.1074/jbc.M110.171330.
  • XSherwood T, Lee K, Gormley M, Askwith C. Heteromeric acid-sensing ion channels (ASICs) composed of ASIC2b and ASIC1a display novel channel properties and contribute to acidosis-induced neuronal death. J Neurosci. 2011;31:9723–34. doi:10.1523/JNEUROSCI.1665-11.2011.
  • Baron A, Diochot S, Salinas M, Deval E, Noël J, Lingueglia E. Venom toxins in the exploration of molecular, physiological and pathophysiological functions of acid-sensing ion channels. Toxi. 2013;75:187–204. doi:10.1016/j.toxicon.2013.04.008.
  • Wiemuth D, Assmann M, Gründer S. The bile acid-sensitive ion channel (BASIC), the ignored cousin of ASICs and ENaC. Channels. 2014;8:29–34. doi:10.4161/chan.27493.
  • Pignataro G, Simon R, Xiong Z. Prolonged activation of ASIC1a and the time window for neuroprotection in cerebral ischaemia. Brain. 2007;130:151–58. doi:10.1093/brain/awl325.
  • Xiong Z, Zhu X, Chu X, Minami M, Hey J, Wei W, MacDonald J, Wemmie J, Price M, Welsh M, et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell. 2004;118:687–98. doi:10.1016/j.cell.2004.08.026.
  • Xiong Z, Chu X, Simon R. Ca2+-permeable acid-sensing ion channels and ischemic brain injury. J Mem Biol. 2006;209:59–68. doi:10.1007/s00232-005-0840-x.
  • Vergo S, Craner M, Etzensperger R, Attfield K, Friese M, Newcombe J, Esiri M, Fugger L. Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model. Brain. 2011;134:571–84. doi:10.1093/brain/awq337.
  • Arias R, Sung M, Vasylyev D, Zhang M, Albinson K, Kubek K, Kagan N, Beyer C, Lin Q, Dwyer J, et al. Amiloride is neuroprotective in an MPTP model of Parkinson’s disease. Neurobiol Dis. 2008;31:334–41. doi:10.1016/j.nbd.2008.05.008.
  • Biagini G, Babinski K, Avoli M, Marcinkiewicz M, Seguela P. Regional and subunit-specific downregulation of acid-sensing ion channels in the pilocarpine model of epilepsy. Neurobiol Dis. 2001;8:45–58. doi:10.1006/nbdi.2000.0331.
  • Luszczki J, Sawicka K, Kozinska J, DudraJastrzebska M, Czuczwar S. Amiloride enhances the anticonvulsant action of various antiepileptic drugs in the mouse maximal electroshock seizure model. J Neu Trans. 2009;116:57–66. doi:10.1007/s00702-008-0152-2.
  • Ziemann A, Schnizler M, Albert G, Severson M, Howard M, Welsh M, Wemmie J. Seizure termination by acidosis depends on ASIC1a. Nat Neurosci. 2008;11:816–22. doi:10.1038/nn.2132.
  • Wong H, Bauer P, Kurosawa M, Goswami A, Washizu C, Machida Y, Tosaki A, Yamada M, Knopfel T, Nakamura T, et al. Blocking acid-sensing ion channel 1 alleviates Huntington’s disease pathology via an ubiquitin-proteasome system-dependent mechanism. Hum Mol Gen. 2008;17:3223–35. doi:10.1093/hmg/ddn218.
  • Friese M, Craner M, Etzensperger R, Vergo S, Wemmie J, Welsh M, Vincent A, Fugger L. Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat Med. 2007;13:1483–89. doi:10.1038/nm1668.
  • Gao J, Duan B, Wang D, Deng X, Zhang G, Xu L, Xu T. Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron. 2005;48:635–46. doi:10.1016/j.neuron.2005.10.011.
  • Yermolaieva O, Leonard A, Schnizler M, Abboud F, Welsh M. Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc Nat Acad Sci. 2004;101:6752–57. doi:10.1073/pnas.0308636100.
