1,497
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Design and validation of an air-liquid interface (ALI) exposure device based on thermophoresis

, , , , , , , , , , & show all
Pages 133-145 | Received 20 Jul 2018, Accepted 06 Nov 2018, Published online: 21 Dec 2018

References

  • Aufderheide, M., S. Scheffler, N. Möhle, B. Halter, and D. Hochrainer. 2011. Analytical in vitro approach for studying cyto- and genotoxic effects of particulate airborne material. Anal. Bioanal. Chem. 401 (10):3213–20. doi: 10.1007/s00216-011-5163-4.
  • Beresnev, S., and V. Chernyak. 1995. Thermophoresis of a spherical particle in a rarefied gas: Numerical analysis based on the model kinetic equations. Phys. Fluids 7 (7):1743–56. doi: 10.1063/1.868489.
  • Birch, M. E. 1999. Elemental carbon (diesel particulate): Method 5040, issue 3 (interim). NIOSH Manual of Analytical Methods, DHHS (NIOSH) Publ. 94 113:1–9.
  • Broßell, D., S. Tröller, N. Dziurowitz, S. Plitzko, G. Linsel, C. Asbach, N. Azong-Wara, H. Fissan, and A. Schmidt-Ott. 2013. A thermal precipitator for the deposition of airborne nanoparticles onto living cells—Rationale and development. J. Aerosol. Sci. 63:75–86. doi: 10.1016/j.jaerosci.2013.04.012.
  • Brugière, E., F. Gensdarmes, F. X. Ouf, J. Yon, and A. Coppalle. 2014. Increase in thermophoretic velocity of carbon aggregates as a function of particle size. J. Aerosol. Sci. 76:87–97. doi: 10.1016/j.jaerosci.2014.06.007.
  • Chen, Y., A. Ebenstein, M. Greenstone, and H. Li. 2013. Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai river policy. Proc. Natl. Acad. Sci. USA 110 (32):12936–41. doi: 10.1073/pnas.1300018110.
  • Comouth, A., H. Saathoff, K.-H. Naumann, S. Muelhopt, H.-R. Paur, and T. Leisner. 2013. Modelling and measurement of particle deposition for cell exposure at the air–liquid interface. J. Aerosol. Sci. 63:103–114. doi: 10.1016/j.jaerosci.2013.04.009.
  • de Bruijne, K., S. Ebersviller, K. G. Sexton, S. Lake, D. Leith, R. Goodman, J. Jetters, G. W. Walters, M. Doyle-Eisele, R. Woodside, et al. 2009. Design and testing of electrostatic aerosol in vitro exposure system (EAVES): An alternative exposure system for particles. Inhal. Toxicol. 21 (2):91–101. Taylor & Francis: doi: 10.1080/08958370802166035.
  • Grabinski, C. M., S. M. Hussain, and R. Mohan Sankaran. 2015. Simulations of submicron aerosol deposition at an air–liquid interface for in vitro toxicology. J. Aerosol. Sci. 90:87–102. doi: 10.1016/j.jaerosci.2015.08.005.
  • Gwinn, M. R., and V. Vallyathan. 2006. Nanoparticles: Health effects—pros and cons. Environ. Health Perspect. 114 (12):1818. doi: 10.1289/ehp.8871.
  • Hsiao, T.-C., H.-C. Chuang, C.-W. Chen, T.-J. Cheng, and Y.-C. Chang Chien. 2017. Development and collection efficiency of an electrostatic precipitator for in-vitro toxicity studies of nano- and submicron-sized aerosols. J. Taiwan Inst. Chem. Eng. 72:1–9. doi: 10.1016/j.jtice.2017.01.003.
  • Jalava, P. I., M. Tapanainen, K. Kuuspalo, A. Markkanen, P. Hakulinen, M. S. Happo, A. S. Pennanen, M. Ihalainen, P. Yli-Pirilä, U. Makkonen, et al. 2010. Toxicological effects of emission particles from fossil- and biodiesel-fueled diesel engine with and without DOC/POC catalytic converter. Inhalation Toxicology 22 (sup2):48–58. doi: 10.3109/08958378.2010.519009.
  • Jeannet, N., M. Fierz, M. Kalberer, H. Burtscher, and M. Geiser. 2015. Nano aerosol chamber for in-vitro toxicity (NACIVT) studies. Nanotoxicology 9 (1):34–42. doi: 10.3109/17435390.2014.886739.
