167
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Modified phenol formaldehyde resin with sodium silicate as a low-cure wood adhesive

, &

References

  • Kielmann, B.; Butter, K.; Mai, C. Modification of Wood with Formulations of Phenolic Resin and Iron-Tannin-Complexes to Improve Material Properties and Expand Colour Variety. Eur. J. Wood Prod. 2018, 76, 259–267. DOI: 10.1007/s00107-017-1180-0.
  • Gabilondo, N.; López, M.; Ramos, J. A.; Echeverría, J. M.; Mondragon, I. Curing Kinetics of Amine and Sodium Hydroxide Catalyzed Phenol-Formaldehyde Resins. J. Therm. Anal. Calorim. 2007, 90, 229–236. DOI: 10.1007/s10973-006-7747-3.
  • Sarika, P. R.; Nancarrow, P.; Khansaheb, A.; Ibrahim, T. Bio-Based Alternatives to Phenol and Formaldehyde for the Production of Resins. Polymers (Basel) 2020, 12, 2237. DOI: 10.3390/polym12102237.
  • Guo, C.; Yi, T.; Morrell, J. J.; Gao, W.; Zhao, S.; Zhan, K.; Yang, L.; Du, G. Incorporation of a Nano/Micro CuO Formulation into Phenol Formaldehyde (PF) Resin: Curing Kinetics, Morphological Analysis, and Application. J. Wood Chem. Technol. 2019, 39, 372–383. DOI: 10.1080/02773813.2019.1636822.
  • Gomez-Bueso, J.; Haupt, R. Wood Composite Adhesives. In Phenolic Resins: A Century of Progress; Pilato, L., Ed. Springer: Berlin, 2010; pp 155–187. DOI: 10.1007/978-3-642-04714-5_8.
  • Qiao, W.; Li, S.; Xu, F. Preparation and Characterization of a Phenol-Formaldehyde Resin Adhesive Obtained from Bio-Ethanol Production Residue. Polym. Polym. Compos 2016, 24, 99–105. DOI: 10.1177/096739111602400203.
  • Osetrov, A. V.; Ugryumov, S. A. Assessment of Activation Energy of Modified Phenol-Formaldehyde Resin. Polym. Sci. Ser. D 2016, 9, 31–32. DOI: 10.1134/S1995421216010160.
  • Zhang, W.; Ma, Y.; Xu, Y.; Wang, C.; Chu, F. Lignocellulosic Ethanol Residue-Based Lignin–Phenol–Formaldehyde Resin Adhesive. Int. J. Adhes. Adhesiv. 2013, 40, 11–18. DOI: 10.1016/j.ijadhadh.2012.08.004.
  • Chen, Z.; Cai, H.; Pan, Y.; Chen, Y.; Guo, R.; Li, J.; He, S.; Han, J. Catalytic and Ortho -Directing Effect of Zn2+, Mg2+, Ba2+, and Ca2+ Metal Hydroxides on the Preparation of Phenolic-Formaldehyde Resin. J. Adhes. Sci. Technol. 2018, 32, 2647–2657. DOI: 10.1080/01694243.2018.1500158.
  • Syabani, M. W.; Perdana, I. Rochmadi. Thermal Degradation of Modified Phenol-Formaldehyde Resin with Sodium Silicate. Proc. ICoChEA (Int. Conf. Chem. Eng. Agroind) 2017, 1, 37–40.
  • Qin, Y.; Dong, Y.; Li, J. Effect of Modification with Melamine–Urea–Formaldehyde Resin on the Properties of Eucalyptus and Poplar. J. Wood Chem. Technol. 2019, 39, 360–371. DOI: 10.1080/02773813.2019.1636821.
  • Gindl, W.; Schöberl, T.; Jeronimidis, G. The Interphase in Phenol Formaldehyde and Polymeric Methylene Di-Phenyl-Di-Isocyanate Glue Lines in Wood. Int. J. Adhes. Adhesiv. 2004, 24, 279–286. DOI: 10.1016/j.ijadhadh.2003.10.002.
