75
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Rose Bengal Photodynamic Therapy (RB-PDT) Modulates the Inflammatory Response in LPS-Stimulated Human Corneal Fibroblasts By Influencing NF-κB and p38 MAPK Signaling Pathways

, ORCID Icon, , , , , , ORCID Icon & show all
Received 05 Mar 2024, Accepted 03 Apr 2024, Published online: 22 Apr 2024

References

  • Austin A, Lietman T, Rose-Nussbaumer J. Update on the management of infectious keratitis. Ophthalmology. 2017;124(11):1678–1689. doi: 10.1016/j.ophtha.2017.05.012.
  • Sepulveda-Beltran PA, Levine H, Altamirano DS, Martinez JD, Durkee H, Mintz K, Leblanc R, Tóthová JDA, Miller D, Parel JM, et al. Rose bengal photodynamic antimicrobial therapy: a review of the intermediate-term clinical and surgical outcomes. Am J Ophthalmol. 2022;243:125–134. doi: 10.1016/j.ajo.2022.08.004.
  • Wang L, Yang H, Sun Y, Yu FSX, Wu X. Signaling mechanism for Aspergillus fumigatus tolerance in corneal fibroblasts induced by LPS pretreatment. Innate Immun. 2014;20(6):563–573. doi: 10.1177/1753425913502098.
  • Wu D, Lim DKA, Lim BXH, Wong N, Hafezi F, Manotosh R, Lim CHL. Corneal cross-linking: the evolution of treatment for corneal diseases. Front Pharmacol. 2021;12(July):686630. doi: 10.3389/fphar.2021.686630.
  • Espana EM, Birk DE. Composition, structure and function of the corneal stroma. Exp Eye Res. 2020;198:108137. doi: 10.1016/j.exer.2020.108137.
  • Zhu S, Xu X, Liu K, Gu Q, Wei F, Jin H. Peptide GC31 inhibits chemokines and ICAM-1 expression in corneal fibroblasts exposed to LPS or poly(I: c) by blocking the NF-κB and MAPK pathways. Exp Eye Res. 2017;164:109–117. doi: 10.1016/j.exer.2017.07.017.
  • Fukuda K, Ishida W, Fukushima A, Nishida T. Corneal fibroblasts as sentinel cells and local immune modulators in infectious keratitis. Int J Mol Sci. 2017;18(9):1831. doi: 10.3390/ijms18091831.
  • Garcia-Vello P, Di Lorenzo F, Zucchetta D, Zamyatina A, De Castro C, Molinaro A. Lipopolysaccharide lipid A: a promising molecule for new immunity-based therapies and antibiotics. Pharmacol Ther. 2022;230:107970. doi: 10.1016/j.pharmthera.2021.107970.
  • Wong Y, Sethu C, Louafi F, Hossain P. Lipopolysaccharide regulation of toll-like receptor-4 and matrix metalloprotease-9 in human primary corneal fibroblasts. Invest Ophthalmol Vis Sci. 2011;52(5):2796–2803. doi: 10.1167/iovs.10-5459.
  • Kumagai N, Fukuda K, Fujitsu Y, Lu Y, Chikamoto N, Nishida T. Lipopolysaccharide-induced expression of intercellular adhesion molecule-1 and chemokines in cultured human corneal fibroblasts. Invest Ophthalmol Vis Sci. 2005;46(1):114–120. doi: 10.1167/iovs.04-0922.
  • Pearlman E, Sun Y, Roy S, Karmakar M, Hise AG, Szczotka-Flynn L, Ghannoum M, Chinnery HR, McMenamin PG, Rietsch A. Host defense at the ocular surface. Int Rev Immunol. 2013;32(1):4–18. doi: 10.3109/08830185.2012.749400.
  • Song PI, Abraham TA, Park Y, Zivony AS, Harten B, Edelhauser HF, Ward SL, Armstrong CA, Ansel JC. The expression of functional LPS receptor proteins CD14 and toll-like receptor 4 in human corneal cells. Investig Ophthalmol Vis Sci. 2001;42(12):2867–2877.
  • Johannessen M, Askarian F, Sangvik M, Sollid JE. Bacterial interference with canonical NFκB signalling. Microbiology. 2013;159(Pt 10):2001–2013. doi: 10.1099/mic.0.069369-0.
  • Johnson AC, Heinzel FP, Diaconu E, Sun Y, Hise AG, Golenbock D, Lass JH, Pearlman E. Activation of toll-like receptor (TLR)2, TLR4, and TLR9 in the mammalian cornea induces MyD88-dependent corneal inflammation. Invest Ophthalmol Vis Sci. 2005;46(2):589–595. doi: 10.1167/iovs.04-1077.
  • Singh RB, Das S, Chodosh J, Sharma N, Zegans ME, Kowalski RP, Jhanji V. Paradox of complex diversity: challenges in the diagnosis and management of bacterial keratitis. Prog Retin Eye Res. 2022;88:101028. doi: 10.1016/j.preteyeres.2021.101028.
