1,122
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Condensational particle growth device for reliable cell exposure at the air–liquid interface to nanoparticles

ORCID Icon, , , , , , , , , & ORCID Icon show all
Pages 1415-1428 | Received 18 Jun 2019, Accepted 17 Aug 2019, Published online: 16 Sep 2019

References

  • Biswas, P., and C. Wu. 2005. Nanoparticles and the environment nanoparticles and the environment. J. Air Waste Manag. Assoc. 55 (6):708–746.
  • Bitterle, E., E. Karg, A. Schroeppel, W. G. Kreyling, A. Tippe, G. A. Ferron, O. Schmid, J. Heyder, K. L. Maier, and T. Hofer. 2006. Dose-controlled exposure of A549 epithelial cells at the air – Liquid interface to airborne ultrafine carbonaceous particles. Chemosphere. 65 (10):1784–1790. doi: 10.1016/j.chemosphere.2006.04.035.
  • Blank, F., B. M. Rothen-Rutishauser, S. Schurch, and P. Gehr. 2006. An optimized in vitro model of the respiratory tract wall to study particle cell interactions. J. Aerosol Med. 19 (3):392–405. doi: 10.1089/jam.2006.19.392.
  • Broßell, D., S. Tröller, N. Dziurowitz, S. Plitzko, G. Linsel, C. Asbach, N. Azong-Wara, H. Fissan, and A. Schmidt-Ott. 2013. A thermal precipitator for the deposition of airborne nanoparticles onto living cells – Rationale and development. J. Aerosol Sci. 63:75–86. doi: 10.1016/j.jaerosci.2013.04.012.
  • Buzea, C., I. I. Pacheco, K. Robbie, and C. Buzea. 2007. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2 (4):MR17–MR71.
  • Cooney, D. J., and A. J. Hickey. 2011. Cellular response to the deposition of diesel exhaust particle aerosols onto human lung cells grown at the air-liquid interface by inertial impaction. Toxicol. In Vitr. 25 (8):1953–1965. doi: 10.1016/j.tiv.2011.06.019.
  • de Bruijne, K., S. Ebersviller, K. G. Sexton, S. Lake, D. Leith, R. Goodman, J. Jetters, G. W. Walters, M. Doyle-Eisele, R. Woodside, H. E. Jeffries, and I. Jaspers. 2009. Design and testing of electrostatic aerosol in vitro exposure system (EAVES): An alternative exposure system for particles. Inhal. Toxicol. 21 (2):91–101. doi: 10.1080/08958370802166035.
  • Diabaté, S., S. Mülhopt, H.-R. Paur, and H. F. Krug. 2008. The response of a co-culture lung model to fine and ultrafine particles of incinerator fly ash at the air–liquid interface. Altern. Lab. Anim. 36 (3):285–298. doi: 10.1177/026119290803600306.
  • Donaldson, K., L. Tran, L. A. Jimenez, R. Duffin, D. E. Newby, N. Mills, W. MacNee, and V. Stone. 2005. Combustion-derived nanoparticles: A review of their toxicology following inhalation exposure. Part Fibre Toxicol. 2:1–14.
  • Dorf, R. C. (Ed.) 2005. The engineering handbook. 2nd ed. Boca Raton, FL: CRC Press.
  • Fröhlich, E., G. Bonstingl, A. Höfler, C. Meindl, G. Leitinger, T. Pieber, and E. Roblegg. 2013. Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols. Toxicol. In Vitr. 27 (1):409–417. doi: 10.1016/j.tiv.2012.08.008.
  • Gentile, F., and P. Decuzzi. 2010. Time dependent dispersion of nanoparticles in blood vessels. JBiSE. 03 (05):517–524. doi: 10.4236/jbise.2010.35072.
  • Gray, T. E., K. Guzman, C. W. Davis, L. H. Abdullah, and P. Nettesheim. 1996. Mucociliary differentiation of serially passaged normal human tracheobronchial epithelial cells. Am. J. Respir. Cell. Mol. Biol. 14 (1):104–112. doi: 10.1165/ajrcmb.14.1.8534481.
  • Hering, S. V., and M. R. Stolzenburg. 2005. A method for particle size amplification by water condensation in a laminar, thermally diffusive flow. Aerosol Sci. Technol. 39(5):428–436. doi: 10.1080/027868290953416.
  • Hinds, W. C. 1999. Aerosol technology: Properties, behavior, and measurement of airborne particles. 2nd ed. New York: John Wiley & Sons Inc.
  • Huh, D., B. D. Matthews, A. Mammoto, M. Montoya-Zavala, Y. H. Hsin, and D. E. Ingber. 2010. Reconstituting organ-level lung functions on a chip. Science. 328 (5986):1662–1668. doi: 10.1126/science.1188302.