  • Sun, J.; Lin, R. H.; Wang, X. B.; Zhu, X. F.; Gao, Z. Z. Sodium Silicate as Catalyst and Modifier for Phenol-Formaldehyde Resin. AMM 2012, 184-185, 1198–1206. DOI: 10.4028/www.scientific.net/AMM.184-185.1198.
  • Zhao, S. F.; Zhang, G. P.; Sun, R.; Wong, C. P. Curing Kinetics, Mechanism and Chemorheological Behavior of Methanol Etherified Amino/Novolac Epoxy Systems. Express Polym. Lett. 2014, 8, 95–106. DOI: 10.3144/expresspolymlett.2014.12.
  • Papadopoulou, E.; Chrissafis, K. Thermal Study of Phenol–Formaldehyde Resin Modified with Cashew Nut Shell Liquid. Thermochim. Acta 2010, 512, 105–109. DOI: 10.1016/j.tca.2010.09.008.
  • Vázquez, G.; González-Álvarez, J.; Antorrena, G. Curing of a Phenol–Formaldehyde–Tannin Adhesive in the Presence of Wood: Analysis by Differential Scanning Calorimetry. J. Therm. Anal. Calorim. 2006, 84, 651–654. DOI: 10.1007/s10973-005-9989-x.
  • Periadurai, T.; Vijayakumar, C. T.; Balasubramanian, M. Thermal Decomposition and FLame Retardant Behaviour of SiO2 -Phenolic Nanocomposite. J. Anal. Appl. Pyrolysis 2010, 89, 244–249. DOI: 10.1016/j.jaap.2010.08.010.
  • Taheri-Behrooz, F.; Maher, B. M.; Shokrieh, M. M. Mechanical Properties Modification of a Thin FIlm Phenolic Resin FIlled with Nano Silica Particles. Comput. Mater. Sci. 2015, 96, 411–415. DOI: 10.1016/j.commatsci.2014.08.042.
  • Prabhakaran, P. V.; Sreejith, K. J.; Swaminathan, B.; Packirisamy, S.; Ninan, K. N. Silicon Carbide Wires of Nano to Sub-Micron Size from Phenolfurfuraldehyde Resin. J. Mater. Sci. 2009, 44, 528–533. DOI: 10.1007/s10853-008-3087-y.
  • Hu, X.; Zeng, J.; Dai, W.; Shi, W.; Li, L.; Han, C. EPDM/Vinyl Triethoxysilane Modified Phenol Formaldehyde Resin Composite. Polym. Bull. 2011, 66, 703–710. DOI: 10.1007/s00289-010-0374-y.
  • Mastalska-Popławska, J.; Izak, P.; Wójcik, Ł.; Stempkowska, A. Rheology of Cross-Linked Poly(Sodium Acrylate)/Sodium Silicate Hydrogels. Arab. J. Sci. Eng. 2016, 41, 2221–2228. DOI: 10.1007/s13369-015-1950-0.
  • Liu, X.; Zhang, X.; Long, K.; Zhu, X.; Yang, J. PVA Wood Adhesive Modified with Sodium Silicate Cross-Linked Copolymer. In International Conference on Biobase Material Science and Engineering, 2012; pp 108–111.
  • Valdez, D.; Nagy, E. Analyses/Testing. In Phenolic Resins: A Century of Progress; Pilato, L., Ed. Springer: Berlin, Heidelberg, 2010; pp 93–135. DOI: 10.1007/978-3-642-04714-5_5.
  • Ehrenstein, G. W.; Riedel, G.; Trawiel, P. Thermal Analysis of Plastics. In Thermal Analysis of Plastics. Munich, Germany: Carl Hanser Verlag GmbH & Co. KG, 2004; pI–XXIX. DOI: 10.3139/9783446434141.fm.
