468
Views
10
CrossRef citations to date
0
Altmetric
Retina and Choroid

Change and Recovery of Choroid Thickness after Short-term Application of 1% Atropine Gel and Its Influencing Factors in 6-7-year-old Children

, ORCID Icon, , , &
Pages 1171-1177 | Received 11 Jul 2020, Accepted 03 Dec 2020, Published online: 04 Jan 2021

References

  • Lam CS-Y, Lam C-H, Cheng SC-K, Chan -LY-L. Prevalence of myopia among Hong Kong Chinese schoolchildren: changes over two decades. Ophthalmic Physiol Opt. 2012;32:17–24.
  • Morgan IG, Ohno-Matsui K, Saw S-M. Myopia. Lancet. 2012;379(9827):1739–48. doi:10.1016/S0140-6736(12)60272-4.
  • French AN, Morgan IG, Burlutsky G, Mitchell P, Rose KA. Prevalence and 5- to 6-year incidence and progression of myopia and hyperopia in Australian schoolchildren. Ophthalmology. 2013;120:1482–91.
  • Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, Wong TY, Naduvilath TJ, Resnikoff S. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036–42. doi:10.1016/j.ophtha.2016.01.006.
  • Rim TH, Kim S-H, Lim KH, Choi M, Kim HY, Baek S-H, Society ESCOTKO. Refractive errors in Koreans: the Korea national health and nutrition examination survey 2008-2012. Korean J Ophthalmol. 2016;30(3):214–24. doi:10.3341/kjo.2016.30.3.214.
  • Li Y, Liu J, Qi P. The increasing prevalence of myopia in junior high school students in the Haidian District of Beijing, China: a 10-year population-based survey. BMC Ophthalmol. 2017;17(1):88. doi:10.1186/s12886-017-0483-6.
  • Grzybowski A, Kanclerz P, Tsubota K, Lanca C, Saw SM. A review on the epidemiology of myopia in school children worldwide. BMC Ophthalmol. 2020;20(1):27. doi:10.1186/s12886-019-1220-0.
  • Chua WH, Balakrishnan V, Chan YH, Tong L, Ling Y, Quah BL, Tan D. Atropine for the treatment of childhood myopia. Ophthalmology. 2006;113(12):2285–91. doi:10.1016/j.ophtha.2006.05.062.
  • Chia A, Chua WH, Cheung YB, Wong WL, Lingham A, Fong A, Tan D. Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses (Atropine for the treatment of myopia 2). Ophthalmology. 2012;119(2):347–54. doi:10.1016/j.ophtha.2011.07.031.
  • Yi S, Huang Y, Yu S-Z, Chen X-J, Yi H, Zeng X-L. Therapeutic effect of atropine 1% in children with low myopia. J Aapos. 2015;19(5):426–29. doi:10.1016/j.jaapos.2015.04.006.
  • Kothari M, Rathod V. Efficacy of 1% atropine eye drops in retarding progressive axial myopia in Indian eyes. Indian J Ophthalmol. 2017;65(11):1178–81. doi:10.4103/ijo.IJO_418_17.
  • Shih KC, Chan TC, Ng AL, Lai JS, Li WW, Cheng AC, Fan DS. Use of atropine for prevention of childhood myopia progression in clinical practice. Eye Contact Lens. 2016;42(1):16–23. doi:10.1097/ICL.000000000000x0189.
  • Morgan IG, He M. An important step forward in myopia prevention: low-dose atropine. Ophthalmology. 2016;123(2):232–33. doi:10.1016/j.ophtha.2015.10.012.
  • Tong L, Huang XL, Koh ALT, Zhang X, Tan DTH, Chua W-H. Atropine for the treatment of childhood myopia: effect on myopia progression after cessation of atropine. Ophthalmology. 2009;116(3):572–79. doi:10.1016/j.ophtha.2008.10.020.
  • Chia A, Chua W-H, Wen L, Fong A, Goon YY, Tan D. Atropine for the treatment of childhood myopia: changes after Stopping Atropine 0.01%, 0.1% and 0.5%. Am J Ophthalmol. 2014;157(2):451–57.e1. doi:10.1016/j.ajo.2013.09.020.
