353
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Exploring the influence of particle phase in the ozonolysis of oleic and elaidic acid

, ORCID Icon, &
Pages 356-373 | Received 21 Feb 2023, Accepted 09 Jun 2023, Published online: 28 Jun 2023

References

  • Arata, C., N. Heine, N. Wang, P. K. Misztal, P. Wargocki, G. Bekö, J. Williams, W. W. Nazaroff, K. R. Wilson, and A. H. Goldstein. 2019. Heterogeneous ozonolysis of squalene: Gas-phase products depend on water vapor concentration. Environ. Sci. Technol. 53 (24):14441–8. doi:10.1021/acs.est.9b05957.
  • Banerjee, S., and S. Mazumdar. 2012. electrospray ionization mass spectrometry: A technique to access the information beyond the molecular weight of the analyte. Int. J. Anal. Chem. 2012:282574. doi:10.1155/2012/282574.
  • Berkemeier, T., M. Krüger, A. Feinberg, M. Müller, U. Pöschl, and U. K. Krieger. 2023. Accelerating models for multiphase chemical kinetics through machine learning with polynomial chaos expansion and neural networks. Geosci. Model Dev. 16 (7):2037–54. doi:10.5194/gmd-16-2037-2023.
  • Berkemeier, T., A. Mishra, C. Mattei, A. J. Huisman, U. K. Krieger, and U. Pöschl. 2021. Ozonolysis of oleic acid aerosol revisited: multiphase chemical kinetics and reaction mechanisms. ACS Earth Space Chem. 5 (12):3313–23. doi:10.1021/acsearthspacechem.1c00232.
  • Berkemeier, T., S. S. Steimer, U. K. Krieger, T. Peter, U. Pöschl, M. Ammann, and M. Shiraiwa. 2016. Ozone uptake on glassy, semi-solid and liquid organic matter and the role of reactive oxygen intermediates in atmospheric aerosol chemistry. Phys. Chem. Chem. Phys. 18 (18):12662–74. doi:10.1039/C6CP00634E.
  • Calvo, A. I., C. Alves, A. Castro, V. Pont, A. M. Vicente, and R. Fraile. 2013. Research on aerosol sources and chemical composition: Past, current and emerging issues. Atmos. Res. 120–121 (February):1–28. doi:10.1016/j.atmosres.2012.09.021.
  • Carson, P. G., M. V. Johnston, and A. S. Wexler. 1997. Real-time monitoring of the surface and total composition of aerosol particles. Aerosol Sci. Technol. 26 (4):291–300. doi:10.1080/02786829708965431.
  • Chapleski, R. C., Y. Zhang, D. Troya, and J. R. Morris. 2016. Heterogeneous chemistry and reaction dynamics of the atmospheric oxidants, O 3, NO 3, and OH, on organic surfaces. Chem. Soc. Rev. 45 (13):3731–46. doi:10.1039/C5CS00375J.
  • Davies, J. F. 2019. Mass, charge, and radius of droplets in a linear quadrupole electrodynamic balance. Aerosol Sci. Technol. 53 (3):309–20. doi:10.1080/02786826.2018.1559921.
  • Davies, J. F., and K. R. Wilson. 2015. Nanoscale interfacial gradients formed by the reactive uptake of OH radicals onto viscous aerosol surfaces. Chem. Sci. 6 (12):7020–7. doi:10.1039/c5sc02326b.
  • D. Hearn, J., and G. D. Smith. 2005. Measuring rates of reaction in supercooled organic particles with implications for atmospheric aerosol. Phys. Chem. Chem. Phys. 7 (13):2549–51. doi:10.1039/B506424D.
  • Easterling, D. R., G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl, and L. O. Mearns. 2000. Climate extremes: Observations, modeling, and impacts. Science 289 (5487):2068–74. doi:10.1126/science.289.5487.2068.
  • Freedman, M. A. 2020. Liquid–liquid phase separation in supermicrometer and submicrometer aerosol particles. Acc. Chem. Res. 53 (6):1102–10. doi:10.1021/acs.accounts.0c00093.
