311
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Interactions between metals accumulated in the narrow-clawed crayfish Astacus leptodactylus (Eschscholtz, 1823) in Dikilitaş Lake, Turkey

, , , , , , & show all
Pages 455-465 | Received 29 Aug 2014, Accepted 17 Apr 2015, Published online: 03 Jul 2015

References

  • Suárez-Serrano A, Alcaraz C, Ibáñez C, Trobajo R, Barata C. Procambarus clarkii as a bioindicator of heavy metal pollution sources in the lower Ebro River and Delta. Ecotox Environ Safe. 2010;73:280–286. doi: 10.1016/j.ecoenv.2009.11.001
  • Alcorlo P, Otero M, Crehuet M, Baltanás A, Montes C. The use of the red swamp crayfish (Procambarus clarkii, Girard) as indicator of the bioavailability of heavy metals in environmental monitoring in the River Guadiamar (SW, Spain). Sci Total Environ. 2006;366:380–390. doi: 10.1016/j.scitotenv.2006.02.023
  • Kuklina I, Kouba A, Buřič M, Horká I, Ďuriš Z, Kozák P. Accumulation of heavy metals in crayfish and fish from selected Czech reservoirs. BioMed Res Int. 2014. doi:10.1155/2014/306103
  • Allert AL, Distefano RJ, Fairchild JF, et al. Effects of historical lead-zinc mining on riffle-dwelling benthic fish and crayfish in the Big River of southeastern Missouri, USA. Ecotoxicology. 2013;22:506–521. doi: 10.1007/s10646-013-1043-3
  • Bianchi N, Fortino S, Leonzio C, Ancora S. Ecotoxicological study on lead shot from hunting in the Padule di Fucecchio marsh (Tuscany, Italy). Chem Ecol. 2011;27:153–166. doi: 10.1080/02757540.2011.625941
  • Schutzendubel A, Polle A. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot. 2002;53:1351–1365. doi: 10.1093/jexbot/53.372.1351
  • Zitka O, Krystofova O, Hynek D, et al. Metal transporters in plants. In: Dharmendra K. Gupta, Francisco J. Corpas, Jose M. Palma, editors. Heavy metal stress in plants. Berlin: Springer; 2013. p. 19–41.
  • Wah Chu K, Chow KL. Synergistic toxicity of multiple heavy metals is revealed by a biological assay using a nematode and its transgenic derivative. Aquat Toxicol. 2002;61(1–2):53–64. doi: 10.1016/S0166-445X(02)00017-6
  • Bernhard M. Manual of methods in aquatic environment research, Part 3: sampling and analyses of biological material, FAO Fish Tech Paper No 158, UNEP Rome; 1976.
  • Franchi M, Menegario AA, Brossi-Garcia AL, et al. Bioconcentration of Cd and Pb by the River Crab Trichodactylus fluviatilis (Crustacea: Decapoda). J Braz Chem Soc. 2011;22:230–238. doi: 10.1590/S0103-50532011000200007
  • Bjerregaard P. Influence of physiological condition on cadmium transport from haemolymph to hepatopancreas in Carcinus maenas. Mar Biol. 1990;106:199–209. doi: 10.1007/BF01314801
  • Soegianto A, Winarni D, Handayani US, Hartati. Bioaccumulation, elimination, and toxic effect of cadmium on structure of gills and Hepatopancreas of freshwater prawn Macrobrachium sintangese (De Man, 1898). Water Air Soil Pollut. 2013;224:1575–1584. doi: 10.1007/s11270-013-1575-4
  • Gagneten AM, Tumini G, Imhof A, Gervasio S. Comparative study of lead accumulation in different organs of the freshwater crab Zilchiopsis oronensis. Water Air Soil Pollut. 2012;223:617–624. doi: 10.1007/s11270-011-0887-5
  • Anderson MB, Preslan JE, Jolibois L, Bollinger JE, George WJ. Bioaccumulation of lead nitrate in red swamp crayfish (Procambarus clarkii). J Hazard Mater. 1997;54:15–29. doi: 10.1016/S0304-3894(96)01852-3
  • Bollinger JE, Bundy K, Anderson MB, et al. Bioaccumulation of chromium in red swamp crayfish (Procambarus clarkii). J Hazard Mater. 1997;54:1–13. doi: 10.1016/S0304-3894(96)01851-1
