260
Views
0
CrossRef citations to date
0
Altmetric
Review

The Role of Neutrophil Extracellular Traps in the Ocular System

, , ORCID Icon, , , , & show all
Pages 1227-1238 | Received 30 Dec 2021, Accepted 14 May 2022, Published online: 30 May 2022

References

  • Takei H, Araki A, Watanabe H, Ichinose A, Sendo F. Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. J Leukoc Biol. 1996;59(2):229–240. doi:10.1002/jlb.59.2.229.
  • Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–1535. doi:10.1126/science.1092385.
  • Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, Nacken W, Brinkmann V, Jungblut PR, Zychlinsky A. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLOS Pathog. 2009;5(10):e1000639. doi:10.1371/journal.ppat.1000639.
  • Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18(2):134–147. doi:10.1038/nri.2017.105.
  • Petretto A, Bruschi M, Pratesi F, Croia C, Candiano G, Ghiggeri G, Migliorini P. Neutrophil extracellular traps (NET) induced by different stimuli: a comparative proteomic analysis. PLOS One. 2019;14(7):e0218946. doi:10.1371/journal.pone.0218946.
  • Hahn J, Schauer C, Czegley C, Kling L, Petru L, Schmid B, Weidner D, Reinwald C, Biermann MHC, Blunder S, et al. Aggregated neutrophil extracellular traps resolve inflammation by proteolysis of cytokines and chemokines and protection from antiproteases. FASEB J. 2019;33(1):1401–1414. doi:10.1096/fj.201800752R.
  • Knackstedt SL, Georgiadou A, Apel F, Abu-Abed U, Moxon CA, Cunnington AJ, Raupach B, Cunningham D, Langhorne J, Kruger R, et al. Neutrophil extracellular traps drive inflammatory pathogenesis in malaria. Sci Immunol. 2019;4(40):eaaw0336. doi:10.1126/sciimmunol.aaw0336.
  • Borges L, Pithon-Curi TC, Curi R, Hatanaka E. COVID-19 and neutrophils: the relationship between hyperinflammation and neutrophil extracellular traps. Mediators Inflamm. 2020;2020:8829674. doi:10.1155/2020/8829674.
  • Feintuch CM, Saidi A, Seydel K, Chen G, Goldman-Yassen A, Mita-Mendoza NK, Kim RS, Frenette PS, Taylor T, Daily JP. Activated neutrophils are associated with pediatric cerebral malaria vasculopathy in Malawian children. mBio. 2016;7(1):e01300-15. doi:10.1128/mBio.01300-15.
  • Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159–175. doi:10.1038/nri3399.
  • Bonaventura A, Vecchie A, Abbate A, Montecucco F. Neutrophil extracellular traps and cardiovascular diseases: an update. Cells. 2020;9(1):231. doi:10.3390/cells9010231.
  • Berezin A. Neutrophil extracellular traps: the core player in vascular complications of diabetes mellitus. Diabetes Metab Syndr. 2019;13(5):3017–3023. doi:10.1016/j.dsx.2018.07.010.
  • Mahajan A, Grüneboom A, Petru L, Podolska MJ, Kling L, Maueröder C, Dahms F, Christiansen S, Günter L, Krenn V, et al. Frontline science: aggregated neutrophil extracellular traps prevent inflammation on the neutrophil-rich ocular surface. J Leukoc Biol. 2019;105(6):1087–1098. doi:10.1002/JLB.HI0718-249RR.
  • Sakata M, Sack RA, Sathe S, Holden B, Beaton AR. Polymorphonuclear leukocyte cells and elastase in tears. Curr Eye Res. 1997;16(8):810–819. doi:10.1076/ceyr.16.8.810.8992.
  • Livingston ET, Mursalin MH, Callegan MC. A pyrrhic victory: the PMN response to ocular bacterial infections. Microorganisms. 2019;7(11):537. doi:10.3390/microorganisms7110537.