  • Chia A, Lu Q-S TD. Five-year clinical trial on atropine for the treatment of myopia 2: myopia control with atropine 0.01% eyedrops. Ophthalmology. 2016;123(2):391–99. doi:10.1016/j.ophtha.2015.07.004.
  • Fujiwara A, Shiragami C, Shirakata Y, Manabe S, Izumibata S, Shiraga F. Enhanced depth imaging spectral-domain optical coherence tomography of subfoveal choroidal thickness in normal Japanese eyes. Jpn J Ophthalmol. 2012;56(3):230–35. doi:10.1007/s10384-012-0128-5.
  • Ruiz-Moreno JM, Flores-Moreno I, Lugo F, Ruiz-Medrano J, Montero JA, Akiba M. Macular choroidal thickness in normal pediatric population measured by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;54(1):353–59. doi:10.1167/iovs.12-10863.
  • Park KA, Oh SY. Choroidal thickness in healthy children. Retina. 2013;33(9):1971–76. doi:10.1097/IAE.0b013e3182923477.
  • Read SA, Collins MJ, Vincent SJ, Alonso-Caneiro D. Choroidal thickness in myopic and nonmyopic children assessed with enhanced depth imaging optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54(12):7578–86. doi:10.1167/iovs.13-12772.
  • Herrera L, Perez-Navarro I, Sanchez-Cano A, Perez-Garcia D, Remon L, Almenara C, Caramello C, Cristóbal JA, Pinilla I. Choroidal thickness and volume in a healthy pediatric population and its relationship with age, axial length, ametropia and sex. Retina. 2015;35(12):2574–83. doi:10.1097/IAE.0000000000000636.
  • Tuncer I, Karahan E, Zengin MO, Atalay E, Polat N. Choroidal thickness in relation to sex, age, refractive error, and axial length in healthy Turkish subjects. Int Ophthalmol. 2015;35(3):403–10. doi:10.1007/s10792-014-9962-4.
  • Lee GY, Yu S, Kang HG, Kim JS, Lee KW, Lee J-H. Choroidal thickness variation according to refractive error measured by spectral domain-optical coherence tomography in Korean children. Korean J Ophthalmol. 2017;31(2):151–58. doi:10.3341/kjo.2017.31.2.151.
  • Zhang Z, Zhou Y, Xie Z, Chen T, Gu Y, Lu S, Wu Z. The effect of topical atropine on the choroidal thickness of healthy children. Sci Rep. 2016;6:34936.
  • Koslowe K, Glassman T, Tzanani-Levi C, Shneor E. Accommodative amplitude determination: pull-away versus push-up method. Optom Vis Dev. 2010;41:28–32.
  • Park SM, Moon BY, Kim SY, Yu DS. Diurnal variations of amplitude of accommodation in different age groups. PLoS One. 2019;14(11):e0225754. doi:10.1371/journal.pone.0225754.
  • Chakraborty R, Read SA, Collins MJ. Diurnal variations in axial length, choroidal thickness, intraocular pressure, and ocular biometrics. Invest Ophthalmol Vis Sci. 2011;52(8):5121–29. doi:10.1167/iovs.11-7364.
  • Tan CS, Ouyang Y, Ruiz H, Sadda SR. Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(1):261–66. doi:10.1167/iovs.11-8782.
  • Watanabe S, Yamashita T, Ohba N. A longitudinal study of cycloplegic refraction in a cohort of 350 Japanese schoolchildren. Cycloplegic Refraction Ophthalmic Physiol Opt. 1999;19(1):22–29. doi:10.1046/j.1475-1313.1999.00406.x.
  • Ojaimi E, Rose KA, Morgan IG, Smith W, Martin FJ, Kifley A, Robaei D, Mitchell P. Distribution of ocular biometric parameters and refraction in a population-based study of Australian children. Invest Ophthalmol Vis Sci. 2005;46(8):2748–54. doi:10.1167/iovs.04-1324.
