33
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Analyzing Tear Fluid Composition by Synchronous Fluorescence for Diagnosing Dry Eye Disease and the Role of Phytotherapy Intervention

, ORCID Icon, &
Received 13 Nov 2023, Accepted 11 Apr 2024, Published online: 28 Apr 2024

References

  • Ebenezar J, Aruna P, Ganesan S. Synchronous fluorescence spectroscopy for the detection and characterization of cervical cancers in vitro. Photochem Photobiol. 2010;86(1):77–86. doi:10.1111/j.1751-1097.2009.00628.x.
  • Kamal AH, Hammad SF, Kamel DN. Coupling of synchronous fluorescence spectroscopy with derivative amplitude outcomes for simultaneous determination of metoprolol succinate and olmesartan medoxomil in combined pharmaceutical preparation: application in spiked human plasma. Spectrochim Acta A Mol Biomol Spectrosc. 2023;294:122549. doi:10.1016/j.saa.2023.122549.
  • Chmátalová Z, Vyhnálek M, Laczó J, Hort J, Skoumalová A. Analysis of lipophilic fluorescent products in blood of Alzheimer’s disease patients. J Cell Mol Med. 2016;20(7):1367–1372. doi:10.1111/jcmm.12824.
  • Li YQ, Li XY, Shindi AAF, Zou ZX, Liu Q, Lin LR, Li N. Synchronous fluorescence spectroscopy and its applications in clinical analysis and food safety evaluation. In: Geddes C, editor. Reviews in fluorescence 2010. New York (NY): Springer; 2012. p. 95–117.
  • Lemp MA, Baudouin C, Baum J, Dogru M, Foulks GN, Kinoshita S. The definition and classification of dry eye disease: report of the definition and classification Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf. 2007;5(2):75–92.
  • Holly FJ. Formation and rupture of the tear film. Exp Eye Res. 1973;15(5):515–525. doi:10.1016/0014-4835(73)90064-x.
  • Goto T, Zheng X, Klyce SD, Kataoka H, Uno T, Karon M, Tatematsu Y, Bessyo T, Tsubota K, Ohashi Y. A new method for tear film stability analysis using videokeratography. Am J Ophthalmol. 2003;135(5):607–612. doi:10.1016/s0002-9394(02)02221-3.
  • Goto E, Yagi Y, Matsumoto Y, Tsubota K. Impaired functional visual acuity of dry eye patients. Am J Ophthalmol. 2002;133(2):181–186. doi:10.1016/s0002-9394(01)01365-4.
  • Begley CG, Chalmers RL, Abetz L, Venkataraman K, Mertzanis P, Caffery BA, Snyder C, Edrington T, Nelson D, Simpson T. The relationship between habitual patient-reported symptoms and clinical signs among patients with dry eye of varying severity. Invest Ophthalmol Vis Sci. 2003;44(11):4753–4761. doi:10.1167/iovs.03-0270.
  • Pflugfelder SC, Jones D, Ji Z, Afonso A, Monroy D. Altered cytokine balance in the tear fluid and conjunctiva of patients with Sjogren’s syndrome keratoconjunctivitis sicca. Curr Eye Res. 1999;19(3):201–211. doi:10.1076/ceyr.19.3.201.5309.
  • Azharuddin M, Khandelwal J, Datta H, Dasgupta AK, Raja SO. Dry eye: a protein conformational disease. Invest Ophthalmol Vis Sci. 2015;56(3):1423–1429. doi:10.1167/iovs.14-15992.
  • Nagai N, Otake H. Novel drug delivery systems for the management of dry eye. Adv Drug Deliv Rev. 2022;191:114582. doi:10.1016/j.addr.2022.114582.
  • Cicalini I, Rossi C, Pieragostino D, Agnifili L, Mastropasqua L, di Ioia M, De Luca G, Onofrj M, Federici L, Del Boccio P. Integrated lipidomics and metabolomics analysis of tears in multiple sclerosis: an insight into diagnostic potential of lacrimal fluid. Int J Mol Sci. 2019;20(6):1265. doi:10.3390/ijms20061265.
  • Lu X, Elizondo RA, Nielsen R, Christensen EI, Yang J, Hammock BD, Watsky MA. Vitamin D in tear fluid. Invest Ophthalmol Vis Sci. 2015;56(10):5880–5887. doi:10.1167/iovs.15-17177.