  • Wan T, Zhang Y, Yuan K, Min J, Mou Y, Jin X. Acetylsalicylic acid promotes corneal epithelium migration by regulating neutrophil extracellular traps in alkali burn. Front Immunol. 2020;11:551057. doi:10.3389/fimmu.2020.551057.
  • Merza M, Hartman H, Rahman M, Hwaiz R, Zhang E, Renstrom E, Luo L, Morgelin M, Regner S, Thorlacius H. Neutrophil extracellular traps induce trypsin activation, inflammation, and tissue damage in mice with severe acute pancreatitis. Gastroenterology. 2015;149(7):1920–1931.e8. doi:10.1053/j.gastro.2015.08.026.
  • Wang L, Zhou X, Yin Y, Mai Y, Wang D, Zhang X. Hyperglycemia induces neutrophil extracellular traps formation through an NADPH oxidase-dependent pathway in diabetic retinopathy. Front Immunol. 2018;9:3076. doi:10.3389/fimmu.2018.03076.
  • Hakkim A, Fuchs TA, Martinez NE, Hess S, Prinz H, Zychlinsky A, Waldmann H. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol. 2011;7(2):75–77. doi:10.1038/nchembio.496.
  • Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231–241. doi:10.1083/jcb.200606027.
  • Parker H, Dragunow M, Hampton MB, Kettle AJ, Winterbourn CC. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. J Leukoc Biol. 2012;92(4):841–849. doi:10.1189/jlb.1211601.
  • Douda DN, Khan MA, Grasemann H, Palaniyar N. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc Natl Acad Sci USA. 2015;112(9):2817–2822. doi:10.1073/pnas.1414055112.
  • Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol. 2010;191(3):677–691. doi:10.1083/jcb.201006052.
  • Wang S, Wang Y. Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis. Biochim Biophys Acta. 2013;1829(10):1126–1135. doi:10.1016/j.bbagrm.2013.07.003.
  • Thiam HR, Wong SL, Qiu R, Kittisopikul M, Vahabikashi A, Goldman AE, Goldman RD, Wagner DD, Waterman CM. NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture. Proc Natl Acad Sci USA. 2020;117(13):7326–7337. doi:10.1073/pnas.1909546117.
  • Yipp BG, Petri B, Salina D, Jenne CN, Scott BNV, Zbytnuik LD, Pittman K, Asaduzzaman M, Wu K, Meijndert HC, et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med. 2012;18(9):1386–1393. doi:10.1038/nm.2847.
  • Schultz BM, Acevedo OA, Kalergis AM, Bueno SM. Role of extracellular trap release during bacterial and viral infection. Front Microbiol. 2022;13:798853. doi:10.3389/fmicb.2022.798853.
  • Guiducci E, Lemberg C, Küng N, Schraner E, Theocharides APA, LeibundGut-Landmann S. Candida albicans-induced NETosis is independent of peptidylarginine deiminase 4. Front Immunol. 2018;9:1573. doi:10.3389/fimmu.2018.01573.
  • Ermert D, Urban CF, Laube B, Goosmann C, Zychlinsky A, Brinkmann V. Mouse neutrophil extracellular traps in microbial infections. J Innate Immun. 2009;1(3):181–193. doi:10.1159/000205281.
  • Wu SY, Weng CL, Jheng MJ, Kan HW, Hsieh ST, Liu FT, Wu-Hsieh BA. Candida albicans triggers NADPH oxidase-independent neutrophil extracellular traps through dectin-2. PLOS Pathog. 2019;15(11):e1008096. doi:10.1371/journal.ppat.1008096.
  • Dwyer M, Shan Q, D'Ortona S, Maurer R, Mitchell R, Olesen H, Thiel S, Huebner J, Gadjeva M. Cystic fibrosis sputum DNA has NETosis characteristics and neutrophil extracellular trap release is regulated by macrophage migration-inhibitory factor. J Innate Immun. 2014;6(6):765–779. doi:10.1159/000363242.
