3,008
Views
37
CrossRef citations to date
0
Altmetric
Original Articles

Particle Emission Characteristics of a Gas Turbine with a Double Annular Combustor

, , , , , , , , , , , , , , , , , & show all
Pages 842-855 | Received 30 Jan 2015, Accepted 10 Jul 2015, Published online: 24 Aug 2015

REFERENCES

  • Bakand, S., Hayes, A., and Dechsakulthorn, F. (2012). Nanoparticles: A Review of Particle Toxicology Following Inhalation Exposure. Inhal. Toxicol., 24:125–135.
  • Biskos, G., Reavell, K., and Collings, N. (2005). Unipolar Diffusion Charging of Aerosol Particles in the Transition Regime. J. Aerosol Sci., 36:247–265.
  • Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., et al. Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S. (2013). Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment. J. Geophys. Res., 118:5380–5552.
  • Broday, D. M., and Rosenzweig, R. (2011). Deposition of Fractal-Like Soot Aggregates in the Human Respiratory Tract. J. Aerosol Sci., 42:372–386.
  • Cassee, F. R., Héroux, M.-E., Gerlofs-Nijland, M. E., and Kelly, F. J. (2013). Particulate Matter Beyond Mass: Recent Health Evidence on the Role of Fractions, Chemical Constituents and Sources of Emission. Inhal. Toxicol., 25:802–812.
  • Crayford, A., Johnson, M., Marsh, R., Sevcenco, Y., Walters, D., Williams, P., Petzold, A., Bowen, P., Wang, J., and Lister, D., (2012). SAMPLE III: Contribution to Aircraft Engine PM Certification Requirement and Standard Second Specific Contract– Final Report. European Aviation Safety Agency, Cologne, Germany. easa.europa.eu.
  • Cumpsty, N. A. (2003). Jet Propulsion: A Simple Guide to the Aerodynamic and Thermodynamic Design and Performance of Jet Engines. Cambridge University Press, Cambridge, UK.
  • Dastanpour, R., and Rogak, S. N. (2014). Observations of a Correlation between Primary Particle and Aggregate Size for Soot Particles. Aerosol Sci. Technol., 48:1043–1049.
  • DeCarlo, P. F., Slowik, J. G., Worsnop, D. R., Davidovits, P., and Jimenez, J. L. (2004). Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 1: Theory. Aerosol Sci. Technol., 38:1185–1205.
  • Dobbins, R. A., Mulholland, G. W., and Bryner, N. P. (1994). Comparison of a Fractal Smoke Optics Model with Light Extinction Measurements. Atmos. Environ., 28:888–897.
  • Durdina, L., Brem, B. T., Abegglen, M., Lobo, P., Rindlisbacher, T., Thomson, K., Smallwood, G. J., Hagen, D. E., Sierau, B., Wang, J. (2014). Determination of PM Mass Emissions from an Aircraft Turbine Engine Using Particle Effective Density. Atmos. Environ., 99:500–507.
  • EASA. (2012). ICAO Engine Emissions Databank [online]. Available from http://easa.europa.eu/environment/edb/aircraft-engine-emissions.php.
  • Eggersdorfer, M. L., Kadau, D., Herrmann, H. J., and Pratsinis, S. E. (2012). Aggregate Morphology Evolution by Sintering: Number and Diameter of Primary Particles. J. Aerosol Sci., 46:7–19.
  • Fierz, M., Kaegi, R., and Burtscher, H. (2007). Theoretical and Experimental Evaluation of a Portable Electrostatic TEM Sampler. Aerosol Sci. Technol., 41:520–528.
  • Giechaskiel, B., Chirico, R., DeCarlo, P., Clairotte, M., Adam, T., Martini, G., Heringa, M., Richter, R., Prevot, A., and Baltensperger, U. (2010). Evaluation of the Particle Measurement Programme (PMP) Protocol to Remove the Vehicles' Exhaust Aerosol Volatile Phase. Sci. Total Environ., 408:5106–5116.
  • Giechaskiel, B., Dilara, P., Sandbach, E., and Andersson, J. (2008). Particle Measurement Programme (PMP) Light-Duty Inter-Laboratory Exercise: Comparison of Different Particle Number Measurement Systems. Measur. Sci. Technol., 19:095401.