  • Tan J, Ye X, Xu Y, Wang H, Sheng M, Wang F. Acid-sensing ion channel 1a is involved in retinal ganglion cell death induced by hypoxia. Mol Vis. 2011;17:3300–08.
  • Lilley S, LeTissier P, Robbins J. The discovery and characterization of a proton-gated sodium current in rat retinal ganglion cells. J Neurosci. 2004;24:1013–22. doi:10.1523/JNEUROSCI.3191-03.2004.
  • Ettaiche M, Deval E, Pagnotta S, Lazdunski M, Lingueglia E. Acid-sensing ion channel 3 in retinal function and survival. Invest Ophthalmol Vis Sci. 2009;50:2417–26. doi:10.1167/iovs.08-3028.
  • Wei Y, Gong J, Yoshida T, Eberhart C, Xu Z, Kombairaju P, Sporn M, Handa J, Duh E. Nrf2 has a protective role against neuronal and capillary degeneration in retinal ischemia-reperfusion injury. Free Rad Biol Med. 2011;51:216–24. doi:10.1016/j.freeradbiomed.2011.04.026.
  • Yang ZJ, Ni X, Carter EL, Kibler K, Martin LJ, Koehler RC. Neuroprotective effect of acid-sensing ion channel inhibitor psalmotoxin-1 after hypoxia ischemia in newborn piglet striatum. Neurobiol Dis. 2011;43:446–54. doi:10.1016/j.nbd.2011.04.018.
  • Chou T, Bohorquez J, Toft-Nielsen J, Ozdamar O, Porciatti V. Robust mouse pattern electroretinograms derived simultaneously from each eye using a common snout electrode. Invest Ophthalmol Vis Sci. 2014;55:2469–75. doi:10.1167/iovs.14-13943.
  • Mohan K, Kecova H, Hernandez-Merino E, Kardon R, Harper M. Retinal ganglion cell damage in an experimental rodent model of blast-mediated traumatic brain injury. Invest Ophthalmol Vis Sci. 2013;54:3440–50. doi:10.1167/iovs.12-11522.
  • Mohan K, Harper M, Kecova H, Ye E, Lazic T, Sakaguchi D, Kardon R, Grozdanic S. Characterization of structure and function of the mouse retina using pattern electroretinography, pupil light reflex, and optical coherence tomography. Vet Ophthalmol. 2014;15:94–104. doi:10.1111/j.1463-5224.2012.01034.x.
  • Rodriguez A, Muller L, Brecha N. The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina. J Comp Neurol. 2014;522:1411–43. doi:10.1002/cne.23521.
  • Dibas A, Oku H, Fukuhara M, Kurimoto T, Ikeda T, Patil R, Sharif N, Yorio T. Changes in ocular aquaporins expression following optic nerve crush. Mol Vis. 2010;16:330–40.
  • Dibas A, Yang M, He S, Bobich J, Yorio Y. Changes in ocular Aquaporin-4 (AQP4) following retinal injury. Mol Vis. 2008;14:1770–83.
  • Dibas A, Yang M, Bobich J, Yorio Y. Stress-induced changes in neuronal Aquaporin-9 (AQP9) in a retinal ganglion cell-line. Pharmacol Res. 2007;55:378–84. doi:10.1016/j.phrs.2007.01.021.
  • Mazzuca M, Heurteaux C, Alloui A, Diochot S, Baron A, Voilley N, Blondeau N, Escoubas P, Gélot A, Cupo A, et al. A tarantula peptide against pain via ASIC1a channels and opioid mechanisms. Nat Neurosci. 2007;10:943–45. doi:10.1038/nn1940.
  • Riggs L, Johnson E, Schick A. Electrical responses of the human eye to moving stimulus pattern. Sci. 1964;144:567–68. doi:10.1126/science.144.3618.567.
  • Maffei L, Fiorentini A, Bisti S, Hollander H. Pattern ERG in the monkey after section of the optic nerve. Exp Brain Res. 1985;59:423–25. doi:10.1007/BF00230925.