  • Shan Q, Dwyer M, Rahman S, Gadjeva M. Distinct susceptibilities of corneal Pseudomonas aeruginosa clinical isolates to neutrophil extracellular trap-mediated immunity. Infect Immun. 2014;82(10):4135–4143. doi:10.1128/IAI.02169-14.
  • Postnikoff CK, Nichols KK. Neutrophil and T-cell homeostasis in the closed eye. Invest Ophthalmol Vis Sci. 2017;58(14):6212–6220. doi:10.1167/iovs.17-22449.
  • Postnikoff CK, Held K, Viswanath V, Nichols KK. Enhanced closed eye neutrophil degranulation in dry eye disease. Ocul Surf. 2020;18(4):841–851. doi:10.1016/j.jtos.2020.08.011.
  • Sack RA, Beaton A, Sathe S, Morris C, Willcox M, Bogart B. Towards a closed eye model of the pre-ocular tear layer. Prog Retin Eye Res. 2000;19(6):649–668. doi:10.1016/S1350-9462(00)00006-9.
  • Bilyy R, Fedorov V, Vovk V, Leppkes M, Dumych T, Chopyak V, Schett G, Herrmann M. Neutrophil extracellular traps form a barrier between necrotic and viable areas in acute abdominal inflammation. Front Immunol. 2016;7:424. doi:10.3389/fimmu.2016.00424.
  • Sack RA, Tan KO, Tan A. Diurnal tear cycle: evidence for a nocturnal inflammatory constitutive tear fluid. Invest Ophthalmol Vis Sci. 1992;33(3):626–640. https://www.ncbi.nlm.nih.gov/pubmed/1544788.
  • Pearlman E, Sun Y, Roy S, Karmakar M, Hise AG, Szczotka-Flynn L, Ghannoum M, Chinnery HR, McMenamin PG, Rietsch A. Host defense at the ocular surface. Int Rev Immunol. 2013;32(1):4–18. doi:10.3109/08830185.2012.749400.
  • Johnson AC, Heinzel FP, Diaconu E, Sun Y, Hise AG, Golenbock D, Lass JH, Pearlman E. Activation of toll-like receptor (TLR)2, TLR4, and TLR9 in the mammalian cornea induces MyD88-dependent corneal inflammation. Invest Ophthalmol Vis Sci. 2005;46(2):589–595. doi:10.1167/iovs.04-1077.
  • Pearlman E, Johnson A, Adhikary G, Sun Y, Chinnery HR, Fox T, Kester M, McMenamin PG. Toll-like receptors at the ocular surface. Ocul Surf. 2008;6(3):108–116. doi:10.1016/S1542-0124(12)70279-3.
  • Kumar A, Singh PK, Talreja D. Critical role of TLR2 and MyD88 signaling in controlling bacterial burden in mouse model of S. aureus endophthalmitis. Invest Ophthalmol Vis Sci. 2013;54(15):168. https://www.embase.com/search/results?subaction=viewrecord&id=L628582146&from=export.
  • Hirschfeld J, White PC, Milward MR, Cooper PR, Chapple ILC. Modulation of neutrophil extracellular trap and reactive oxygen species release by periodontal bacteria. Infect Immun. 2017;85(12):e00297-17. doi:10.1128/IAI.00297-17.
  • Zhu B, Zhang L, Yuan K, Huang X, Hu R, Jin X. Neutrophil extracellular traps may have a dual role in Pseudomonas aeruginosa keratitis. Eur J Clin Microbiol Infect Dis. 2021;40(1):169–180. doi:10.1007/s10096-020-04023-2.
  • Jin X, Zhao Y, Zhang F, Wan T, Fan F, Xie X, Lin Z. Neutrophil extracellular traps involvement in corneal fungal infection. Mol Vis. 2016;22:944–952. https://www.ncbi.nlm.nih.gov/pubmed/27559290.