  • Jeannet, N., M. Fierz, S. Schneider, L. Künzi, N. Baumlin, M. Salathe, H. Burtscher, and M. Geiser. 2016 Acute toxicity of silver and carbon nanoaerosols to normal and cystic fibrosis human bronchial epithelial cells. Nanotoxicology 10 (3):279–291. doi: 10.3109/17435390.2015.1049233.
  • Kreyling, W. G., S. Hirn, and C. Schleh. 2010. Nanoparticles in the lung. Nat. Biotechnol. 28 (12):1275–76. doi:10.1038/nbt.1735.
  • Lacroix, G., W. Koch, D. Ritter, A. C. Gutleb, S. T. Larsen, T. Loret, F. Zanetti, S. Constant, S. Chortarea, B. Rothen-Rutishauser, et al. 2018. Air–liquid interface in vitro models for respiratory toxicology research: Consensus workshop and recommendations. Applied in vitro toxicology. 4 (2):91–106.
  • Lenz, A. G., E. Karg, B. Lentner, V. Dittrich, C. Brandenberger, B. Rothen-Rutishauser, H. Schulz, G. A. Ferron, and O. Schmid. 2009. A dose-controlled system for air-liquid interface cell exposure and application to zinc oxide nanoparticles. Part. Fibre Toxicol. 6 (1):32. doi: 10.1186/1743-8977-6-32.
  • Leskinen, J., M. Ihalainen, T. Torvela, M. Kortelainen, H. Lamberg, P. Tiitta, G. Jakobi, J. Grigonyte, J. Joutsensaari, O. Sippula, et al. 2014. Effective density and morphology of particles emitted from small-scale combustion of various wood fuels. Environ. Sci. Technol. 48 (22):13298–306. ACS Publications: doi: 10.1021/es502214a.
  • Massey, E., M. Aufderheide, W. Koch, H. Lodding, G. Pohlmann, H. Windt, P. Jarck, and J. W. Knebe. 1998. Micronucleus induction in V79 cells after direct exposure to whole cigarette smoke. Mutagenesis 13 (2):145–49. doi: 10.1093/mutage/13.2.145.
  • Maynard, A. D., and E. D. Kuempel. 2005. Airborne nanostructured particles and occupational health. J. Nanopart. Res. 7 (6):587–614. doi: 10.1007/s11051-005-6770-9.
  • Mertes, P., A. P. Praplan, L. Künzi, J. Dommen, U. Baltensperger, M. Geiser, E. Weingartner, J. Ricka, M. Fierz, and M. Kalberer. 2013. A compact and portable deposition chamber to study nanoparticles in air-exposed tissue. J. Aerosol. Med. Pulm. Drug Deliv. 26 (4):228–35. doi: 10.1089/jamp.2012.0985.
  • Messerer, A., R. Niessner, and U. Pöschl. 2003. Thermophoretic deposition of soot aerosol particles under experimental conditions relevant for modern diesel engine exhaust gas systems. J. Aerosol. Sci. 34 (8):1009–21. doi: 10.1016/S0021-8502(03)00081-8.
  • Mülhopt, S., M. Dilger, S. Diabaté, C. Schlager, T. Krebs, R. Zimmermann, J. Buters, S. Oeder, T. Wäscher, C. Weiss, et al. 2016. Toxicity testing of combustion aerosols at the air–liquid interface with a self-contained and easy-to-use exposure system. J. Aerosol. Sci. 96:38–55. doi: 10.1016/j.jaerosci.2016.02.005.
  • Oberdörster, G., E. Oberdörster, and J. Oberdörster. 2005. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113 (7):823. doi: 10.1289/ehp.7339.
  • Oberdörster, G., V. Stone, and K. Donaldson. 2007. Toxicology of nanoparticles: A historical perspective. Nanotoxicology 1 (1):2–25. doi: 10.1080/17435390701314761.
  • Paur, H.-R., F. R. Cassee, J. Teeguarden, H. Fissan, S. Diabate, M. Aufderheide, W. G. Kreyling, O. Hänninen, G. Kasper, M. Riediker, et al. 2011. In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung—A dialog between aerosol science and biology. J. Aerosol. Sci. 42 (10):668–92. doi: 10.1016/j.jaerosci.2011.06.005.
  • Prodi, F., G. Santachiara, L. Di Matteo, A. Vedernikov, S. A. Beresnev, and V. G. Chernyak. 2007. Measurements of thermophoretic velocities of aerosol particles in microgravity conditions in different carrier gases. J. Aerosol. Sci. 38 (6):645–55. doi: 10.1016/j.jaerosci.2007.04.002.
