28
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sediment pesticide contamination and toxicity in an agricultural tailwater recovery system

, ORCID Icon, & ORCID Icon
Received 09 Jun 2023, Accepted 29 Mar 2024, Published online: 08 Apr 2024

References

  • United States Census Bureau. International Database (IDB) Population estimates and projections for 227 countries and areas. 2023 [cited 2023 Feb 24]. Available from: https://www.census.gov/data-tools/demo/idb/#/country?COUNTRY_YR_ANIM=2021&COUNTRY_YEAR=2023.
  • Saad A, Benyamina AEH, Gamatié A. Water management in agriculture: A survey on current challenges and technological solutions. IEEE Access. 2020;8:38082–38097. doi:10.1109/ACCESS.2020.2974977
  • Karki R, Tagert MLM, Paz JO, et al. Application of AnnAGNPS to model an agricultural watershed in East-Central Mississippi for the evaluation of an on-farm water storage (OFWS) system. Agric Water Manag. 2017;192:103–114. doi:10.1016/j.agwat.2017.07.002
  • Grantz EM, Leslie D, Reba M, et al. Residual herbicide concentrations in on-farm water storage–tailwater recovery systems: preliminary assessment. Agric Environ Letters. 2020;5:e20009. doi:10.1002/ael2.20009
  • Iseyemi O, Reba ML, Haas L, et al. Water quality characteristics of tailwater recovery systems associated with agriculture production in the mid-southern US. Agric Water Manag. 2021;249:106775. doi:10.1016/j.agwat.2021.106775
  • Nelson AM, Moore MT, Witthaus LM. Pesticide trends in a tailwater recovery system in the Mississippi Delta. Agrosyst Geosci Environ. 2022;5:e20325. doi:10.1002/agg2.20325
  • Nelson AM, Witthaus LM, Moore MT, et al. Seasonal water quality trends in a tailwater recovery system in the Mississippi Delta. J Soil Water Conserv. 2023;78:26–32. doi:10.2489/jswc.2023.00090
  • Popp J, Wailes E, Young K, et al. Use of on-farm reservoirs in rice production: results from the MARORA model. J Agric Econ. 2003;35:371–379.
  • Quintana-Ashwell NE, Gholson DM. Optimal management of irrigation water from aquifer and surface sources. J Agric Appl Econ. 2022;54:496–514. doi:10.1017/aae.2022.23
  • Varshney RS. Modern methods of irrigation. GeoJournal. 1995;35(1):59–63. doi:10.1007/BF00812626
  • Luo Y, Zhang M. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT. Environ Pollut. 2009;157:3370–3378. doi:10.1016/j.envpol.2009.06.024
  • Moore MT, Pierce JR, Farris JL. Water-quality analysis of an intensively used on-farm storage reservoir in the Northeast Arkansas Delta. Arch Environ Contam Toxicol. 2015;69:89–94. doi:10.1007/s00244-015-0158-3
  • Willett CD, Grantz EM, Lee JA, et al. Soybean response to dicamba in irrigation water under controlled environmental conditions. Weed Sci. 2019;67:354–360. doi:10.1017/wsc.2019.4
  • Reba ML, Massey JH, Adviento-Borbe MA, et al. Aquifer depletion in the Lower Mississippi River Basin: challenges and solutions. J Contemp Water Res Educ. 2017;162:128–139. doi:10.1111/j.1936-704X.2017.03264.x
  • Moore MT, Lizotte RE, Cooper CM, et al. Survival and growth of Hyalella azteca exposed to three Mississippi oxbow lake sediments. Bull Environ Contam Toxicol. 2004;72:777–783. doi:10.1007/s00128-004-0312-5
  • Smith S, Lizotte RE, Knight SS. Pesticide body residues of Hyalella azteca exposed to Mississippi Delta sediments. Bull Environ Contam Toxicol. 2007;78:26–29. doi:10.1007/s00128-007-9020-2
  • Lizotte RE, Knight SS, Bryant CT. Sediment quality assessment of Beasley Lake: bioaccumulation and effects of pesticides in Hyalella azteca. Chem Ecol. 2010;26(6):411–442. doi:10.1080/02757540.2010.522997
  • Lizotte RE, Steinriede RW, Locke MA. Occurrence of agricultural pesticides in Mississippi Delta Bayou sediments and their effects on the amphipod: Hyalella azteca. Chem Ecol. 2021;37(4):305–322. doi:10.1080/02757540.2021.1886281
  • United States Environmental Protection Agency (USEPA). Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. EPA 600/R-99/064. Washington, DC: U.S. Environmental Protection Agency; 2000. 192 p.
  • Wenning RJ, Batley GE, Ingersoll CG, et al. Use of sediment quality guidelines and related tools for the assessment of contaminated sediments. Pensacola: SETAC Press; 2005. 783 p.
  • de March BGE. Hyalella azteca (Saussure). In: Lawrence SG, editor. Manual for the culture of selected freshwater invertebrates. Winnipeg, MB: Canadian Spec Publication of Fisheries and Aquatic Sciences; 1981. p. 61–77