  • Bhongir RK, Kasetty G, Papareddy P, Morgelin M, Herwald H, Egesten A. DNA-fragmentation is a source of bactericidal activity against Pseudomonas aeruginosa. Biochem J. 2017;474(3):411–425. doi:10.1042/BCJ20160706.
  • Halverson TW, Wilton M, Poon KK, Petri B, Lewenza S. DNA is an antimicrobial component of neutrophil extracellular traps. PLOS Pathog. 2015;11(1):e1004593. doi:10.1371/journal.ppat.1004593.
  • Menegazzi R, Decleva E, Dri P. Killing by neutrophil extracellular traps: fact or folklore? Blood. 2012;119(5):1214–1216. doi:10.1182/blood-2011-07-364604.
  • Azzouz L, Cherry A, Riedl M, Khan M, Pluthero FG, Kahr WHA, Palaniyar N, Licht C. Relative antibacterial functions of complement and NETs: NETs trap and complement effectively kills bacteria. Mol Immunol. 2018;97:71–81. doi:10.1016/j.molimm.2018.02.019.
  • Saraswathi P, Beuerman R. Interaction of polymorphonuclear neutrophils (PMNs) with Pseudomonas aeruginosa in biofilms in corneal infections in the mouse. Invest Ophthalmol Vis Sci. 2015;56(7):4047. https://www.embase.com/search/results?subaction=viewrecord&id=L615920419&from=export.
  • Thanabalasuriar A, Scott BNV, Peiseler M, Willson ME, Zeng Z, Warrener P, Keller AE, Surewaard BGJ, Dozier EA, Korhonen JT, et al. Neutrophil extracellular traps confine Pseudomonas aeruginosa ocular biofilms and restrict brain invasion. Cell Host Microbe. 2019;25(4):526–536.e4. doi:10.1016/j.chom.2019.02.007.
  • Jing C, Liu C, Liu Y, Feng R, Cao R, Guan Z, Xuan B, Gao Y, Wang Q, Yang N, et al. Antibodies against Pseudomonas aeruginosa alkaline protease directly enhance disruption of neutrophil extracellular traps mediated by this enzyme. Front Immunol. 2021;12:654649. doi:10.3389/fimmu.2021.654649.
  • Fan F, Huang X, Yuan K, Zhu B, Zhao Y, Hu R, Wan T, Zhu L, Jin X. Glucocorticoids may exacerbate fungal keratitis by increasing fungal aggressivity and inhibiting the formation of neutrophil extracellular traps. Curr Eye Res. 2020;45(2):124–133. doi:10.1080/02713683.2019.1657464.
  • Branzk N, Lubojemska A, Hardison SE, Wang Q, Gutierrez MG, Brown GD, Papayannopoulos V. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol. 2014;15(11):1017–1025. doi:10.1038/ni.2987.
  • Miura T, Kawakami K, Kanno E, Tanno H, Tada H, Sato N, Masaki A, Yokoyama R, Kawamura K, Kitai Y, et al. Dectin-2-mediated signaling leads to delayed skin wound healing through enhanced neutrophilic inflammatory response and neutrophil extracellular trap formation. J Invest Dermatol. 2019;139(3):702–711. doi:10.1016/j.jid.2018.10.015.
  • Kandhavelu J, Demonte NL, Namperumalsamy VP, Prajna L, Thangavel C, Jayapal JM, Kuppamuthu D. Aspergillus flavus induced alterations in tear protein profile reveal pathogen-induced host response to fungal infection. J Proteomics. 2017;152:13–21. doi:10.1016/j.jprot.2016.10.009.
  • Mohammed MRS, Krishnan S, Amrathlal RS, Jayapal JM, Namperumalsamy VP, Prajna L, Kuppamuthu D. Local activation of the alternative pathway of complement system in mycotic keratitis patient tear. Front Cell Infect Microbiol. 2020;10:205. doi:10.3389/fcimb.2020.00205.