  • Hall, R., Smooke, M., and Colket, M. (1997). Predictions of Soot Dynamics in Opposed Jet Diffusion Flames, in Physical and Chemical Aspects of Combustion: A Tribute to Irvin Glassman, F. Dryer, and R. Sawyer, eds., Gordon and Breach, Amsterdam, pp. 189–230.
  • Ishiguro, T., Takatori, Y., and Akihama, K. (1997). Microstructure of Diesel Soot Particles Probed by Electron Microscopy: First Observation of Inner Core and Outer Shell. Combust. Flame, 108:231–234.
  • Jayne, J. T., Leard, D. C., Zhang, X., Davidovits, P., Smith, K. A., Kolb, C. E., and Worsnop, D. R. (2000). Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles. Aerosol Sci. Technol., 33:49–70.
  • Johnson, T. J., Olfert, J. S., Symonds, J. P. R., Johnson, M., Rindlisbacher, T., Swanson, J. J., Boies, A. M., Thomson, K., Smallwood, G., Walters, D., Sevcenco, Y., Crayford, A., Dastanpour, R., Rogak, S. N., Durdina, L., Bahk, Y. K., Brem, B., and Wang, J. (2015). Effective Density and Mass-Mobility Exponent of Aircraft Turbine Particulate Matter. J. Propuls. Power, 31:573–582.
  • Just, B. G. (2012). Characterization of Ultrafine Particulate Matter from Traditional and Improved Biomass Cookstoves, Mechanical Engineering. University of British Columbia, Vancouver, BC. https://circle.ubc.ca/handle/2429/43053.
  • Kärcher, B., and Yu, F. (2009). Role of Aircraft Soot Emissions in Contrail Formation. Geophys. Res. Lett., 36:L01804.
  • Khalek, I. A., and Kittelson, D. B. (1995). Real Time Measurement of Volatile and Solid Exhaust Particles Using a Catalytic Stripper. SAE Technical Paper. 950236. SAE International, Warrendale, PA.
  • Kinsey, J. S., Dong, Y., Williams, D. C., and Logan, R. (2010). Physical Characterization of the Fine Particle Emissions from Commercial Aircraft Engines during the Aircraft Particle Emissions Experiment (APEX) 1–3. Atmos. Environ., 44:2147–2156.
  • Lee, D. S., Pitari, G., Grewe, V., Gierens, K., Penner, J. E., Petzold, A., Prather, M. J., Schumann, U., Bais, A., and Berntsen, T. (2010). Transport Impacts on Atmosphere and Climate: Aviation. Atmos. Environ., 44:4678–4734.
  • Lefebvre, A., and Ballal, D. (2010). Gas Turbine Combustion: Alternative Fuels and Emission, 3rd ed. CRC Press, Boca Raton, FL.
  • Liati, A., Brem, B. T., Durdina, L., Vögtli, M., Arroyo Rojas Dasilva, Y., Dimopoulos Eggenschwiler, P., and Wang, J. (2014). Electron Microscopic Study of Soot Particulate Matter Emissions from Aircraft Turbine Engines. Environ. Sci. Technol., 48:10975–10983.
  • Liscinsky, D. S., Bhargava, A., Colket, M. B., Hautman, D. C., Hollick, H. H., and True, B. (2010). Effect of Particle Sampling Technique and Transport on Particle Penetration at the High Temperature and Pressure Conditions Found in Gas Turbine Combustors and Engines. NASA/CR-2010eNNC07CB03C. NASA/Glenn Research Center, Cleveland, OH.
  • Liu, F., Yang, M., Hill, F. A., Snelling, D. R., and Smallwood, G. J. (2006). Influence of Polydisperse Distributions of Both Primary Particle and Aggregate Size on Soot Temperature in Low-Fluence LII. Appl. Phys. B, 83:383–395.
  • Lobo, P., Hagen, D. E., Whitefield, P. D., and Raper, D. (2015). PM Emissions Measurements of in-Service Commercial Aircraft Engines during the Delta-Atlanta Hartsfield Study. Atmos. Environ., 104:237–245.
