227
Views
2
CrossRef citations to date
0
Altmetric
Cornea

Establish an In Vitro Cell Model to Explore the Impacts of UVA on Human Corneal Endothelial Wound Healing

ORCID Icon, , & ORCID Icon
Pages 1065-1073 | Received 08 Oct 2019, Accepted 10 Jan 2020, Published online: 23 Feb 2020

References

  • Nishida T, Saika S. Cornea and sclera: anatomy and physiology. In: Krachmer JH, Mannis MJ, Holland EJ, editors. Cornea. Vol. 1. 3rd ed. St. Louis (MO): Mosby; 2011. p. 3–24.
  • Hassell JR, Birk DE. The molecular basis of corneal transparency. Exp Eye Res. 2010;91(3):326–35. doi:10.1016/j.exer.2010.06.021.
  • Joyce NC. Proliferative capacity of the corneal endothelium. Pro Retin Eye Res. 2003;22:359–89. doi:10.1016/S1350-9462(02)00065-4.
  • Caldwell MC, Afshari NA, Decroos FC, Proia AD. The histology of graft adhesion in Descemet stripping with endothelial keratoplasty. Am J Ophthalmol. 2009;148:277–81. doi:10.1016/j.ajo.2009.03.025.
  • Dirisamer M, Dapena I, Ham L, van Dijk K, Oganes O, Frank LE, van der Wees J, Melles GR. Patterns of corneal endothelialization and corneal clearance after Descemet membrane endothelial keratoplasty for Fuchs endothelial dystrophy. Am J Ophthalmol. 2011;152:543–55. doi:10.1016/j.ajo.2011.03.031.
  • Melles GR, Ong TS, Ververs B, van der Wees J. Descemet membrane endothelial keratoplasty (DMEK). Cornea. 2006;25:987–90. doi:10.1097/01.ico.0000248385.16896.34.
  • Miyagi H, Thomasy SM, Russell P, Murphy CJ. The role of hepatocyte growth factor in corneal wound healing. Exp Eye Res. 2018;166:49–55. doi:10.1016/j.exer.2017.10.006.
  • Price MO, Price FW. Descemet’s stripping endothelial keratoplasty. Curr Opin Ophthalmol. 2007;18(4):290–94. doi:10.1097/ICU.0b013e3281a4775b.
  • Zhao B, Ma A, Martin FL, Fullwood NJ. An investigation into corneal alkali burns using an organ culture model. Cornea. 2009;28:541–46. doi:10.1097/ICO.0b013e3181901e08.
  • Ljubimov AV, Saghizadeh M. Progress in corneal wound healing. Prog Retin Eye Res. 2015;49:17–45. doi:10.1016/j.preteyeres.2015.07.002.
  • Meekins LC, Rosado-Adames N, Maddala R, Zhao JJ, Rao PV, Afshari NA. Corneal endothelial cell migration and proliferation enhanced by Rho Kinase (ROCK) inhibitors in in vitro and in vivo models. Invest Ophthalmol Vis Sci. 2016;57:6731–38. doi:10.1167/iovs.16-20414.
  • Okumura N, Okazaki Y, Inoue R, Kakutani K, Nakano S, Kinoshita S, Koizumi N. Effect of the Rho-associated kinase inhibitor eye drop (Ripasudil) on corneal endothelial wound healing. Invest Ophthalmol Vis Sci. 2016;57(3):1284–92. doi:10.1167/iovs.15-18586.
  • Vidmar J, Chingwaru C, Chingwaru W. Mammalian cell models to advance our understanding of wound healing: a review. J Surg Res. 2017;210:269–80. doi:10.1016/j.jss.2016.10.016.
  • Fan T, Zhao J, Ma X, Xu X, Zhao W, Xu B. Establishment of a continuous untransfected human corneal endothelial cell line and its biocompatibility to denuded amniotic membrane. Mol Vis. 2011;17:469–80.
  • Ivanov IV, Mappes T, Schaupp P, Lappe C, Wahl S. Ultraviolet radiation oxidative stress affects eye health. J Biophotonics. 2018;11(7):e201700377. doi:10.1002/jbio.2018.11.issue-7.
  • Zinfloua C, Rochettea PJ. Ultraviolet A-induced oxidation in cornea: characterization of the early oxidation-related events. Free Radic Biol Med. 2017;108:118–28. doi:10.1016/j.freeradbiomed.2017.03.022.
  • Shima N, Kimoto M, Yamaguchi M, Yamagami S. Increased proliferation and replicative lifespan of isolated human corneal endothelial cells with L-ascorbic acid 2-phosphate. Invest Ophthalmol Vis Sci. 2011;52(12):8711–17. doi:10.1167/iovs.11-7592.
  • Ichijima H, Petroll WM, Barry PA, Andrews PM, Dai M, Cavanagh HD, Jester JV. Actin filament organization during endothelial wound healing in the rabbit cornea: comparison between transcorneal freeze and mechanical scrape injuries. Invest Ophthalmol Vis Sci. 1993;34:2803–12.
  • Mimura T, Yamagami S, Amano S. Corneal endothelial regeneration and tissue engineering. Prog Retin Eye Res. 2013;35:1–17. doi:10.1016/j.preteyeres.2013.01.003.
  • Gordon SR. Cytological and immunocytochemical approaches to the study of corneal endothelial wound repair. Prog Histochem Cytochem. 1994;28:1–64. doi:10.1016/S0079-6336(11)80033-1.
  • Joyce NC, Meklir B, Neufeld AH. In vitro pharmacologic separation of corneal endothelial migration and spreading responses. Invest Ophthalmol Vis Sci. 1990;31:1816–26.
  • Le Clainche C, Carlier MF. Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol Rev. 2008;88(2):489–513. doi:10.1152/physrev.00021.2007.