  • Giese MJ, Rayner SA, Fardin B, Sumner HL, Rozengurt N, Mondino BJ, Gordon LK. Mitigation of neutrophil infiltration in a rat model of early Staphylococcus aureus endophthalmitis. Invest Ophthalmol Vis Sci. 2003;44(7):3077–3082. doi:10.1167/iovs.02-1250.
  • Gregory-Ksander MS, Vincent WJ, Crane M, McGuire S. IL-1R is essential for neutrophil recruitment, while TLR2 is essential for neutrophil mediated killing of Staphylococcus aureus during endophthalmitis. Invest Ophthalmol Vis Sci. 2014;55(13):856. https://www.embase.com/search/results?subaction=viewrecord&id=L616116985&from=export.
  • Hu S, Liu X, Gao Y, Zhou R, Wei M, Dong J, Yan H, Zhao Y. Hepatitis B virus inhibits neutrophil extracellular trap release by modulating reactive oxygen species production and autophagy. J Immunol. 2019;202(3):805–815. doi:10.4049/jimmunol.1800871.
  • Knopf J, Leppkes M, Schett G, Herrmann M, Munoz LE. Aggregated NETs sequester and detoxify extracellular histones. Front Immunol. 2019;10:2176. doi:10.3389/fimmu.2019.02176.
  • Leppkes M, Lindemann A, Gößwein S, Paulus S, Roth D, Hartung A, Liebing E, Zundler S, Gonzalez-Acera M, Patankar JV, et al. Neutrophils prevent rectal bleeding in ulcerative colitis by peptidyl-arginine deiminase-4-dependent immunothrombosis. Gut. 2021:gutjnl-2021-324725. doi:10.1136/gutjnl-2021-324725. [Epub ahead of print].
  • Muñoz LE, Boeltz S, Bilyy R, Schauer C, Mahajan A, Widulin N, Grüneboom A, Herrmann I, Boada E, Rauh M, et al. Neutrophil extracellular traps initiate gallstone formation. Immunity. 2019;51(3):443–450.e4. doi:10.1016/j.immuni.2019.07.002.
  • Schapher M, Koch M, Weidner D, Scholz M, Wirtz S, Mahajan A, Herrmann I, Singh J, Knopf J, Leppkes M, et al. Neutrophil extracellular traps promote the development and growth of human salivary stones. Cells. 2020;9(9):2139. doi:10.3390/cells9092139.
  • Vitkov L, Munoz LE, Schoen J, Knopf J, Schauer C, Minnich B, Herrmann M, Hannig M. Neutrophils orchestrate the periodontal pocket. Front Immunol. 2021;12:788766. doi:10.3389/fimmu.2021.788766.
  • Yuan K, Zheng J, Huang X, Zhang Y, Han Y, Hu R, Jin X. Neutrophil extracellular traps promote corneal neovascularization-induced by alkali burn. Int Immunopharmacol. 2020;88:106902. doi:10.1016/j.intimp.2020.106902.
  • Zhang J, Dai Y, Wei C, Zhao X, Zhou Q, Xie L. DNase I improves corneal epithelial and nerve regeneration in diabetic mice. J Cell Mol Med. 2020;24(8):4547–4556. doi:10.1111/jcmm.15112.
  • Bian F, Pelegrino FS, Henriksson JT, Pflugfelder SC, Volpe EA, Li DQ, de Paiva CS. Differential effects of dexamethasone and doxycycline on inflammation and MMP production in murine alkali-burned corneas associated with dry eye. Ocul Surf. 2016;14(2):242–254. doi:10.1016/j.jtos.2015.11.006.
  • Navas A, Magana-Guerrero FS, Dominguez-Lopez A, Chavez-Garcia C, Partido G, Graue-Hernandez EO, Sanchez-Garcia FJ, Garfias Y. Anti-inflammatory and anti-fibrotic effects of human amniotic membrane mesenchymal stem cells and their potential in corneal repair. Stem Cells Transl Med. 2018;7(12):906–917. doi:10.1002/sctm.18-0042.