  • Lobo, P., Whitefield, P. D., Hagen, D. E., Trueblood, M. B., Mundis, N. L., Magdits, I. P., Herndon, S. C., Onasch, T. B., Jayne, J. T., Miake-lye, R. C., Eberhard, W. L., and Wayson, R. (2008). Delta - Atlanta Hartsfield (UNA-UNA) Study. Partnership for AiR Transportation Noise and Emissions Reduction (PARTNER), Cambridge, MA. http://web.mit.edu/aeroastro/partner/reports/proj9/proj9-deltaatlantaharts-rpt.pdf.
  • McCoy, B., and Cha, C. (1974). Transport Phenomena in the Rarefied Gas Transition Regime. Chem. Eng. Sci., 29:381–388.
  • McMurry, P. H., Wang, X., Park, K., and Ehara, K. (2002). The Relationship between Mass and Mobility for Atmospheric Particles: A New Technique for Measuring Particle Density. Aerosol Sci. Technol., 36:227–238.
  • Olfert, J., and Collings, N. (2005). New Method for Particle Mass Classification—The Couette Centrifugal Particle Mass Analyzer. J. Aerosol Sci., 36:1338–1352.
  • Onasch, T., Trimborn, A., Fortner, E., Jayne, J., Kok, G., Williams, L., Davidovits, P., and Worsnop, D. (2012). Soot Particle Aerosol Mass Spectrometer: Development, Validation, and Initial Application. Aerosol Sci. Technol., 46:804–817.
  • Park, K., Kittelson, D. B., Zachariah, M. R., and McMurry, P. H. (2004). Measurement of Inherent Material Density of Nanoparticle Agglomerates. J. Nanopart. Res., 6:267–272.
  • Petzold, A., Marsh, R., Johnson, M., Miller, M., Sevcenco, Y., Delhaye, D., Ibrahim, A., Williams, P., Bauer, H., Crayford, A., Bachalo, W. D., and Raper, D. (2011). Evaluation of Methods for Measuring Particulate Matter Emissions from Gas Turbines. Environ. Sci. Technol., 45:3562–3568.
  • Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X.-Y. (2013). Recommendations for Reporting “Black Carbon” Measurements. Atmos. Chem. Phys., 13:8365–8379.
  • Popovitcheva, O., Persiantseva, N., Trukhin, M., Rulev, G., Shonija, N., Buriko, Y. Y., Starik, A., Demirdjian, B., Ferry, D., and Suzanne, J. (2000). Experimental Characterization of Aircraft Combustor Soot: Microstructure, Surface Area, Porosity and Water Adsorption. Phys. Chem. Chem. Phys., 2:4421–4426.
  • Radney, J. G., You, R., Ma, X., Conny, J. M., Zachariah, M. R., Hodges, J. T., and Zangmeister, C. D. (2014). Dependence of Soot Optical Properties on Particle Morphology: Measurements and Model Comparisons. Environ. Sci. Technol., 48:3169–3176.
  • Reavell, K., Hands, T., and Collings, N. (2002). A Fast Response Particulate Spectrometer for Combustion Aerosols. SAE Technical Paper. SAE International, Warrendale, PA.
  • SAE Aerosopace. (2009). Aircraft Exhaust Nonvolatile Particle Matter Measurement Method Development. SAE International, Warrendale, PA. http://www.sae.org.
  • Schulz, C., Kock, B. F., Hofmann, M., Michelsen, H., Will, S., Bougie, B., Suntz, R., and Smallwood, G. (2006). Laser-Induced Incandescence: Recent Trends and Current Questions. Appl. Phys. B, 83:333–354.
  • Schumann, U., Arnold, F., Busen, R., Curtius, J., Karcher, B., Kiendler, A., Petzold, A., Schlager, H., Schröder, F., and Wohlfrom, H. (2002). Influence of Fuel Sulfur on the Composition of Aircraft Exhaust Plumes: The Experiments SULFUR 1–7. Geophys. Res. Lett., 40:2867–2872.