  • Cullen AP. Photokeratitis and other phototoxic effects on the cornea and conjunctiva. Int J Toxicol. 2002;21(6):455–64. doi:10.1080/10915810290169882.
  • Oliva MS, Taylor H. Ultraviolet radiation and the eye. Int Ophthalmol Clin. 2005;45:1–17.
  • Pastor-Valero M, Fletcher AE, de Stavola BL, Chaqués-Alepúz V. Years of sunlight exposure and cataract: a case-control study in a mediterranean population. BMC Ophthalmol. 2007;7:18. doi:10.1186/1471-2415-7-18.
  • Taylor HR, West SK, Rosenthal FS, Munoz B, Newland HS, Emmett EA. Corneal changes associated with chronic UV irradiation. Arch Ophthalmol. 1989;107(10):1481–84. doi:10.1001/archopht.1989.01070020555039.
  • Young RW. The family of sunlight-related eye diseases. Optom Vis Sci. 1994;71(2):125–44. doi:10.1097/00006324-199402000-00013.
  • Handy DE, Loscalzo J. Redox regulation of mitochondrial function. Antioxid Redox Signal. 2012;16(11):1323–67. doi:10.1089/ars.2011.4123.
  • Ludin A, Gur-Cohen S, Golan K, Kaufmann KB, Itkin T, Medaglia C, Lu XJ, Ledergor G, Kollet O, Lapidot T. Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment. Antioxid Redox Signal. 2014;21(11):1605–19. doi:10.1089/ars.2014.5941.
  • Shi D, Li X, Chen H, Che N, Zhou S, Lu Z, Shi S, Sun L. High level of reactive oxygen species impaired mesenchymal stem cell migration via over polymerization of F-actin cytoskeleton in systemic lupus erythematosus. Pathol Biol (Paris). 2014;62(6):382–90. doi:10.1016/j.patbio.2014.07.009.
  • Xu Y, Loison F, Luo HR. Neutrophil spontaneous death is mediated by downregulation of autocrine signaling through GPCR, PI3Kgamma, ROS, and actin. Proc Natl Acad Sci U S A. 2010;107(7):2950–55. doi:10.1073/pnas.0912717107.
  • Mooren P, Gobin L, Bostan N, Wouters K, Zakaria N, Mathysen DG, Koppen C. Evaluation of UVA cytotoxicity for human endothelium in an ex vivo corneal cross-linking experimental setting. J Refract Surg. 2016;32(1):41–46. doi:10.3928/1081597X-20151207-05.
  • Rönkkö S, Vellonen KS, Järvinen K, Toropainen E, Urtti A. Human corneal cell culture models for drug toxicity studies. Drug Deliv Transl Res. 2016;6:660–75. doi:10.1007/s13346-016-0330-y.
  • Reiss GR, Werness PG, Zollman PE, Brubaker RF. Ascorbic acid levels in the aqueous humor of nocturnal and diurnal mammals. Arch Ophthalmol. 1986;104:753–55. doi:10.1001/archopht.1986.01050170143039.
  • Engelmann K, Friedl P. Growth of human corneal endothelial cells in a serum-reduced medium. Cornea. 1995;14:62–70. doi:10.1097/00003226-199501000-00011.
  • Sakagami H, Satoh K, Ohata H, Takahashi H, Yoshida H, Lida M, Kurbayashi N, Sakagami T, Momose K, Takeda M. Relationship between ascorbyl radical intensity and apoptosis-inducing activity. Anticancer Res. 1996;16:2635–44.
  • Stumpf U, Michaelis M, Klassert D, Cinatl J, Altrichter J, Windolf J, Hergenröther J, Scholz M. Selection of proangiogenic ascorbate derivatives and their exploitation in a novel drug-releasing system for wound healing. Wound Rep Reg. 2011;19(5):597–607. doi:10.1111/j.1524-475X.2011.00718.x.
  • Takamizawa S, Maehata Y, Imai K, Senoo H, Sato S, Hata R. Effects of ascorbic acid and ascorbic acid 2-phosphate, a long-acting vitamin C derivative, on the proliferation and differentiation of human osteoblast-like cells. Cell Biol Int. 2004;28(4):255–65. doi:10.1016/j.cellbi.2004.01.010.
  • Kimoto M, Shima N, Yamaguchi M, Amano S, Yamagami S. Role of hepatocyte growth factor in promoting the growth of human corneal endothelial cells stimulated by L-ascorbic acid 2-phosphate. Invest Ophthalmol Vis Sci. 2012;53(12):7583–89. doi:10.1167/iovs.12-10146.
  • Davalli P, Mitic T, Caporali A, Lauriola A, D’Arca D. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev. 2016;2016:3565127. doi:10.1155/2016/3565127.
  • Fulda S. Mitochondria, redox signaling and cell death in cancer. Biol Chem. 2016;397(7):583. doi:10.1515/hsz-2016-0199.
  • Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126–67. doi:10.1089/ars.2012.5149.
  • Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981–90. doi:10.1016/j.cellsig.2012.01.008.
  • Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signaling pathways by reactive oxygen species. BiochimBiophys Acta. 2016;1863:2977–92.
  • Yang Y, Bazhin AV, Werner J, Karakhanova S. Reactive oxygen species in the immune system. Int Rev Immunol. 2013;32(3):249–70. doi:10.3109/08830185.2012.755176.
  • Zhang Y, Su SS, Zhao S, Yang Z, Zhong CQ, Chen X, Cai Q, Yang ZH, Huang D, Wu R, et al. RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nat Commun. 2017;8:14329. doi:10.1038/ncomms14329.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.