  • Weber JA, Baxter DH, Zhang S, Huang DY, How Huang K, Jen Lee M, Galas DJ, Wang K. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–1741. doi:10.1373/clinchem.2010.147405.
  • Jung JH, Ji YW, Hwang HS, Oh JW, Kim HC, Lee HK, Kim KP. Proteomic analysis of human lacrimal and tear fluid in dry eye disease. Sci Rep. 2017;7(1):13363. doi:10.1038/s41598-017-13817-y.
  • de Souza GA, Godoy LMF, Mann M. Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors. Genome Biol. 2006;7(8):R72. doi:10.1186/gb-2006-7-8-R72.
  • Glinská G, Krajčíková K, Zakutanská K, Shylenko O, Kondrakhova D, Tomašovičová N, Komanický V, Mašlanková J, Tomečková V. Noninvasive diagnostic methods for diabetes mellitus from tear fluid. RSC Adv. 2019;9(31):18050–18059. doi:10.1039/c9ra02078k.
  • Böhm D, Keller K, Pieter J, Boehm N, Wolters D, Siggelkow W, Lebrecht A, Schmidt M, Kölbl H, Pfeiffer N, et al. Comparison of tear protein levels in breast cancer patients and healthy controls using a de novo proteomic approach. Oncol Rep. 2012;28(2):429–438. doi:10.3892/or.2012.1849.
  • Memarzadeh E, Luther T, Heidari-Soureshjani S. Effect and mechanisms of medicinal plants on dry eye disease: a systematic review. J Clin Diagn Res. 2018;12:NE1–NE4. doi:10.7860/JCDR/2018/36409.12042.
  • Bucolo C, Musumeci M, Salomone S, Romano GL, Leggio GM, Gagliano C, Reibaldi M, Avitabile T, Uva MG, Musumeci S, et al. Effects of topical fucosyl-lactose, a milk oligosaccharide, on dry eye model: an example of nutraceutical candidate. Front Pharmacol. 2015;6:280. doi:10.3389/fphar.2015.00280.
  • Sánchez-Ríos A, Correa-Gallegos EY, Medina-Espinoza JM, Navarro-Sanchez AA, Olvera-Montaño O, Baiza-Durán L, Muñoz-Villegas P. Validation of a preclinical dry eye model in New Zealand white rabbits during and following topical instillation of 1% ophthalmic atropine sulfate. Anim Mod Exp Med. 2022;5(3):266–273. doi:10.1002/ame2.12218.
  • Tauc J. Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull. 1968;3(1):37–46. doi:10.1016/0025-5408(68)90023-8.
  • Singh V, Mishra AK. White light emission from a mixture of pomegranate extract and carbon nanoparticles obtained from the extract. J Mater Chem C. 2016;4(15):3131–3137. doi:10.1039/C6TC00480F.
  • Parri E, Santinami G, Domenici V. Front-face fluorescence of honey of different botanic origin: a case study from Tuscany (Italy). Appl Sci. 2020;10(5):1776. doi:10.3390/app10051776.
  • Skrt M, Albreht A, Vovk I, Constantin OE, Râpeanu G, Sežun M, Osojnik Črnivec IG, Zalar U, Poklar Ulrih N. Extraction of polyphenols and valorization of fibers from istrian-grown pomegranate (Punica granatum L.). Foods. 2022;11(18):2740. doi:10.3390/foods11182740.
  • Shrirao AB, Schloss RS, Fritz Z, Shrirao MV, Rosen R, Yarmush ML. Autofluorescence of blood and its application in biomedical and clinical research. Biotechnol Bioeng. 2021;118(12):4550–4576. doi:10.1002/bit.27933.
  • Phillips WJ, Cerione RA. Fluorescence investigations of receptor-mediated processes. In Dewey TG (Eds). Biophysical and biochemical aspects of fluorescence spectroscopy. Boston (MA): Springer US; 1991. p. 135–167.
  • Krajčíková K, Skirková M, Moravská M, Birková A, Tomečková V. Native fluorescence of tear fluid as a tool for diagnostics of glaucoma. RSC Adv. 2021;11(18):10842–10846. doi:10.1039/d1ra00473e.
  • Genova T, Borisova E, Zhelyazkova A, Penkov N, Vladimirov B, Terziev I, Semyachkina-Glushkovskaya O, Avramov L. Colorectal cancer stage evaluation using synchronous fluorescence spectroscopy technique. Opt Quant Electron. 2016;48(8):378. doi:10.1007/s11082-016-0634-7.