  • Tunca E, Ucuncu E, Ozkan AD, Ulger ZE, Cansizoglu AE, Tekinay T. Differences in the accumulation and distribution profile of heavy metals and metalloid between male and female crayfish (Astacus leptodactylus). Bull Environ Contam Toxicol. 2013;90:570–577. doi: 10.1007/s00128-013-0960-4
  • Kurun A, Balkıs N, Erkan M, Balkıs H, Aksu A, Erşan MS. Total metal levels in crayfish Astacus leptodactylus (Eschscholtz, 1823), and surface sediments in Lake Terkos, Turkey. Environ Monit Assess. 2010;169:385–395. doi: 10.1007/s10661-009-1181-5
  • Bondgaard M, Norum U, Bjerregaard P. Cadmium accumulation in the female shore crab Carcinus maenas during the moult cycle and ovarian maturation. Mar Biol. 2000;137:995–1004. doi: 10.1007/s002270000411
  • Martín-Díaz ML, Tuberty SR, et al. The use of bioaccumulation, biomarkers and histopathology diseases in shape Procambarus clarkii to establish bioavailability of Cd and Zn after a mining spill. Environ Monit Assess. 2006;116:169–184. doi: 10.1007/s10661-006-7234-0
  • Naghshbandi N, Zare S, Heidari R, Razzaghzadeh S. Concentration of heavy metal in different tissues of Astacus leptodactylus from Aras Dam of Iran. Pak J Biol Sci. 2007;10:3956–3959. doi: 10.3923/pjbs.2007.3956.3959
  • Tunca E, Ucuncu E, Ozkan AD, Ulger ZE, Tekinay T. Tissue distribution and correlation profiles of heavy-metal accumulation in the freshwater crayfish Astacus leptodactylus. Arch Environ Con Tox. 2013;64:676–691. doi: 10.1007/s00244-012-9863-3
  • Leung KMY, Morgan IJ, Wu RSS, Lau TC, Svavarsson J, Furness RW. Growth rate as a factor confounding the use of the dog whelk Nucella lapillus as biomonitor of heavy metal contamination. Mar Ecol-Prog Ser. 2001;221:145–159. doi: 10.3354/meps221145
  • Weis J, Cristini A, Rao K. Effects of pollutants on molting and regeneration in crustacea. Am Zool. 1992;32(3):495–500.
  • Agah H, Leermakers M, Elskens M, Fatemi MR, Baeyens W. Accumulation of trace metals in the muscle and liver tissues of five fish species from the Persian Gulf. Environ Monit Assess. 2009;157:499–514. doi: 10.1007/s10661-008-0551-8
  • Mohammadnabizadeh S, Afshari R, Pourkhabbaz A. Metal concentrations in marine fishes collected from hara biosphere in Iran. Bull Environ Contam Toxicol. 2013;90(2):188–193. doi: 10.1007/s00128-012-0876-4
  • Farkas A, Salánki J, Specziár A. Age- and size-specific patterns of heavy metals in the organs of freshwater fish Abramis brama L. populating a low-contaminated site. Water Res. 2003;37:959–964. doi: 10.1016/S0043-1354(02)00447-5
  • Bergey LL, Weis JS. Molting as a mechanism of depuration of metals in the fiddler crab, Uca pugnax. Mar Environ Res. 2007;64(5):556–562. doi: 10.1016/j.marenvres.2007.04.009
  • Weng N, Wang W-X. Variations of trace metals in two estuarine environments with contrasting pollution histories. Sci Total Environ. 2014;485–486:604–614. doi: 10.1016/j.scitotenv.2014.03.110
  • Rzymski P, Niedzielski P, Klimaszyk P, Poniedzialek B. Bioaccumulation of selected metals in bivalves (Unionidae) and Phragmites australis inhabiting a municipal water reservoir. Environ Monit Assess. 2014;186:3199–3212. doi: 10.1007/s10661-013-3610-8
  • Nakayama SMM, Ikenaka Y, Muzandu K, et al. Heavy metal accumulation in lake sediments, fish (Oreochromis niloticus and Serranochromis thumbergi), and Crayfish (Cherax quadricarinatus) in Lake Itezhi-tezhi and Lake Kariba, Zambia. Arch Environ Con Tox. 2010;59:291–300. doi: 10.1007/s00244-010-9483-8
  • Kouba A, Buřič M, Kozák P. Bioaccumulation and effects of heavy metals in crayfish: a review. Water Air Soil Pollut. 2010;211:5–16. doi: 10.1007/s11270-009-0273-8
  • Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochim. 2006;88:1707–1719. doi: 10.1016/j.biochi.2006.07.003
  • Cohen CK, Fox TC, Garvin DF, Kochian LV. The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiol. 1998;116:1063–1072. doi: 10.1104/pp.116.3.1063