  • Gallimore, P. J., P. T. Griffiths, F. D. Pope, J. P. Reid, and M. Kalberer. 2017. Comprehensive modeling study of ozonolysis of oleic acid aerosol based on real-time, online measurements of aerosol composition. J. Geophys. Res. Atmos. 122 (8):4364–77. doi:10.1002/2016JD026221.
  • George, C., M. Ammann, B. D'Anna, D. J. Donaldson, and S. A. Nizkorodov. 2015. Heterogeneous photochemistry in the atmosphere. Chem. Rev. 115 (10):4218–58. doi:10.1021/cr500648z.
  • George, I. J., and J. P. D. Abbatt. 2010. Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals. Nat. Chem. 2 (9):713–22. doi:10.1038/nchem.806.
  • Hearn, J. D., and G. D. Smith. 2004. Kinetics and product studies for ozonolysis reactions of organic particles using aerosol CIMS. J. Phys. Chem. A. 108 (45):10019–29. doi:10.1021/jp0404145.
  • Houle, F. A., A. A. Wiegel, and K. R. Wilson. 2018. Changes in reactivity as chemistry becomes confined to an interface. The case of free radical oxidation of C30H62 alkane by OH. J. Phys. Chem. Lett. 9 (5):1053–7. doi:10.1021/acs.jpclett.8b00172.
  • Hu, W., D. Liu, S. Su, L. Ren, H. Ren, L. Wei, S. Yue, Q. Xie, Z. Zhang, Z. Wang, et al. 2021. Photochemical degradation of organic matter in the atmosphere. Adv. Sustainable Syst. 5 (11):2100027. doi:10.1002/adsu.202100027.
  • Hung, H.-M., and C.-W. Tang. 2010. Effects of temperature and physical state on heterogeneous oxidation of oleic acid droplets with ozone. J. Phys. Chem. A. 114 (50):13104–12. doi:10.1021/jp105042w.
  • Jacobson, M. C., H.-C. Hansson, K. J. Noone, and R. J. Charlson. 2000. Organic atmospheric aerosols: review and state of the science. Rev. Geophys. 38 (2):267–94. doi:10.1029/1998RG000045.
  • Jayne, J. T., D. C. Leard, X. Zhang, P. Davidovits, K. A. Smith, C. E. Kolb, and D. R. Worsnop. 2000. Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci. Technol. 33 (1–2):49–70. doi:10.1080/027868200410840.
  • Katrib, Y., G. Biskos, P. R. Buseck, P. Davidovits, J. T. Jayne, M. Mochida, M. E. Wise, D. R. Worsnop, and S. T. Martin. 2005. Ozonolysis of mixed oleic-acid/stearic-acid particles: Reaction kinetics and chemical morphology. J. Phys. Chem. A. 109 (48):10910–9. doi:10.1021/jp054714d.
  • Kaur Kohli, R., and J. F. Davies. 2021. Measuring the chemical evolution of levitated particles: A study on the evaporation of multicomponent organic aerosol. Anal. Chem. 93 (36):12472–9. doi:10.1021/acs.analchem.1c02890.
  • Kaur Kohli, R., G. J. Van Berkel, and J. F. Davies. 2022. An open port sampling interface for the chemical characterization of levitated microparticles. Anal. Chem. 94 (8):3441–5. doi:10.1021/acs.analchem.1c05550.
  • King, M. D., K. C. Thompson, and A. D. Ward. 2004. Laser tweezers Raman study of optically trapped aerosol droplets of seawater and oleic acid reacting with ozone: Implications for cloud-droplet properties. J. Am. Chem. Soc. 126 (51):16710–1. doi:10.1021/ja044717o.
  • Knopf, D. A., L. M. Anthony, and A. K. Bertram. 2005. Reactive uptake of O3 by multicomponent and multiphase mixtures containing oleic acid. J. Phys. Chem. A. 109 (25):5579–89. doi:10.1021/jp0512513.