  • Saletnik Ł, Wesołowski R. Fluorescent spectroscopy of collagen as a diagnostic tool in medicine. J Med Sci. 2022;91:e584. doi:10.20883/medical.e584.
  • Ion RM, Planner A, Wiktorowicz K, Frackowiak D. The incorporation of various porphyrins into blood cells measured via flow cytometry, absorption and emission spectroscopy. Acta Biochim Pol. 1998;45(3):833–845. doi:10.18388/abp.1998_4279.
  • Su SH, Ho TJ, Yang CC. Retrospective evaluation of the curative effect of traditional Chinese medicine on dry eye disease. Tzu Chi Med J. 2021;33(4):365–369. doi:10.4103/tcmj.tcmj_281_20.
  • Protein fluorescence. In Lakowicz JR (Eds). Principles of fluorescence spectroscopy. Boston (MA): Springer US; 2006. p. 529–575.
  • Rantamäki AH, Seppänen-Laakso T, Oresic M, Jauhiainen M, Holopainen JM. Human tear fluid lipidome: from composition to function. PLoS One. 2011;6(5):e19553. doi:10.1371/journal.pone.0019553.
  • Rantamäki AH, Telenius J, Koivuniemi A, Vattulainen I, Holopainen JM. Lessons from the biophysics of interfaces: lung surfactant and tear fluid. Prog Retin Eye Res. 2011;30(3):204–215. doi:10.1016/j.preteyeres.2011.02.002.
  • Spaans SK, Weusthuis RA, van der Oost J, Kengen SWM. NADPH-generating systems in bacteria and archaea. Front Microbiol. 2015;6:742. doi:10.3389/fmicb.2015.00742.
  • Rush GF, Gorski JR, Ripple MG, Sowinski J, Bugelski P, Hewitt WR. Organic hydroperoxide-induced lipid peroxidation and cell death in isolated hepatocytes. Toxicol Appl Pharmacol. 1985;78(3):473–483. doi:10.1016/0041-008x(85)90255-8.
  • Yang Y, Sauve AA. NAD(+) metabolism: bioenergetics, signaling and manipulation for therapy. Biochim Biophys Acta. 2016;1864(12):1787–1800. doi:10.1016/j.bbapap.2016.06.014.
  • Barile M, Giancaspero TA, Brizio C, Panebianco C, Indiveri C, Galluccio M, Vergani L, Eberini I, Gianazza E. Biosynthesis of flavin cofactors in man: implications in health and disease. Curr Pharm Des. 2013;19(14):2649–2675. doi:10.2174/1381612811319140014.
  • Kim HJ, Winge DR. Emerging concepts in the flavinylation of succinate dehydrogenase. Biochim Biophys Acta. 2013;1827(5):627–636. doi:10.1016/j.bbabio.2013.01.012.
  • Pucker AD, Ngo W, Postnikoff CK, Fortinberry H, Nichols JJ. Tear film miRNAs and their association with human dry eye disease. Curr Eye Res. 2022;47(11):1479–1487. doi:10.1080/02713683.2022.2110597.
  • Raga-Cervera J, Bolarin JM, Millan JM, Garcia-Medina JJ, Pedrola L, Abellán-Abenza J, Valero-Vello M, Sanz-González SM, O’Connor JE, Galarreta-Mira D, et al. miRNAs and genes involved in the interplay between ocular hypertension and primary open-angle glaucoma. Oxidative stress, inflammation, and apoptosis networks. J Clin Med. 2021;10(11):2227. doi:10.3390/jcm10112227.
  • Hu L, Zhang T, Ma H, Pan Y, Wang S, Liu X, Dai X, Zheng Y, Lee LP, Liu F. Discovering the secret of diseases by incorporated tear exosomes analysis via rapid-isolation system: iTEARS. ACS Nano. 2022;16(8):11720–11732. doi:10.1021/acsnano.2c02531.
  • Altman J, Jones G, Ahmed S, Sharma S, Sharma A. Tear film microRNAs as potential biomarkers: a review. Int J Mol Sci. 2023;24(4):3694. doi:10.3390/ijms24043694.
  • Belenky P, Bogan KL, Brenner C. NAD + metabolism in health and disease. Trends Biochem Sci. 2007;32(1):12–19. doi:10.1016/j.tibs.2006.11.006.