  • Schumann, U., Jeßberger, P., and Voigt, C. (2013). Contrail Ice Particles in Aircraft Wakes and Their Climatic Importance. Geophys. Res. Lett., 40:2867–2872.
  • Snelling, D. R., Smallwood, G. J., Liu, F., Gülder, Ö. L., and Bachalo, W. D. (2005). A Calibration-Independent Laser-Induced Incandescence Technique for Soot Measurement by Detecting Absolute Light Intensity. Appl. opt., 44:6773–6785.
  • Snelling, D. R., Smallwood, G. J., Sawchuk, R. A., Neill, W. S., Gareau, D., Clavel, D. J., Chippior, W. L., Liu, F., Gülder, Ö. L., and Bachalo, W. D., (2002). In-Situ Real-Time Characterization of Particulate Emissions from a Diesel Engine Exhaust by Laser-Induced Incandescence. SAE Technical Paper. SAE International, Warrendale, PA.
  • Stettler, M. E. J., Boies, A. M., Petzold, A., and Barrett, S. R. H. (2013). Global Civil Aviation Black Carbon Emissions. Environ. Sci. Technol., 47:10397–10404.
  • Stickles, R., and Barrett, J. (2013). TAPS II Combustor Final Report. CLEEN Program. General Electric, Washington, DC.
  • Swanson, J., and Kittelson, D. (2010). Evaluation of Thermal Denuder and Catalytic Stripper Methods for Solid Particle Measurements. J. Aerosol Sci., 41:1113–1122.
  • Timko, M. T., Onasch, T. B., Northway, M. J., Jayne, J. T., Canagaratna, M. R., Herndon, S. C., Wood, E. C., Miake-Lye, R. C., and Knighton, W. B. (2010). Gas Turbine Engine Emissions—Part II: Chemical Properties of Particulate Matter. J. Eng. Gas Turbines Power., 132:061505–061515.
  • Vander Wal, R. L., Bryg, V. M., and Huang, C.-H. (2014). Aircraft Engine Particulate Matter: Macro- Micro- and Nanostructure by HRTEM and Chemistry by XPS. Combust. Flame, 162:602–611.
  • Vander Wal, R. L., Ticich, T. M., and West, J. R. (1999). Laser-Induced Incandescence Applied to Metal Nanostructures. Appl. Opt., 38:5867–5879.
  • Wang, S. C., and Flagan, R. C. (1990). Scanning Electrical Mobility Spectrometer. Aerosol Sci. Technol., 13:230–240.
  • Wen, Z., Yun, S., Thomson, M., and Lightstone, M. (2003). Modeling Soot Formation in Turbulent Kerosene/Air Jet Diffusion Flames. Combust. Flame, 135:323–340.
  • Westerdhal, D., Fruin, S., Fine, P., and Sioutas, C. (2008). The Los Angeles International Airport as a Source of Ultrafine Particles and Other Pollutants to Nearby Communities. Atmos. Environ., 42:3143–3155.
  • Wey, C., Anderson, B., Hudgins, C., Wey, C., Li-Jones, X., Winstead, E., Thornhill, L. K., Lobo, P., Hagen, D., and Whitefield, P. (2006). Aircraft Particle Emissions Experiment (APEX). ARL-TR-3903. NASA Center for Aerospace Information, Hanover, MD.
  • Yon, J., Liu, F., Bescond, A., Caumont-Prim, C., Rozé, C., Ouf, F.-X., and Coppalle, A. (2014). Effects of Multiple Scattering on Radiative Properties of Soot Fractal Aggregates. J. Quant. Spectrosc. Radiat. Transf., 133:374–381.
  • Zhang, R., Khalizov, A. F., Pagels, J., Zhang, D., Xue, H., and McMurry, P. H. (2008). Variability in Morphology, Hygroscopicity, and Optical Properties of Soot Aerosols during Atmospheric Processing. Proc. Natl. Acad. Sci., 105:10291–10296.
  • Zhu, Y., Fanning, E., Yu, R. C., Zhang, Q., and Froines, J. R. (2011). Aircraft Emissions and Local Air Quality Impacts from Takeoff Activities at a Large International Airport. Atmos. Environ., 45:6526–6533.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.