  • Bagga B, Sharma S, Ahirwar LK, Sheba E, Vaddavalli PK, Mishra DK. Clinical outcomes of rose bengal mediated photodynamic antimicrobial therapy on fungal keratitis with their microbiological and pathological correlation. Curr Eye Res. 2022;47(7):987–994. doi: 10.1080/02713683.2022.2058019.
  • Martinez JD, Naranjo A, Amescua G, Dubovy SR, Arboleda A, Durkee H, Aguilar MC, Flynn HW, Miller D, Parel JM. Human corneal changes after rose bengal photodynamic antimicrobial therapy for treatment of fungal keratitis. Cornea. 2018;37(10):e46–e48. doi: 10.1097/ICO.0000000000001701.
  • Halili F, Arboleda A, Durkee H, Taneja M, Miller D, Alawa KA, Aguilar MC, Amescua G, Flynn HW, Parel JM. Rose bengal- and riboflavin-mediated photodynamic therapy to inhibit methicillin-resistant Staphylococcus aureus keratitis isolates. Am J Ophthalmol. 2016;166:194–202. doi: 10.1016/j.ajo.2016.03.014.
  • Berryhill BL, Kader R, Kane B, Birk DE, Feng J, Hassell JR. Partial restoration of the keratocyte phenotype to bovine keratocytes made fibroblastic by serum. Investig Ophthalmol Vis Sci. 2002;43(11):3416–3421.
  • Foster JW, Gouveia RM, Connon CJ. Low-glucose enhances keratocyte-characteristic phenotype from corneal stromal cells in serum-free conditions. Sci Rep. 2015;5(1):10839. doi: 10.1038/srep10839.
  • Berger T, Szentmáry N, Chai N, Flockerzi E, Daas L, Stachon T, Seitz B. In vitro expression analysis of cytokines and ROS-related genes in human corneal fibroblasts and keratocytes of healthy and keratoconus corneas. Ocul Immunol Inflamm. 2023;1–10. doi: 10.1080/09273948.2023.2176325.
  • Chai N, Stachon T, Nastaranpour M, Li Z, Seitz B, Ulrich M, Langenbucher A, Szentmáry N. Assessment of rose bengal photodynamic therapy on viability and proliferation of human keratolimbal epithelial and stromal cells in vitro. Klin Monbl Augenheilkd. 2023. doi: 10.1055/a-2038-8899.
  • Kimura K, Orita T, Nomi N, Fujitsu Y, Nishida T, Sonoda KH. Identification of common secreted factors in human corneal fibroblasts exposed to LPS, poly(I: c), or zymosan. Exp Eye Res. 2012;96(1):157–162. doi: 10.1016/j.exer.2011.10.015.
  • Cherfan D, Verter EE, Melki S, Gisel TE, Doyle FJ, Scarcelli G, Yun SH, Redmond RW, Kochevar IE. Collagen cross-linking using rose bengal and green light to increase corneal stiffness. Invest Ophthalmol Vis Sci. 2013;54(5):3426–3433. doi: 10.1167/iovs.12-11509.
  • Spoerl E, Huhle M, Seiler T. Induction of cross-links in corneal tissue. Exp Eye Res. 1998;66(1):97–103. doi: 10.1006/exer.1997.0410.
  • Arboleda A, Miller D, Cabot F, Taneja M, Aguilar MC, Alawa K, Amescua G, Yoo SH, Parel JM. Assessment of rose bengal versus riboflavin photodynamic therapy for inhibition of fungal keratitis isolates. Am J Ophthalmol. 2014;158(1):64–70.e2. doi: 10.1016/j.ajo.2014.04.007.
  • Gumus K. A new alternative to riboflavin/ultraviolet-a: collagen cross-linking with rose bengal/green light. Invest Ophthalmol Vis Sci. 2016;57(3):1002. doi: 10.1167/iovs.16-19319.
  • Naranjo A, Pelaez D, Arrieta E, Salero-Coca E, Martinez JD, Sabater AL, Amescua G, Parel JM. Cellular and molecular assessment of rose bengal photodynamic antimicrobial therapy on keratocytes, corneal endothelium and limbal stem cell niche. Exp Eye Res. 2019;188(May):107808. doi: 10.1016/j.exer.2019.107808.
  • Martinez JD, Arrieta E, Naranjo A, Monsalve P, Mintz KJ, Peterson J, Arboleda A, Durkee H, Aguilar MC, Pelaez D, et al. Rose bengal photodynamic antimicrobial therapy: a pilot safety study. Cornea. 2021;40(8):1036–1043. doi: 10.1097/ICO.0000000000002717.
  • Durkee H, Arboleda A, Aguilar MC, Martinez JD, Alawa KA, Relhan N, Maestre-Mesa J, Amescua G, Miller D, Parel JM. Rose bengal photodynamic antimicrobial therapy to inhibit Pseudomonas aeruginosa keratitis isolates. Lasers Med Sci. 2020;35(4):861–866. doi: 10.1007/s10103-019-02871-9.