  • French AN, O’donoghue L, Morgan IG, Saunders KJ, Mitchell P, Rose KA. Comparison of refraction and ocular biometry in European Caucasian children living in Northern Ireland and Sydney, Australia. Invest Ophthalmol Vis Sci. 2012;53(7):4021–31. doi:10.1167/iovs.12-9556.
  • Diez PS, Yang L-H, Lu M-X, Wahl S, Ohlendorf A. Growth curves of myopia-related parameters to clinically monitor the refractive development in Chinese schoolchildren. Graefes Arch Clin Exp Ophthalmol. 2019;257(5):1045–53. doi:10.1007/s00417-019-04290-6.
  • Flitcroft DI, He M, Jonas JB, Jong M, Naidoo K, Ohno-Matsui K, Rahi J, Resnikoff S, Vitale S, Yannuzzi L. IMI – defining and classifying myopia: a proposed set of standards for clinical and epidemiologic studies. Invest Ophthalmol Vis Sci. 2019;60(3):M20–M30. doi:10.1167/iovs.18-25957.
  • Strabismus and Pediatric Ophthalmology Group OB, Chinese Medical Association. Consensus among experts on optometry and safe drug use for pediatric ciliary paralysis in China (2019). Zhonghua Yan Ke Za Zhi. 2019;55(1):7–12.
  • Lihua W. Interpretation of “consensus among experts on optometry and safe drug use for pediatric ciliary paralysis in China (2019) “. Zhonghua Yan Ke Za Zhi. 2019;55:74–76.
  • Cooper J, Eisenberg N, Schulman E, Wang FM. Maximum atropine dose without clinical signs or symptoms. Optom Vis Sci. 2013;90(12):1467–72. doi:10.1097/OPX.0000000000000037.
  • Atchison DA, Charman WN, Woods RL. Subjective depth-of-focus of the eye. Optom Vis Sci. 1997;74(7):511–20. doi:10.1097/00006324-199707000-00019.
  • Chiang ST-H, Phillips JR, Backhouse S. Effect of retinal image defocus on the thickness of the human choroid. Ophthalmic Physiol Opt. 2015;35(4):405–13. doi:10.1111/opo.12218.
  • Hung LF, Wallman J. 3rd ELS. Vision-dependent changes in the choroidal thickness of macaque monkeys. Invest Ophthalmol Vis Sci. 2000;41:1259–69.
  • Troilo D, Nickla DL, Wildsoet CF. Choroidal thickness changes during altered eye growth and refractive state in a primate. Invest Ophthalmol Vis Sci. 2000;41:1249–58.
  • Nickla DL, Totonelly K. Choroidal thickness predicts ocular growth in normal chicks but not in eyes with experimentally altered growth. Clin Exp Optom. 2015;98(6):564–70. doi:10.1111/cxo.12317.
  • Guggenheim JA, Chen Y-P, Yip E, Hayet H, Druel V, Wang L, Erichsen JT, Tumlinson AR, Povazay B, Drexler W, et al. Pre-treatment choroidal thickness is not predictive of susceptibility to form-deprivation myopia in chickens. Ophthalmic Physiol Opt. 2011;31(5):516–28. doi:10.1111/j.1475-1313.2011.00827.x.
  • Nickla DL, Wallman J. The multifunctional choroid. Prog Retin Eye Res. 2010;29(2):144–68. doi:10.1016/j.preteyeres.2009.12.002.
  • Summers JA. The choroid as a sclera growth regulator. Exp Eye Res. 2013;114:120–27.
  • Mertz JR, Wallman J. Choroidal retinoic acid synthesis: a possible mediator between refractive error and compensatory eye growth. Exp Eye Res. 2000;70(4):519–27. doi:10.1006/exer.1999.0813.
  • Alphen GWV. Choroidal stress and emmetropization. Vision Res. 1986;26(5):723–34. doi:10.1016/0042-6989(86)90086-6.
  • Wu H, Chen W, Zhao F, Zhou Q, Reinach PS, Deng L, Ma L, Luo S, Srinivasalu N, Pan M, et al. Scleral hypoxia is a target for myopia control. Proc Natl Acad Sci U S A. 2018;115(30):E7091–E100. doi:10.1073/pnas.1721443115.