  • Shang Q, Chu Y, Li Y, Han Y, Yu D, Liu R, Zheng Z, Song L, Fang J, Li X, et al. Adipose-derived mesenchymal stromal cells promote corneal wound healing by accelerating the clearance of neutrophils in cornea. Cell Death Dis. 2020;11(8):707. doi:10.1038/s41419-020-02914-y.
  • Craig JP, Nichols KK, Akpek EK, Caffery B, Dua HS, Joo C-K, Liu Z, Nelson JD, Nichols JJ, Tsubota K, et al. TFOS DEWS II definition and classification report. Ocul Surf. 2017;15(3):276–283. doi:10.1016/j.jtos.2017.05.008.
  • Pflugfelder SC, de Paiva CS. The pathophysiology of dry eye disease: what we know and future directions for research. Ophthalmology. 2017;124(11S):S4–S13. doi:10.1016/j.ophtha.2017.07.010.
  • Wang T, Li W, Cheng H, Zhong L, Deng J, Ling S. The important role of the chemokine axis CCR7-CCL19 and CCR7-CCL21 in the pathophysiology of the immuno-inflammatory response in dry eye disease. Ocul Immunol Inflamm. 2021;29(2):266–277. doi:10.1080/09273948.2019.1674891.
  • Yamaguchi T. Inflammatory response in dry eye. Invest Ophthalmol Vis Sci. 2018;59(14):DES192–DES199. doi:10.1167/iovs.17-23651.
  • Meng YF, Pu Q, Ma Q, Zhu W, Li XY. Neutrophil/lymphocyte ratio as an inflammatory predictor of dry eye disease: a case-control study. TCRM. 2021;17:259–266. doi:10.2147/TCRM.S298156.
  • Sonawane S, Khanolkar V, Namavari A, Chaudhary S, Gandhi S, Tibrewal S, Jassim SH, Shaheen B, Hallak J, Horner JH, et al. Ocular surface extracellular DNA and nuclease activity imbalance: a new paradigm for inflammation in dry eye disease. Invest Ophthalmol Vis Sci. 2012;53(13):8253–8263. doi:10.1167/iovs.12-10430.
  • Tibrewal S, Ivanir Y, Sarkar J, Nayeb-Hashemi N, Bouchard CS, Kim E, Jain S. Hyperosmolar stress induces neutrophil extracellular trap formation: implications for dry eye disease. Invest Ophthalmol Vis Sci. 2014;55(12):7961–7969. doi:10.1167/iovs.14-15332.
  • Kwon J, Surenkhuu B, Raju I, Atassi N, Mun J, Chen Y-F, Sarwar MA, Rosenblatt M, Pradeep A, An S, et al. Pathological consequences of anti-citrullinated protein antibodies in tear fluid and therapeutic potential of pooled human immune globulin-eye drops in dry eye disease. Ocul Surf. 2020;18(1):80–97. doi:10.1016/j.jtos.2019.10.004.
  • Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, Gizinski A, Yalavarthi S, Knight JS, Friday S, Li S, Patel RM, Subramanian V, et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med. 2013;5(178):178ra40. doi:10.1126/scitranslmed.3005580.
  • Tibrewal S, Sarkar J, Jassim SH, Gandhi S, Sonawane S, Chaudhary S, Byun Y-S, Ivanir Y, Hallak J, Horner JH, et al. Tear fluid extracellular DNA: diagnostic and therapeutic implications in dry eye disease. Invest Ophthalmol Vis Sci. 2013;54(13):8051–8061. doi:10.1167/iovs.13-12844.