  • Jeannet, N., M. Fierz, M. Kalberer, H. Burtscher, and M. Geiser. 2015. Nano aerosol chamber for in-vitro toxicity (NACIVT) studies. Nanotoxicology. 9 (1):34–42. doi: 10.3109/17435390.2014.886739.
  • Kennedy, I. M. 2007. The health effects of combustion-generated aerosols. Proc. Combust. Inst. 31 (2):2757–2770. doi: 10.1016/j.proci.2006.08.116.
  • Kim, J. S., T. M. Peters, P. T. O’Shaughnessy, A. Adamcakova-Dodd, and P. S. Thorne. 2013. Validation of an in vitro exposure system for toxicity assessment of air-delivered nanomaterials. Toxicol. In Vitr. 27 (1):164–173. doi: 10.1016/j.tiv.2012.08.030.
  • Lednicky, J., M. Pan, J. Loeb, H. Hsieh, A. Eiguren, S. Hering, Z. H. Fan, and C. Wu. 2016. Highly efficient collection of infectious pandemic influenza H1N1 virus (2009) through laminar-flow water based condensation. Aerosol Sci. Technol. 50 (7):i–4. doi: 10.1080/02786826.2016.1179254.
  • Lenz, A. G., E. Karg, E. Brendel, H. Hinze-Heyn, K. L. Maier, O. Eickelberg, T. Stoeger, and O. Schmid. 2013. Inflammatory and oxidative stress responses of an alveolar epithelial cell line to airborne zinc oxide nanoparticles at the air-liquid interface: A comparison with conventional, submerged cell-culture conditions. Biomed. Res. Int. 2013:1. doi: 10.1155/2013/652632.
  • Lenz, A., E. Karg, B. Lentner, V. Dittrich, C. Brandenberger, B. Rothen-Rutishauser, H. Schulz, G. A. Ferron, and O. Schmid. 2009. A dose-controlled system for air-liquid interface cell exposure and application to zinc oxide nanoparticles. Part Fibre Toxicol. 6 (1):32. doi: 10.1186/1743-8977-6-32.
  • Li, J. J., S. Muralikrishnan, C. Ng, L. L. Yung, and B. Bay. 2010. Nanoparticle-induced pulmonary toxicity. Exp. Biol. Med. (Maywood). 235 (9):1025–1033.
  • Lichtveld, K. M., S. M. Ebersviller, K. G. Sexton, W. Vizuete, I. Jaspers, and H. E. Jeffries. 2012. In vitro exposures in diesel exhaust atmospheres: Resuspension of PM from filters versus direct deposition of PM from air. Environ. Sci. Technol. 46 (16):9062–9070.
  • Longest, P. W., and J. Xi. 2008. Condensational growth may contribute to the enhanced deposition of cigarette smoke particles in the upper respiratory tract. Aerosol Sci. Technol. 42 (8):579–602. doi: 10.1080/02786820802232964.
  • McMurry, P. H. 2000. The history of condensation nucleus counters. Aerosol Sci. Technol. 33 (4):297–322. doi: 10.1080/02786820050121512.
  • Oberdörster, G. 2001. Pulmonary effects of inhaled ultrafine particles. Int. Arch. Occup. Environ. Health 74 (1):1–8.
  • Pan, M., A. Eiguren-Fernandez, H. Hsieh, N. Afshar-Mohajer, S. V. Hering, J. Lednicky, Z. Hugh Fan, and C.-Y. Wu. 2016. Efficient collection of viable virus aerosol through laminar-flow, water-based condensational particle growth. J. Appl. Microbiol. 120(3):805–815. doi: 10.1111/jam.13051.
  • Paur, H., F. R. Cassee, J. Teeguarden, H. Fissan, S. Diabate, M. Aufderheide, W. G. Kreyling, H. Otto, G. Kasper, M. Riediker, B. Rothen-Rutishauser, and O. Schmid. 2011. In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung — A dialog between aerosol science and biology. J. Aerosol Sci. 42 (10):668–692. doi: 10.1016/j.jaerosci.2011.06.005.
  • Peters, A. 2005. Particulate matter and heart disease: Evidence from epidemiological studies. Toxicol. Appl. Pharmacol. 207 (2):477–S482. doi: 10.1016/j.taap.2005.04.030.
  • Pezzulo, A. A., T. D. Starner, T. E. Scheetz, G. L. Traver, A. E. Tilley, B.-G. Harvey, R. G. Crystal, P. B. McCray, and J. Zabner. 2011. The air-liquid interface and use of primary cell cultures are important to recapitulate the transcriptional profile of in vivo airway epithelia. AJP Lung Cell. Mol. Physiol. 300 (1):L25–L31. doi: 10.1152/ajplung.00256.2010.