  • American Public Health Association (APHA). Standard methods for the examination of water and wastewater. 22nd ed Washington (DC): American Public Health Association; 2012.
  • Cooper C, Smith S, Moore M. Surface water, ground water and sediment quality in three oxbow lake watersheds in the Mississippi Delta agricultural region: pesticides. Int J Ecol Environ Sci. 2003;29:171–184.
  • Nett MT, Locke MA, Pennington DA. Water quality assessments in the Mississippi Delta: regional solutions, national scope. American Chemical Society Symposium Series, Vol. 877. Washington (DC): ACS; 2004. 284 p.
  • Smith S, Cooper CM, Lizotte RE, et al. Pesticides in lake water in Beasley Lake Watershed, 1998-2005. Int J Ecol Environ Sci. 2007;33:61–71.
  • Lizotte RE, Knight SS, Bryant CT, et al. Agricultural pesticides in Mississippi Delta oxbow lake sediments during autumn and their effects on Hyalella azteca. Arch Environ Contam Toxicol. 2009;57:495–503. doi:10.1007/s00244-009-9327-6
  • Murphy N, Auzinger G, Bernel W, et al. The effect of hypertonic sodium chloride on intracranial pressure in patients with acute liver failure. Hepatology. 2004;39:464–470. doi:10.1002/hep.20056
  • Stewart C, Conwell C. Temporal changes in contaminated sediment: a neglected aspect of ecological risk assessment? Integr Environ Assess Manage. 2008;4:517–519. doi:10.1897/IEAM_2008-060c.1
  • Hladik ML, Kuivila KM. Pyrethroid insecticides in bed sediments from urban and agricultural streams across the United States. J Environ Monit. 2012;14:1838–1845. doi:10.1039/c2em10946h
  • Siegler KS, Phillips BM, Anderson BS, et al. Temporal and spatial trends in sediment contaminants associated with toxicity in California watersheds. Environ Pollut. 2015;206:1–6. doi:10.1016/j.envpol.2015.06.028
  • Moran PW, Nowell LH, Kemble NE, et al. Influence of sediment chemistry and sediment toxicity on macroinvertebrate communities across 99 wadable streams of the Midwestern USA. Sci Tot Environ. 2017;599–600:1469–1478.
  • Marques CR, Pereira R, Gonçalves F. Toxicity evaluation of natural samples from the vicinity of rice fields using two trophic levels. Environ Monit Assess. 2011;180:521–536. doi:10.1007/s10661-010-1803-y
  • Furihata S, Kasai A, Hidaka K, et al. Ecological risks of insecticide contamination in water and sediment around off-farm irrigated rice paddy fields. Environ Pollut. 2019;251:628–638. doi:10.1016/j.envpol.2019.05.009
  • Huang Z, Li H, Wei Y, et al. Distribution and ecological risk of neonicotinoid insecticides in sediment in South China: impact of regional characteristics and chemical properties. Sci Tot Environ. 2020;714:136878. doi:10.1016/j.scitotenv.2020.136878
  • Liu P, Zhang L, Li H, et al. Reduced concentrations and toxicity of sediment-associated pesticides from vegetable planting field to surrounding waterways: impacts of chemical properties and intrinsic toxicity. J Hazard Mater. 2022;436:129292. doi:10.1016/j.jhazmat.2022.129292
  • Rasmussen JJ, Wiberg-Larsen P, Baattrup-Pedersen A, et al. The legacy of pesticide pollution: an overlooked factor in current risk assessments of freshwater systems. Water Res. 2015;84:25–32. doi:10.1016/j.watres.2015.07.021
  • Knight SS, Lizotte RE, Shields FD. Hyalella azteca (Saussure) responses to Coldwater River backwater sediments in Mississippi, USA. Bull Environ Contam Toxicol. 2009;83:493–496. doi:10.1007/s00128-009-9804-7
  • Knight SS, Lizotte RE, Smith S, et al. Responses of Hyalella azteca to chronic exposure of Mississippi delta sediments. J Environ Sci Engin. 2010;4(3):1–12.
  • Gan J, Spurlock F, Hendley P, et al. Synthetic pyrethroids: occurrence and behavior in aquatic environments. American Chemical Society Symposium Series, vol. 991. Washington (DC): ACS; 2008. 496 p.
  • United States Environmental Protection Agency (USEPA). 2023 [cited 2023 March 24]. Available from: https://www.epa.gov/history/epa-history-ddt-dichloro-diphenyl-trichloroethane.
  • Shahid N, Becker JM, Krauss M, et al. Pesticide body burden of the crustacean Gammarus pulex as a measure of toxic pressure in agricultural streams. Environ Sci Technol. 2018;52:7823–7832. doi:10.1021/acs.est.8b01751

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.