  • Mun C, Gulati S, Tibrewal S, Chen Y-F, An S, Surenkhuu B, Raju I, Buwick M, Ahn A, Kwon J-E, et al. A phase I/II placebo-controlled randomized pilot clinical trial of recombinant deoxyribonuclease (DNase) eye drops use in patients with dry eye disease. Transl Vis Sci Technol. 2019;8(3):10. doi:10.1167/tvst.8.3.10.
  • Wallace GR, Davidson M, Murad M, Shamdas M, Rauz S. Ocular eye drop preparations inhibit neutrophil extracellular trap formation. Invest Ophthalmol Vis Sci. 2019;60(9):6720. https://www.embase.com/search/results?subaction=viewrecord&id=L629940132&from=export.
  • An S, Raju I, Surenkhuu B, Kwon JE, Gulati S, Karaman M, Pradeep A, Sinha S, Mun C, Jain S. Neutrophil extracellular traps (NETs) contribute to pathological changes of ocular graft-vs.-host disease (oGVHD) dry eye: implications for novel biomarkers and therapeutic strategies. Ocul Surf. 2019;17(3):589–614. doi:10.1016/j.jtos.2019.03.010.
  • Reyes NJ, Yu C, Mathew R, Kunnen CM, Kalnitsky J, Redfern RL, Leonardi A, Perez VL, MacLeod AS, Gupta PK, et al. Neutrophils cause obstruction of eyelid sebaceous glands in inflammatory eye disease in mice. Sci Transl Med. 2018;10(451):eaas9164. doi:10.1126/scitranslmed.aas9164.
  • Yaykasli KO, Schauer C, Muñoz LE, Mahajan A, Knopf J, Schett G, Herrmann M. Neutrophil extracellular trap‐driven occlusive diseases. Cells. 2021;10(9):2208. doi:10.3390/cells10092208.
  • Honda M, Kubes P. Neutrophils and neutrophil extracellular traps in the liver and gastrointestinal system. Nat Rev Gastroenterol Hepatol. 2018;15(4):206–221. doi:10.1038/nrgastro.2017.183.
  • Mahajan A, Hasíková L, Hampel U, Grüneboom A, Shan X, Herrmann I, Garreis F, Bock F, Knopf J, Singh J, et al. Aggregated neutrophil extracellular traps occlude Meibomian glands during ocular surface inflammation. Ocul Surf. 2021;20:1–12. doi:10.1016/j.jtos.2020.12.005.
  • Yang L, Xiao J, Wang J, Zhang H. Clinical characteristics and risk factors of recurrent Mooren's ulcer. J Ophthalmol. 2017;2017:8978527. doi:10.1155/2017/8978527.
  • Chi H, Hao W, Qi X, Zhang T, Dong Y, Gao H, Wei C, Shi W. A proteomic approach towards understanding the pathogenesis of Mooren's ulcer. Exp Eye Res. 2021;205:108509. doi:10.1016/j.exer.2021.108509.
  • Boulaftali Y, Lejoncour A, Loyau S, Le Lay N, Venisse L, Bouton MC, Dossier A, Domont F, Papo T, Jandrot-Perrus M, et al. Neutrophil extracellular trap (NET) formation in patients with Behcet's disease. Res Pract Thromb Haemost. 2017;1:479–480. doi:10.1002/rth2.12012.
  • Le Joncour A, Martos R, Loyau S, Lelay N, Dossier A, Cazes A, Fouret P, Domont F, Papo T, Jandrot-Perrus M, et al. Critical role of neutrophil extracellular traps (NETs) in patients with Behcet's disease. Ann Rheum Dis. 2019;78(9):1274–1282. doi:10.1136/annrheumdis-2018-214335.
  • Safi R, Kallas R, Bardawil T, Mehanna CJ, Abbas O, Hamam R, Uthman I, Kibbi AG, Nassar D. Neutrophils contribute to vasculitis by increased release of neutrophil extracellular traps in Behçet's disease. J Dermatol Sci. 2018;92(2):143–150. doi:10.1016/j.jdermsci.2018.08.010.