  • Bakhshi AK. Investigation of electronic conduction in proteins and DNA. Prog Biophys Mol Biol. 1994;61(3):187–253. doi:10.1016/0079-6107(94)90001-9.
  • Lee WG, Chae S, Chung YK, Yoon WS, Choi JY, Huh J. Indirect-to-direct band gap transition of one-dimensional V2Se9: theoretical study with dispersion energy correction. ACS Omega. 2019;4(19):18392–18397. doi:10.1021/acsomega.9b02655.
  • Law DJ. Synthetic tannins: their synthesis, industrial products and application. J Soc Chem Ind. 1922;41(6):R141.
  • Savic IM, Jocic E, Nikolic VD, Popsavin MM, Rakic SJ, Savic-Gajic IM. The effect of complexation with cyclodextrins on the antioxidant and antimicrobial activity of ellagic acid. Pharm Dev Technol. 2019;24(4):410–418. doi:10.1080/10837450.2018.1502318.
  • Tošović J, Bren U. Antioxidative action of ellagic acid—a kinetic DFT study. Antioxidants. 2020;9(7):587. doi:10.3390/antiox9070587.
  • Gupta A, Kumar R, Ganguly R, Singh AK, Rana HK, Pandey AK. Antioxidant, anti-inflammatory and hepatoprotective activities of Terminalia bellirica and its bioactive component ellagic acid against diclofenac induced oxidative stress and hepatotoxicity. Toxicol Rep. 2021;8:44–52. doi:10.1016/j.toxrep.2020.12.010.
  • Gil TY, Hong CH, An HJ. Anti-inflammatory effects of ellagic acid on keratinocytes via MAPK and STAT pathways. Int J Mol Sci. 2021;22(3):1277. doi:10.3390/ijms22031277.
  • Ramadan DT, Ali MAM, Yahya SM, El-Sayed WM. Correlation between antioxidant/antimutagenic and antiproliferative activity of some phytochemicals. Anticancer Agents Med Chem. 2019;19(12):1481–1490. doi:10.2174/1871520619666190528091648.
  • Zahin M, Ahmad I, Gupta RC, Aqil F. Punicalagin and ellagic acid demonstrate antimutagenic activity and inhibition of benzo[a]pyrene induced DNA adducts. Biomed Res Int. 2014;2014:467465. doi:10.1155/2014/467465.
  • Wang Y, Ren F, Li B, Song Z, Chen P, Ouyang L. Ellagic acid exerts antitumor effects via the PI3K signaling pathway in endometrial cancer. J Cancer. 2019;10(15):3303–3314. doi:10.7150/jca.29738.
  • Duan J, Li Y, Gao H, Yang D, He X, Fang Y, Zhou G. Phenolic compound ellagic acid inhibits mitochondrial respiration and tumor growth in lung cancer. Food Funct. 2020;11(7):6332–6339. doi:10.1039/d0fo01177k.
  • Javaid N, Shah MA, Rasul A, Chauhdary Z, Saleem U, Khan H, Ahmed N, Uddin MS, Mathew B, Behl T, et al. Neuroprotective effects of ellagic acid in Alzheimer’s disease: focus on underlying molecular mechanisms of therapeutic potential. Curr Pharm Des. 2021;27(34):3591–3601. doi:10.2174/1381612826666201112144006.
  • Baek B, Lee SH, Kim K, Lim HW, Lim CJ. Ellagic acid plays a protective role against UV-B-induced oxidative stress by up-regulating antioxidant components in human dermal fibroblasts. Korean J Physiol Pharmacol. 2016;20(3):269–277. doi:10.4196/kjpp.2016.20.3.269.
  • Mishra S, Vinayak M. Ellagic acid inhibits PKC signaling by improving antioxidant defense system in murine T cell lymphoma. Mol Biol Rep. 2014;41(7):4187–4197. doi:10.1007/s11033-014-3289-0.
  • Zillich OV, Schweiggert‐Weisz U, Eisner P, Kerscher M. Polyphenols as active ingredients for cosmetic products. Int J Cosmet Sci. 2015;37(5):455–464. doi:10.1111/ics.12218.
  • Singh BN, Shankar S, Srivastava RK. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol. 2011;82(12):1807–1821. doi:10.1016/j.bcp.2011.07.093.
  • Bae J, Kim N, Shin Y, Kim SY, Kim YJ. Activity of catechins and their applications. Biomed Dermatol. 2020;4(1):8. doi:10.1186/s41702-020-0057-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.