  • Rach, J., J. Budde, N. Mohle, and M. Aufderheide. 2014. Direct exposure at the air-liquid interface: Evaluation of an in vitro approach for simulating inhalation of airborne substances. J. Appl. Toxicol. 34 (5):506–515. doi: 10.1002/jat.2899.
  • Savi, M., M. Kalberer, D. Lang, M. Ryser, M. Fierz, A. Gaschen, J. RičKa, and M. Geiser. 2008. A novel exposure system for the efficient and controlled deposition of aerosol particles onto cell cultures. Environ. Sci. Technol. 42 (15):5667–5674. doi: 10.1021/es703075q.
  • Schwarze, P. E., J. Ovrevik, M. Låg, M. Refsnes, P. Nafstad, R. B. Hetland, and E. Dybing. 2006. Particulate matter properties and health effects: Consistency of epidemiological and toxicological studies. Hum. Exp. Toxicol. 25 (10):559–579. doi: 10.1177/096032706072520.
  • Stöber, W., and H. Flachsbart. 1973. An evaluation of nebulized ammonium fluorescein as a laboratory aerosol. Atmos. Environ. 7 (7):737–748. doi: 10.1016/0004-6981(73)90154-6.
  • Stone, V., M. R. Miller, M. J. Clift, A. Elder, N. L. Mills, P. Møller, R. P. Schins, U. Vogel, W. G. Kreyling, K. Alstrup Jensen, T. A. Kuhlbusch, P. E. Schwarze, P. Hoet, A. Pietroiusti, A. De Vizcaya-Ruiz, A. Baeza-Squiban, C. Lang Tran, and F. R. Cassee. 2017. Nanomaterials vs ambient ultrafine particles: An opportunity to exchange toxicology knowledge. Environ. Heal. Perspect. 125 (10):1–17.
  • Teeguarden, J. G., B. J. Webb-Robertson, K. M. Waters, A. R. Murray, E. R. Kisin, S. M. Varnum, J. M. Jacobs, J. G. Pounds, R. C. Zanger, and A. A. Shvedova. 2011. Comparative proteomics and pulmonary toxicity of instilled single-walled carbon nanotubes, crocidolite asbestos, and ultrafine carbon black in mice. Toxicol. Sci. 120 (1):123–135. doi: 10.1093/toxsci/kfq363.
  • Theodore, L., and V. De Paola. 1980. Predicting cyclone efficiency. J. Air Pollut. Control Assoc. 30 (10):1132–1133. doi: 10.1080/00022470.1980.10465160.
  • Tu, K. W., and E. O. Knutson. 1984. Total deposition of ultrafine hydrophobic and hygroscopic aerosols in the human respiratory system. Aerosol Sci. Technol. 3 (4):453–465. doi: 10.1080/02786828408959032.
  • Volckens, J., L. Dailey, G. Walters, and R. Devlin. 2009. Particle-to-cell deposition of coarse ambient particulate matter increases the production if inflammatory mediators from cultured human airway epithelial cells. Environ. Sci. Technol. 43 (12):4595–4599. doi: 10.1021/es900698a.
  • Wu, C., and P. Biswas. 1998. Particle growth by condensation in a system with limited vapor. Aerosol Sci. Technol. 28 (1):1–20. doi: 10.1080/02786829808965508.
  • Zavala, J., R. Greenan, Q. T. Krantz, D. M. DeMarini, M. Higuchi, M. I. Gilmour, and P. A. White. 2017. Regulating temperature and relative humidity in air–liquid interface in vitro systems eliminates cytotoxicity resulting from control air exposures. Toxicol. Res. 6 (4):448. doi: 10.1039/C7TX00109F.
  • Zavala, J., K. Lichtveld, S. Ebersviller, J. L. Carson, G. W. Walters, I. Jaspers, H. E. Jeffries, K. G. Sexton, and W. Vizuete. 2014. The Gillings sampler – An electrostatic air sampler as an alternative method for aerosol in vitro exposure studies. Chem. Biol. Interact. 220:158–168.
  • Zavala, J., B. O’Brien, K. Lichtveld, K. G. Sexton, I. Rusyn, I. Jaspers, and W. Vizuete. 2016. Assessment of biological responses of EpiAirway 3-D cell constructs versus A549 cells for determining toxicity of ambient air pollution. Inhal. Toxicol. 28 (6):251–259. doi: 10.3109/08958378.2016.1157227.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.