  • Park, B.-D.; Riedl, B.; Bae, H.-J.; Kim, Y. S. Differential Scanning Calorimetry of Phenol-Formaldehyde (PF) Adhesives. J. Wood Chem. Technol. 1999, 19, 265–286. DOI: 10.1080/02773819909349612.
  • Wang, M.; Leitch, M.; Xu, C. (Charles). Synthesis of Phenol–Formaldehyde Resol Resins Using Organosolv Pine Lignins. Eur. Polym. J. 2009, 45, 3380–3388. DOI: 10.1016/j.eurpolymj.2009.10.003.
  • Yelle, D. J.; Ralph, J. Characterizing Phenol-Formaldehyde Adhesive Cure Chemistry within the Wood Cell Wall. Int. J. Adhes. Adhesiv. 2016, 70, 26–36. DOI: 10.1016/j.ijadhadh.2016.05.002.
  • Park; John, B.-D.; Kadla, F. Thermal Degradation Kinetics of Resole Phenol-Formaldehyde Resin/Multi-Walled Carbon Nanotube/Cellulose Nanocomposite. Thermochim. Acta 2012, 540, 107–115. DOI: 10.1016/j.tca.2012.04.021.
  • Wang, J.; Laborie, M.-P. G.; Wolcott, M. P. Comparison of Model-Free Kinetic Methods for Modeling the Cure Kinetics of Commercial Phenol–Formaldehyde Resins. Thermochim. Acta 2005, 439, 68–73. DOI: 10.1016/j.tca.2005.09.001.
  • Poljanšek, I.; Likozar, B.; Čuk, N.; Kunaver, M. Curing Kinetics Study of Melamine–Urea–Formaldehyde Resin/Liquefied Wood. Wood Sci. Technol. 2013, 47, 395–409. DOI: 10.1007/s00226-012-0503-x.
  • López, M.; Blanco, M.; Ramos, J. A.; Vazquez, A.; Gabilondo, N.; del Val, J. J.; Echeverría, J. M.; Mondragon, I. Synthesis and Characterization of Resol-Layered Silicate Nanocomposites. J. Appl. Poly. Sci. 2007, 106, 2800–2807. DOI: 10.1002/app.26928.
  • Teresa, O. Correlation between Potential Barrier and FTIR Spectra in SiOC Film with the C-O Bond of Sp3 Structure. Bull. Korean Chem. Soc. 2009, 30, 467–470. DOI: 10.5012/BKCS.2009.30.2.467.
  • Duo, J.; Zhang, Z.; Yao, G.; Huo, Z.; Jin, F. Hydrothermal Conversion of Glucose into Lactic Acid with Sodium Silicate as a Base Catalyst. Catal. Today 2016, 263, 112–116. DOI: 10.1016/j.cattod.2015.11.007.
  • Sugama, T.; Pyatina, T. Effect of Sodium Carboxymethyl Celluloses on Water-Catalyzed Self-Degradation of 200 °C-Heated Alkali-Activated Cement. Cem. Concr. Compos. 2014, 55, 281–289. DOI: 10.1016/j.cemconcomp.2014.09.015.
  • Weber, F.; Liao, W.; Barrantes, A.; Edén, M.; Tiainen, H. Silicate-Phenolic Networks: Coordination-Mediated Deposition of Bioinspired Tannic Acid Coatings. Chemistry 2019, 25, 9870–9874. DOI: 10.1002/chem.201902358.
  • Khan, M. A.; Ashraf, S. M. Studies on Thermal Characterization of Lignin: Substituted Phenol Formaldehyde Resin as Wood Adhesives. J. Therm. Anal. Calorim. 2007, 89, 993–1000. DOI: 10.1007/s10973-004-6844-4.
  • He, G.; Riedl, B. Curing Kinetics of Phenol Formaldehyde Resin and Wood Resin Interaction in the Presence of Wood Substrates. Wood Sci. Technol. 2004, 38, 69–81. DOI: 10.1007/s00226-003-0221-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.