  • Porciatti V, Pizzorusso T, Cenni M, Maffei L. The visual response of retinal ganglion cells is not altered by optic nerve transection in transgenic mice overexpressing Bcl-2. Proc Nat Acad Sci. 1996;93:14955–59. doi:10.1073/pnas.93.25.14955.
  • Johnson M, Drum B, Quigley H. Pattern-evoked potentials and optic nerve fiber loss in monocular laser-induced glaucoma. Invest Ophthalmol Vis Sci. 1989;30:897–907.
  • Trimarchi C, Biral G, Domenici L. The Flash- and pattern electroretinogram generators in the cat: a pharmacological approach. Clin Vis Sci. 1990;6:19–24.
  • Viswanathan S, Frishman L, Robson J. The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci. 2000;41:2797–810.
  • Das A, Guyton MK, Smith A, Wallace G 4th, McDowell ML, Matzelle DD, Ray SK, Banik NL. Calpain inhibitor attenuated optic nerve damage in acute optic neuritis in rats. J Neurochem. 2013;124(1):133–46. doi:10.1111/jnc.12064.
  • Li Z, Banik NL. The localization of mcalpain in myelin: immunocytochemical evidence in different areas of rat brain and nerves. Brain Res. 1995;697(1–2):112–21. doi:10.1016/0006-8993(95)00949-Q.
  • Ueda J, Sawaguchi S, Hanyu T, Yaoeda K, Fukuchi T, Abe H, Ozawa H. Experimental glaucoma model in the rat induced by laser trabecular photocoagulation after an intracameral injection of India ink. Jap J Ophthalmol. 1998;42:337–44. doi:10.1016/S0021-5155(98)00026-4.
  • Park H, Lee J, Huh S, Seo J, Choi E. Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase. Embo J. 2001;20:446–56. doi:10.1093/emboj/20.3.446.
  • Zhu H, Yoshimoto T, Yamashima T. Heat shock protein 70.1 (Hsp70.1) affects neuronal cell fate by regulating lysosomal acid sphingomyelinase. J Biol Chem. 2014;289:27432–43. doi:10.1074/jbc.M114.560334.
  • McKernan D, Guerin M, O’Brien C, Cotter T. A key role for calpains in retinal ganglion cell death. Invest Ophthalmol Vis Sci. 2007;48:5420–30. doi:10.1167/iovs.07-0287.
  • Huang W, Fileta J, Rawe I, Qu J, Grosskreutz C. Calpain activation in experimental glaucoma. Invest Ophthalmol Vis Sci. 2010;1:3049–54. doi:10.1167/iovs.09-4364.
  • Oka T, Tamada Y, Nakajima E, Shearer T, Azuma M. Presence of calpain-induced proteolysis in retinal degeneration and dysfunction in a rat model of acute ocular hypertension. J Neurosci Res. 2006;83:1342–51. doi:10.1002/(ISSN)1097-4547.
  • Wu H, Tomizawa K, Oda Y, Wei F, Lu Y, Matsushita M, Li S, Moriwaki A, Matsui H. Critical role of calpain-mediated cleavage of calcineurin in excitotoxic neurodegeneration. J Biol Chem. 2004;279:4929–40. doi:10.1074/jbc.M309767200.
  • Kirkegaard T, Roth A, Petersen N, Mahalka A, Olsen O, Moilanen I, Zylicz A, Knudsen J, Sandhoff K, Arenz C, et al. Hsp70 stabilizes lysosomes and reverts Niemann–pick disease-associated lysosomal pathology. Nat. 2010;463:549–5453. doi:10.1038/nature08710.
  • Beere H, Wolf B, Cain K, Mosser D, Mahboubi A, Kuwana T, Tailor P, Morimoto R, Cohen G, Green D. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol. 2000;2:469–75. doi:10.1038/35019501.
  • Matsumori Y, Hong S, Aoyama K, Fan Y, Kayama T, Sheldon R, Vexler Z, Ferriero D, Weinstein P, Liu J. Hsp70 overexpression sequester AIF and reduces neonatal hypoxic/ischemic brain injury. J Cer Blood Flow Metabol. 2005;25:899–910. doi:10.1038/sj.jcbfm.9600080.