  • Rosner, D. E., and Y. F. Khalil. 2000. Morphology-and Knudsen transition-effects on thermophoretically dominated total mass deposition rates from “coagulation-aged” aerosol population. J. Aerosol. Sci. 31 (3):273–92. doi: 10.1016/S0021-8502(99)00054-3.
  • Rosner, D. E., and P. Tandon. 2017. Knudsen transition effects on the thermophoretic properties of fractal-like aggregates: Implications for thermophoretic sampling of high-pressure flames. Aerosol. Sci. Technol. 51 (11):1262–74. Taylor & Francis: doi: 10.1080/02786826.2017.1353061.
  • Saffari, H., A. Malugin, H. Ghandehari, and L. F. Pease. 2012. Electrostatic deposition of nanoparticles into live cell culture using an electrospray differential mobility analyzer (ES-DMA). J. Aerosol. Sci. 48:56–62. doi: 10.1016/j.jaerosci.2012.01.004.
  • Sagot, B., G. Antonini, and F. Buron. 2009. Annular flow configuration with high deposition efficiency for the experimental determination of thermophoretic diffusion coefficients. J. Aerosol. Sci. 40 (12):1030–49. doi: 10.1016/j.jaerosci.2009.09.009.
  • Savi, M., M. Kalberer, D. Lang, M. Ryser, M. Fierz, A. Gaschen, J. Ricka, and M. Geiser. 2008. A novel exposure system for the efficient and controlled deposition of aerosol particles onto cell cultures. Environ. Sci. Technol. 42 (15):5667–74. doi: 10.1021/es703075q.
  • Schaeublin, N. M., L. K. Braydich-Stolle, A. M. Schrand, J. M. Miller, J. Hutchison, J. J. Schlager, and S. M. Hussain. 2011. Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale 3 (2):410–20. doi: 10.1039/c0nr00478b.
  • Schrade, A., V. Mailänder, S. Ritz, K. Landfester, and U. Ziener. 2012. Surface roughness and charge influence the uptake of nanoparticles: Fluorescently labeled pickering-type versus surfactant-stabilized nanoparticles. Macromol. Biosci. 12 (11):1459–71. doi: 10.1002/mabi.201200166.
  • Stevens, J. P., J. Zahardis, M. MacPherson, B. T. Mossman, and G. A. Petrucci. 2008. A new method for quantifiable and controlled dosage of particulate matter for in vitro studies: The electrostatic particulate dosage and exposure system (EPDExS). Toxicol. Vitro 22 (7):1768–74. doi: 10.1016/j.tiv.2008.05.013.
  • Talbot, L., R. K. Cheng, R. W. Schefer, and D. R. Willis. 1980. Thermophoresis of particles in a heated boundary layer. J. Fluid Mech. 101 (04):737–58. doi: 10.1017/S0022112080001905.
  • Teeguarden, J. G., P. M. Hinderliter, G. Orr, B. D. Thrall, and J. G. Pounds. 2007. Particokinetics in vitro: Dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol. Sci. 95 (2):300–12. Oxford University Press. doi: 10.1093/toxsci/kfl165.
  • Tippe, A., U. Heinzmann, and C. Roth. 2002. Deposition of fine and ultrafine aerosol particles during exposure at the air/cell interface. J. Aerosol. Sci. 33 (2):207–18. doi: 10.1016/S0021-8502(01)00158-6.
  • Volckens, J., L. Dailey, G. Walters, and R. B. Devlin. 2009. Direct particle-to-cell deposition of coarse ambient particulate matter increases the production of inflammatory mediators from cultured human airway epithelial cells. Environ. Sci. Technol. 43 (12):4595–99. doi: 10.1021/es900698a.
  • Waldmann, L., and K. H. Schmitt. 1966. Thermophoresis and diffusiophoresis of aerosols. In Aerosol science, 137–62. New York, NY: Academic Press.
  • Watkiss, P., S. Pye, and M. Holland. 2005. CAFE CBA: Baseline analysis 2000 to 2020. Report AEAT/ED51014/Baseline Issue 5, AEA Technology Environment, Oxon, UK.
  • Yamamoto, K., and Y. Ishihara. 1988. Thermophoresis of a spherical particle in a rarefied gas of a transition regime. Phys. Fluids 31 (12):3618–24. doi: 10.1063/1.866878.
  • Young, J. B. 2011. Thermophoresis of a spherical particle: Reassessment, clarification, and new analysis. Aerosol. Sci. Technol. 45 (8):927–48. doi: 10.1080/02786826.2011.569777.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.