  • Berkowitz BA, Schmidt T, Podolsky RH, Roberts R. Melanopsin phototransduction contributes to light-evoked choroidal expansion and rod l-type calcium channel function in vivo. Invest Ophthalmol Vis Sci. 2016;57:5314–19.
  • Longo A, Geiser M, Riva CE. Subfoveal choroidal blood flow in response to light-dark exposure. Invest Ophthalmol Vis Sci. 2000;41:2678–83.
  • Shih -Y-YI, Wang L, Garza BHDL, Li G, Cull G, Kiel JW, Duong TQ. Quantitative retinal and choroidal blood flow during light dark adaptation and flicker light stimulation in rats using fluorescent microspheres. Curr Eye Res. 2013;38(2):292–98. doi:10.3109/02713683.2012.756526.
  • Nickla DL, Totonelly K, Dhillon B. Dopaminergic agonists that result in ocular growth inhibition also elicit transient increases in choroidal thickness in chicks. Exp Eye Res. 2010;91(4):715–20. doi:10.1016/j.exer.2010.08.021.
  • Pérez-Fernández V, Milosavljevic N, Allen AE, Vessey KA, Jobling AI, Fletcher EL, Breen PP, Morley JW, Cameron MA. Rod photoreceptor activation alone defines the release of dopamine in the retina. Curr Biol. 2019;29(5):763–74.e5. doi:10.1016/j.cub.2019.01.042.
  • Feldkaemper M, Schaeffel F. An updated view on the role of dopamine in myopia. Exp Eye Res. 2013;114:106–19. doi:10.1016/j.exer.2013.02.007.
  • Hendrickson A, Drucker D. The development of parafoveal and mid-peripheral human retina. Behav Brain Res. 1992;49(1):21–31. doi:10.1016/S0166-4328(05)80191-3.
  • Read SA, Collins MJ, Vincent SJ, Alonso-Caneiro D. Choroidal thickness in childhood. Invest Ophthalmol Vis Sci. 2013;54(5):3586–93. doi:10.1167/iovs.13-11732.
  • Flores-Moreno I, Lugo F, Duker JS, Ruiz-Moreno JM. The relationship between axial length and choroidal thickness in eyes with high myopia. Am J Ophthalmol. 2013;155(2):314–19.e1. doi:10.1016/j.ajo.2012.07.015.
  • Jin P, Zou H, Xu X, Chang TC, Zhu J, Deng J, Lv M, Jin J, Sun S, Wang L, et al. Longitudinal changes in choroidal and retinal thickness in children with myopic shift. Retina. 2019;39(6):1091–99. doi:10.1097/IAE.0000000000002090.
  • Read SA, Alonso-Caneiro D, Vincent SJ, Collins MJ. Longitudinal changes in choroidal thickness and eye growth in childhood. Invest Ophthalmol Vis Sci. 2015;56(5):3103–12. doi:10.1167/iovs.15-16446.
  • Bidaut-Garnier M, Schwartz C, Puyraveau M, Montard M, Delbosc B, Saleh M. Choroidal thickness measurement in children using optical coherence tomography. Retina. 2014;34(4):768–374. doi:10.1097/IAE.0b013e3182a487a4.
  • Li XQ, Jeppesen P, Larsen M, Munch IC. Subfoveal choroidal thickness in 1323 children aged 11 to 12 years and association with puberty: the copenhagen child cohort 2000 eye study. Invest Ophthalmol Vis Sci. 2014;55(1):550–55. doi:10.1167/iovs.13-13476.
  • Mutti DO, Hayes JR, Mitchell GL, Jones LA, Moeschberger ML, Cotter SA, Kleinstein RN, Manny RE, Twelker JD, Zadnik K, et al. Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Invest Ophthalmol Vis Sci. 2007;48(6):2510–19. doi:10.1167/iovs.06-0562.
  • Xiang F, He M, Morgan IG. Annual changes in refractive errors and ocular components before and after the onset of myopia in Chinese children. Ophthalmology. 2012;119(7):1478–84. doi:10.1016/j.ophtha.2012.01.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.