  • Gabai V, Meriin A, Mosser D, Caron A, Rits S, Shifrin V, Sherman M. Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance. J Biol Chem. 1997;272:18033–37. doi:10.1074/jbc.272.29.18033.
  • Park K, Cozier F, Ong O, Caprioli J. Induction of heat shock protein 72 protects retinal ganglion cells in a rat glaucoma model. Invest Ophthalmol Vis Sci. 2001;42:1522–30.
  • Furukawa A, Koriyama Y. A role of heat shock protein 70 in photoreceptor cell death: potential as a novel therapeutic target in retinal degeneration. CNS Neurosci Therap. 2016;22:7–14. doi:10.1111/cns.12471.
  • Zhu Y, Ohlemiller K, McMahan B, Gidday J. Mouse models of retinal ischemic tolerance. Invest Ophthalmol Vis Sci. 2002;43:1903–11.
  • Sahara S, Yamashima T. Calpain-mediated Hsp70.1 cleavage in hippocampal CA1 neuronal death. Bioch Biophy Res Comm. 2010;393:806–11. doi:10.1016/j.bbrc.2010.02.087.
  • Oikawa S, Yamada T, Minohata T, Kobayashi H, Furukawa A, Tada-Oikawa S, Hiraku Y, Murata M, Kikuchi M, Yamashima T. Proteomic identification of carbonylated proteins in the monkey hippocampus after ischemia-reperfusion. Free Rad Biol Med. 2009;46:1472–77. doi:10.1016/j.freeradbiomed.2009.02.029.
  • Nakajima E, David L, Bystrom C, Shearer T, Azuma M. Calpain-specific proteolysis in primate retina: contribution of calpains in cell death. Invest Ophthalmol Vis Sci. 2006;47:5469–75. doi:10.1167/iovs.06-0567.
  • Rokicki W, Zalejska-Fiolka J, Pojda-Wilczek D, Kabiesz A, Majewski W. Oxidative stress in the red blood cells of patients with primary open-angle glaucoma. Clin Hem Microcir. 2016;62:369–78.
  • Goyal A, Srivastava A, Sihota R, Kaur J. Evaluation of oxidative stress markers in aqueous humor of primary open angle glaucoma and primary angle closure glaucoma patients. Curr Eye Res. 2014;39:823–82965. doi:10.3109/02713683.2011.556299.
  • Majsterek I, Malinowska K, Stanczyk M, Kowalski M, Blaszczyk J, Kurowska A, Kaminska A, Szaflik J, Szaflik J. Evaluation of oxidative stress markers in pathogenesis of primary open-angle glaucoma. Exp Mol Pathol. 2011;90:231–37. doi:10.1016/j.yexmp.2011.01.001.
  • Ghanem A, Arafa L, El-Baz A. Oxidative stress markers in patients with primary open-angle glaucoma. Curr Eye Res. 2010;35:295–301. doi:10.3109/02713680903548970.
  • Ferreira S, Lerner S, Brunzini R, Evelson P, Llesuy S. Oxidative stress markers in aqueous humor of glaucoma patients. Am J Ophthalmol. 2004;137:62–69. doi:10.1016/S0002-9394(03)00788-8.
  • Ko M, Peng P, Ma M, Ritch R, Chen C. Dynamic changes in reactive oxygen species and antioxidant levels in retinas in experimental glaucoma. Free Rad Biol Med. 2005;39:365–73. doi:10.1016/j.freeradbiomed.2005.03.025.
  • Moreno M, Campanelli J, Sande P, Sánez D, Keller Sarmiento M, Rosenstein R. Retinal oxidative stress induced by high intraocular pressure. Free Rad Biol Med. 2004;37:803–12. doi:10.1016/j.freeradbiomed.2004.06.001.
  • Ozdemir G, Tolun F, Gul M, Imrek S. Retinal oxidative stress induced by intraocular hypertension in rats may be ameliorated by brimonidine treatment and N-acetyl cysteine supplementation. J Glaucoma. 2009;18:662–66. doi:10.1097/IJG.0b013e31819c46b1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.