60
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Revisiting the mechanism of β-O-4 bond cleavage during acidolysis of lignin. Part 9: Comprehensive results for guaiacyl-type compounds and the difference in participation mode of bromide and chloride anions between C6-C3-type and C6-C2-type compounds

, , &

References

  • Gellerstedt, G.; Pranda, J.; Lindfors, E. L. Structural and Molecular Properties of Residual Birch Kraft Lignins. J. Wood Chem. Technol. 1994, 14, 467–482. DOI: 10.1080/02773819408003108.
  • Adler, E.; Pepper, J. M.; Eriksoo, E. Action of Mineral Acid on Lignin and Model Substances of Guaiacylglycerol-β-Aryl Ether Type. Ind. Eng. Chem. 1957, 49, 1391–1392. DOI: 10.1021/ie50573a037.
  • Lundquist, K.; Rymo, L.; Römming, C.; Block-Bolten, A.; Toguri, J. M.; Flood, H. Isolation of 3-Hydroxy-1-(4-Hydroxy-3-Methoxyphenyl)-2-Propanone from Lignin. Acta Chem. Scand. 1962, 16, 2303–2304. DOI: 10.3891/acta.chem.scand.16-2303.
  • Adler, E.; Lundquist, K.; Skarstein, J.; Andersen, I. G. K.; Munch-Petersen, J. Spectrochemical Estimation of Phenylcoumaran Elements in Lignin. Acta Chem. Scand. 1963, 17, 13–26. DOI: 10.3891/acta.chem.scand.17-0013.
  • Lundquist, K.; Marton, J.; Falkehag, I.; Halvarson, H.; Nilsson, L. On Separation of Lignin Degradation Products. Acta Chem. Scand. 1964, 18, 1316–1317. DOI: 10.3891/acta.chem.scand.18-1316.
  • Lundquist, K.; Miksche, G. E. A New Linkage Principle for Guaiacylpropane Units in Spruce Lignin. Tetrahed. Lett. 1965, 6, 2131–2136. DOI: 10.1016/S0040-4039(00)90166-7.
  • Lundquist, K.; Lundgren, R.; Danielsen, J.; Haaland, A.; Svensson, S. Acid Degradation of Lignin Part VIII: The Cleavage of Ether Bonds. Acta Chem. Scand. 1972, 26, 2005–2023. DOI: 10.3891/acta.chem.scand.26-2005.
  • Lundquist, K.; Malmsten, L.-Å.; Seip, H. M.; Pajunen, P.; Koskikallio, J.; Swahn, C.-G. Acid Degradation of Lignin Part XVI: Low Molecular Weight Phenols from Acidolysis of Birch Lignin. Acta Chem. Scand. 1973, 27, 2597–2606. DOI: 10.3891/acta.chem.scand.27-2597.
  • Yasuda, S.; Terashima, N.; Ito, T. Chemical Structures of Sulfuric Acid Lignin II: Chemical Structures of Condensation Products from Arylglycerol-β-Aryl Ether Type Structures. Mokuzai Gakkaishi 1981, 27, 216–222.
  • Ito, T.; Terashima, N.; Yasuda, S. Chemical Structures of Sulfuric Acid Lignin III: Reaction of Arylglycerol-β-Aryl Ether with Five Percent Sulfuric Acid. Mokuzai Gakkaishi 1981, 27, 484–490.
  • Yasuda, S.; Terashima, N.; Ito, T. Chemical Structures of Sulfuric Acid Lignin IV: Reaction of Arylglycerol-β-Aryl Ether with Seventy-Two Percent Sulfuric Acid. Mokuzai Gakkaishi 1981, 27, 879–884.
  • Yasuda, S.; Terashima, N. Chemical Structures of Sulfuric Acid Lignin VII: Reaction of Three Arylglycerol-β-Aryl Ethers [α-, β-, γ-13C] with Seventy-Two Percent Sulfuric Acid. Mokuzai Gakkaishi 1982, 28, 383–387.
  • Yasuda, S.; Terashima, N.; Kaneko, H. Chemical Structures of Hydrochloric Acid Lignin II: Reaction of Arylglycerol-β-Aryl Ether with Hydrochloric Acid. Mokuzai Gakkaishi 1982, 28, 570–576.
  • Hoo, L. H.; Sarkanen, K. V.; Anderson, C. D. Formation of C6C2-Enol Ethers in the Acid-Catalyzed Hydrolysis of Erythro-Veratrylglycerol-β-(2-Methoxyphenyl) Ether. J. Wood Chem. Technol. 1983, 3, 223–243. DOI: 10.1080/02773818308085161.
  • Yasuda, S.; Adachi, K.; Terashima, N.; Ota, K. Chemical Structures of Sulfuric Acid Lignin XVI: Reactions of 1,2-Diaryl-1,3-Propanediol and Pinoresinol with Sulfuric Acid. Mokuzai Gakkaishi 1985, 31, 125–131.