  • Perazzio SF, Soeiro-Pereira PV, Dos Santos VC, de Brito MV, Salu B, Oliva MLV, Stevens AM, de Souza AWS, Ochs HD, Torgerson TR, et al. Soluble CD40L is associated with increased oxidative burst and neutrophil extracellular trap release in Behçet's disease. Arthritis Res Ther. 2017;19(1):235. doi:10.1186/s13075-017-1443-5.
  • Pan S, Tan H, Chang R, Wang Q, Zhu Y, Chen L, Li H, Su G, Zhou C, Cao Q, et al. High ambient temperature aggravates experimental autoimmune uveitis symptoms. Front Cell Dev Biol. 2021;9:629306. doi:10.3389/fcell.2021.629306.
  • Li L, Yu X, Liu J, Wang Z, Li C, Shi J, Sun L, Liu Y, Zhang F, Chen H, et al. Neutrophil extracellular traps promote aberrant macrophages activation in Behçet's disease. Front Immunol. 2020;11:590622. doi:10.3389/fimmu.2020.590622.
  • Jiménez-Alcázar M, Rangaswamy C, Panda R, Bitterling J, Simsek YJ, Long AT, Bilyy R, Krenn V, Renné C, Renné T, et al. Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science. 2017;358(6367):1202–1206. doi:10.1126/science.aam8897.
  • Moschonas IC, Tselepis AD. The pathway of neutrophil extracellular traps towards atherosclerosis and thrombosis. Atherosclerosis. 2019;288:9–16. doi:10.1016/j.atherosclerosis.2019.06.919.
  • Eichhorn T, Linsberger I, Lauková L, Tripisciano C, Fendl B, Weiss R, König F, Valicek G, Miestinger G, Hörmann C, et al. Analysis of inflammatory mediator profiles in sepsis patients reveals that extracellular histones are strongly elevated in nonsurvivors. Mediators Inflamm. 2021;2021:8395048. doi:10.1155/2021/8395048.
  • Wan W, Liu H, Long Y, Wan W, Li Q, Zhu W, Wu Y. The association between circulating neutrophil extracellular trap related biomarkers and retinal vein occlusion incidence: a case-control pilot study. Exp Eye Res. 2021;210:108702. doi:10.1016/j.exer.2021.108702.
  • Njeim R, Azar WS, Fares AH, Azar ST, Kfoury Kassouf H, Eid AA. NETosis contributes to the pathogenesis of diabetes and its complications. J Mol Endocrinol. 2020;65(4):R65–R76. doi:10.1530/JME-20-0128.
  • Park JH, Kim JE, Gu JY, Yoo HJ, Park SH, Kim YI, Nam-Goong IS, Kim ES, Kim HK. Evaluation of circulating markers of neutrophil extracellular trap (NET) formation as risk factors for diabetic retinopathy in a case-control association study. Exp Clin Endocrinol Diabetes. 2016;124(9):557–561. doi:10.1055/s-0042-101792.
  • Binet F, Cagnone G, Crespo-Garcia S, Hata M, Neault M, Dejda A, Wilson AM, Buscarlet M, Mawambo GT, Howard JP, et al. Neutrophil extracellular traps target senescent vasculature for tissue remodeling in retinopathy. Science. 2020;369(6506):eaay5356. doi:10.1126/science.aay5356.
  • Song DY, Gu J-Y, Yoo HJ, Kim YI, Nam-Goong IS, Kim ES, Kim HK. Activation of factor XII and Kallikrein-Kinin system combined with neutrophil extracellular trap formation in diabetic retinopathy. Exp Clin Endocrinol Diabetes. 2021;129(8):560–565. doi:10.1055/a-0981-6023.
  • Laridan E, Martinod K, De Meyer SF. Neutrophil extracellular traps in arterial and venous thrombosis. Semin Thromb Hemost. 2019;45(1):86–93. doi:10.1055/s-0038-1677040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.