  • Demidova TN, Hamblin MR. Effect of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrob Agents Chemother. 2005;49(6):2329–2335. doi: 10.1128/AAC.49.6.2329-2335.2005.
  • Gao R, Yan M, Chen M, Hayes S, Meek KM, He H, Chen X, Xu W, Yan S, Huang Y, et al. The impact of different rose bengal formulations on corneal thickness and the efficacy of rose bengal/green light corneal cross-linking in the rabbit eye. J Refract Surg. 2022;38(7):450–458. doi: 10.3928/1081597X-20220601-03.
  • Fukuda K. Corneal fibroblasts: function and markers. Exp Eye Res. 2020;200(September):108229. doi: 10.1016/j.exer.2020.108229.
  • Fukuda K, Kumagai N, Yamamoto K, Fujitsu Y, Chikamoto N, Nishida T. Potentiation of lipopolysaccharide-induced chemokine and adhesion molecule expression in corneal fibroblasts by soluble CD14 or LPS-binding protein. Invest Ophthalmol Vis Sci. 2005;46(9):3095–3101. doi: 10.1167/iovs.04-1365.
  • Ghasemi H. Roles of IL-6 in ocular inflammation: a review. Ocul Immunol Inflamm. 2018;26(1):37–50. doi: 10.1080/09273948.2016.1277247.
  • Chai N, Stachon T, Berger T, Li Z, Seitz B, Langenbucher A, Szentmáry N. Short-term effect of rose bengal photodynamic therapy (RB-PDT) on collagen I, collagen V, NF-κB, LOX, TGF-β and IL-6 expression of human corneal fibroblasts, in vitro. Curr Eye Res. 2023;49(2):150–157. doi: 10.1080/02713683.2023.2276057.
  • Cole N, Bao S, Stapleton F, Thakur A, Husband AJ, Beagley KW, Willcox MDP. Pseudomonas aeruginosa keratitis in IL-6-deficient mice. Int Arch Allergy Immunol. 2003;130(2):165–172. doi: 10.1159/000069006.
  • Hume EBH, Cole N, Garthwaite LL, Khan S, Willcox MDP. A protective role for IL-6 in staphylococcal microbial keratitis. Invest Ophthalmol Vis Sci. 2006;47(11):4926–4930. doi: 10.1167/iovs.06-0340.
  • Peng L, Zhong J, Xiao Y, Wang B, Li S, Deng Y, He D, Yuan J. Therapeutic effects of an anti-IL-6 antibody in fungal keratitis: macrophage inhibition and T cell subset regulation. Int Immunopharmacol. 2020;85(June):106649. doi: 10.1016/j.intimp.2020.106649.
  • Hurst SM, Wilkinson TS, McLoughlin RM, Jones S, Horiuchi S, Yamamoto N, Rose-John S, Fuller GM, Topley N, Jones SA. IL-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity. 2001;14(6):705–714. doi: 10.1016/s1074-7613(01)00151-0.
  • Fenton RR, Molesworth-Kenyon S, Oakes JE, Lausch RN. Linkage of IL-6 with neutrophil chemoattractant expression in virus-induced ocular inflammation. Invest Ophthalmol Vis Sci. 2002;43(3):737–743.
  • Hayden MS, Ghosh S. Signaling to NF-κB. Genes Dev. 2004;18(18):2195–2224. doi: 10.1101/gad.1228704.
  • Lawrence T. The nuclear factor NF-B pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1(6):a001651. doi: 10.1101/cshperspect.a001651.
  • Kumar S, Boehm J, Lee JC. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov. 2003;2(9):717–726. doi: 10.1038/nrd1177.
  • Kaminska B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy—from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta. 2005;1754(1–2):253–262. doi: 10.1016/j.bbapap.2005.08.017.
  • Symons A, Beinke S, Ley SC. MAP kinase kinase kinases and innate immunity. Trends Immunol. 2006;27(1):40–48. doi: 10.1016/j.it.2005.11.007.
  • Arthur JSC, Ley SC. Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol. 2013;13(9):679–692. doi: 10.1038/nri3495.
  • Pahl HL. Activators and target genes of Rel/NF-κB transcription factors. Oncogene. 1999;18(49):6853–6866. doi: 10.1038/sj.onc.1203239.
  • Awasthi A, Raju MB, Rahman MA. Current insights of inhibitors of p38 mitogen-activated protein kinase in inflammation. Med Chem. 2021;17(6):555–575. doi: 10.2174/1573406416666200227122849.
  • Hua X, Chi W, Su L, Li J, Zhang Z, Yuan X. ROS-induced oxidative injury involved in pathogenesis of fungal keratitis via p38 MAPK activation. Sci Rep. 2017;7(1):10421. doi: 10.1038/s41598-017-09636-w.
  • Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011;21(1):103–115. doi: 10.1038/cr.2010.178.
  • Yao M, Gu C, Doyle FJ, Zhu H, Redmond RW, Kochevar IE. Why is rose bengal more phototoxic to fibroblasts in vitro than in vivo? Photochem Photobiol. 2014;90(2):297–305. doi: 10.1111/php.12215.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.