  • Karlsson, O.; Lundquist, K.; Meuller, S.; Westlid, K.; Lönnberg, H.; Berg, J.-E.; Bartók, M.; Pelczer, I.; Dombi, G. On the Acidolysis Cleavage of Arylglycerl β-Aryl Ethers. Acta Chem. Scand. 1988, 42b, 48–51. DOI: 10.3891/acta.chem.scand.42b-0048.
  • Yokoyama, T.; Matsumoto, Y. Revisiting the Mechanism of β-O-4 Bond Cleavage during Acidolysis of Lignin Part 1: Kinetics of the Formation of Enol Ether from Non-Phenolic C6-C2 Type Model Compounds. Holzforschung 2008, 62, 164–168. DOI: 10.1515/HF.2008.037.
  • Yokoyama, T.; Matsumoto, Y. Revisiting the Mechanism of β-O-4 Bond Cleavage during Acidolysis of Lignin Part 2: Detailed Reaction Mechanism of a Non-Phenolic C6-C2 Type Model Compound. J. Wood Chem. Technol. 2010, 30, 269–282. DOI: 10.1080/02773811003675288.
  • Ito, H.; Imai, T.; Lundquist, K.; Yokoyama, T.; Matsumoto, Y. Revisiting the Mechanism of β-O-4 Bond Cleavage during Acidolysis of Lignin. Part 3: Search for the Rate-Determining Step of a Non-Phenolic C6-C3 Type Model Compound. J. Wood Chem. Technol. 2011, 31, 172–182. DOI: 10.1080/02773813.2010.515050.
  • Imai, T.; Yokoyama, T.; Matsumoto, Y. Revisiting the Mechanism of β-O-4 Bond Cleavage during Acidolysis of Lignin IV: Dependence of Acidolysis Reaction on the Type of Acid. J. Wood Sci. 2011, 57, 219–225. DOI: 10.1007/s10086-010-1166-6.
  • Imai, T.; Yokoyama, T.; Matsumoto, Y. Revisiting the Mechanism of β-O-4 Bond Cleavage during Acidolysis of Lignin. Part 5: On the Characteristics of Acidolysis Using Hydrobromic Acid. J. Wood Chem. Technol. 2012, 32, 165–174. DOI: 10.1080/02773813.2011.624668.
  • Yokoyama, T. Revisiting the Mechanism of β-O-4 Bond Cleavage during Acidolysis of Lignin Part 6: A Review. J. Wood Chem. Technol. 2015, 35, 27–42. DOI: 10.1080/02773813.2014.881375.
  • Ye, Q.; Yokoyama, T. Revisiting the Mechanism of β-O-4 Bond Cleavage during Acidolysis of Lignin VII: Acidolyses of Non‑Phenolic C6‑C2‑Type Model Compounds Using HBr, HCl and H2SO4, and a Proposal on the Characteristic Action of Br¯ and Cl. ¯J. Wood Sci. 2020, 66, 80.
  • Ye, Q.; Yokoyama, T. Revisiting the Mechanism of β-O-4 Bond Cleavage during Acidolysis of Lignin Part 8: Comparison between Phenolic and Non-Phenolic C6-C2-Type Model Compounds. J. Wood Chem. Technol. 2021, 41, 294–306. DOI: 10.1080/02773813.2021.1986072.
  • Ito, H.; Yokoyama, T. Formation Rate of Benzyl Cations in Various Aqueous Solutios Containing Different Concentrations of Acid But with a Specific Proton Activity in Lignin Acidolysis. Holzforschung 2022, 76, 722–731. DOI: 10.1515/hf-2022-0053.
  • Imai, A.; Yokoyama, T.; Matsumoto, Y.; Meshitsuka, G. Significant Lability of Guaiacylglycerol β-Phenacyl Ether Under Alkaline Conditions. J. Agric. Food Chem. 2007, 55, 9043–9046. DOI: 10.1021/jf071147d.
  • Shioya, T.; Akiyama, T.; Yokoyama, T.; Matsumoto, Y. Formation Rate of Benzyl Cation Intermediate from p-Hydroxyphenyl, Guaiacyl, or Syringyl Nucleus in Acidolysis of Lignin. J. Wood Chem. Technol. 2017, 37, 75–86. DOI: 10.1080/02773813.2016.1235587.
  • Yamauchi, F.; Ito, T.; Kawamoto, O.; Komatsu, T.; Akiyama, T.; Yokoyama, T.; Matsumoto, Y. Effects of Lignin Structure and Solvent on the Formation Rate of Quinone Methide under Alkaline Conditions. Holzforschung 2020, 74, 559–566. DOI: 10.1515/hf-2019-0269.
  • Hirata, M.; Yokoyama, T. Effect of Solvent Type on the Formation Rate of Benzyl Cation Intermediate in Acidolysis of Lignin. Holzforschung 2022, 76, 223–234. DOI: 10.1515/hf-2021-0193.
  • Kirby, A. J. Oxford Chemistry Primers: 36 Stereoelectronic Effects. Oxford University Press Inc., New York, 1996; pp 38–41.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.