  • Liang Z, Sottrup-Jensen L, Aspán A, Hall M, Söderhäll K. Pacifastin, a novel 155-kDa heterodimeric proteinase inhibitor containing a unique transferrin chain. Proc Natl Acad Sci U S A. 1997;94:6682–6687. doi: 10.1073/pnas.94.13.6682
  • Toe A, Areechon N, Srisapoome P. Molecular characterization and immunological response analysis of a novel transferrin-like, pacifastin heavy chain protein in giant freshwater prawn, Macrobrachium rosenbergii (De Man, 1879). Fish Shellfish Immunol. 2012;33:801–812. doi: 10.1016/j.fsi.2012.07.007
  • Huebers HA, Huebers E, Finch CA, Martin AW. Characterization of an invertebrate transferrin from the crab Cancer magister (Arthropoda). J Comp Physiol B. 1982;148:101–109. doi: 10.1007/BF00688893
  • Chua ACG, Graham RM, Trinder D, Olynyk JK. The regulation of cellular iron metabolism. Crit Rev Cl Lab Sci. 2007;44:413–459. doi: 10.1080/10408360701428257
  • Quarles CD Jr., Marcus RK, Brumaghim JL. Competitive binding of Fe3+, Cr3+, and Ni2+ to transferrin. J Biol Inorg Chem. 2011;16:913–921. doi: 10.1007/s00775-011-0792-9
  • Guner U. Freshwater crayfish Astacus leptodactylus (Eschscholtz, 1823) accumulates and depurates copper. Environ Monit Assess. 2007;133:365–369. doi: 10.1007/s10661-006-9590-1
  • Tunca E, Ucuncu E, Kurtulus B, Ozkan AD, Atasagun S. Accumulation trends of metals and a metalloid in the freshwater crayfish Astacus leptodactylus from Lake Yenicaga (Turkey). Chem Ecol. 2013;29:754–769. doi: 10.1080/02757540.2013.810724
  • Ahearn GA, Mandal PK, Mandal A. Mechanisms of heavy-metal sequestration and detoxification in crustaceans: a review. J Comp Physiol B. 2004;174:439–452. doi: 10.1007/s00360-004-0438-0
  • Pourang N, Dennis JH. Distribution of trace elements in tissues of two shrimp species from the Persian Gulf and roles of metallothionein in their redistribution. Environ Int. 2005;31:325–341. doi: 10.1016/j.envint.2004.08.003
  • Naji A, Ismail A, Kamrani E, Sohrabi T. Correlation of MT levels in livers and gills with heavy metals in wild tilapia (Oreochromis mossambicus) from the Klang River, Malaysia. Bull Environ Contam Toxicol. 2014:1–6.
  • Pourang N, Dennis JH, Ghourchian H. Distribution of heavy metals in Penaeus Semisulcatus from Persian Gulf and possible role of metallothionein in their redistribution during storage. Environ Monit Assess. 2005;100:71–88. doi: 10.1007/s10661-005-7061-8
  • Bridges CC, Zalups RK. Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol. 2005;204:274–308. doi: 10.1016/j.taap.2004.09.007
  • Amado EM, Freire CA, Grassi MT, Souza MM. Lead hampers gill cell volume regulation in marine crabs: Stronger effect in a weak osmoregulator than in an osmoconformer. Aquat Toxicol. 2012;106–107:95–103. doi: 10.1016/j.aquatox.2011.10.012
  • Smyth DJ, Glanfield A, McManus DP, et al. Two isoforms of a divalent metal transporter (DMT1) in Schistosoma mansoni suggest a surface-associated pathway for iron absorption in schistosomes. J Biol Chem. 2006;281:2242–2248. doi: 10.1074/jbc.M511148200
  • Mims MP, Prchal JT. Divalent metal transporter 1. Hematology. 2005;10:339–345. doi: 10.1080/10245330500093419
  • Bai S, Huang L, Luo Y, et al. Dietary manganese supplementation influences the expression of transporters involved in iron metabolism in chickens. Biol Trace Elem Res. 2014;160:352–360. doi: 10.1007/s12011-014-0073-x
  • Kwong RWM, Niyogi S. The interactions of iron with other divalent metals in the intestinal tract of a freshwater teleost, rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol. C: Toxicol Pharmacol. 2009;150:442–449.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.