  • Kolb, C. E., and D. R. Worsnop. 2012. Chemistry and composition of atmospheric aerosol particles. Annu. Rev. Phys. Chem. 63 (1):471–91. doi:10.1146/annurev-physchem-032511-143706.
  • Krieger, U. K., C. Marcolli, and J. P. Reid. 2012. Exploring the complexity of aerosol particle properties and processes using single particle techniques. Chem. Soc. Rev. 41 (19):6631–62. doi:10.1039/c2cs35082c.
  • Kroll, J. H., J. D. Smith, D. L. Che, S. H. Kessler, D. R. Worsnop, and K. R. Wilson. 2009. Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol. Phys. Chem. Chem. Phys. 11 (36):8005–14. doi:10.1039/B905289E.
  • Lambe, A. T., C. D. Cappa, P. Massoli, T. B. Onasch, S. D. Forestieri, A. T. Martin, M. J. Cummings, D. R. Croasdale, W. H. Brune, D. R. Worsnop, et al. 2013. Relationship between oxidation level and optical properties of secondary organic aerosol. Environ. Sci. Technol. 47 (12):6349–57. doi:10.1021/es401043j.
  • Lanz, V. A., A. S. H. Prévôt, M. R. Alfarra, S. Weimer, C. Mohr, P. F. DeCarlo, M. F. D. Gianini, C. Hueglin, J. Schneider, O. Favez, et al. 2010. Characterization of aerosol chemical composition with aerosol mass spectrometry in central Europe: An overview. Atmos. Chem. Phys. 10:10453–71.
  • Li, S., X. Jiang, M. Roveretto, C. George, L. Liu, W. Jiang, Q. Zhang, W. Wang, M. Ge, and L. Du. 2019. Photochemical aging of atmospherically reactive organic compounds involving brown carbon at the air–aqueous interface. Atmos. Chem. Phys. 19:9887–902. doi:10.5194/acp-19-9887-2019.
  • Lohmann, U., and J. Feichter. 2005. Global indirect aerosol effects: A review. Atmos. Chem. Phys. 5 (3):715–37. doi:10.5194/acp-5-715-2005.
  • Mauderly, J. L., and J. C. Chow. 2008. Health effects of organic aerosols. Inhal. Toxicol. 20 (3):257–88. doi:10.1080/08958370701866008.
  • McFiggans, G., P. Artaxo, U. Baltensperger, H. Coe, M. C. Facchini, G. Feingold, S. Fuzzi, M. Gysel, A. Laaksonen, U. Lohmann, et al. 2006. The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmos. Chem. Phys. 6:2593–649. doi:10.5194/acp-6-2593-2006.
  • McNeill, V. F. 2017. Atmospheric aerosols: Clouds, chemistry, and climate. Annu. Rev. Chem. Biomol. Eng. 8 (1):427–44. doi:10.1146/annurev-chembioeng-060816-101538.
  • Menon, S., N. Unger, D. Koch, J. Francis, T. Garrett, I. Sednev, D. Shindell, and D. Streets. 2008. Aerosol climate effects and air quality impacts from 1980 to 2030. Environ. Res. Lett. 3 (2):024004. doi:10.1088/1748-9326/3/2/024004.
  • Milsom, A., A. Lees, A. M. Squires, and C. Pfrang. 2022. MultilayerPy (v1.0): A Python-based framework for building, running and optimising kinetic multi-layer models of aerosols and films. Geosci. Model Dev. 15 (18):7139–51. doi:10.5194/gmd-15-7139-2022.
  • Milsom, A., A. M. Squires, A. D. Ward, and C. Pfrang. 2022. The impact of molecular self-organisation on the atmospheric fate of a cooking aerosol proxy. Atmos. Chem. Phys. 22 (7):4895–907. doi:10.5194/acp-22-4895-2022.
  • Morris, J. W., P. Davidovits, J. T. Jayne, J. L. Jimenez, Q. Shi, C. E. Kolb, D. R. Worsnop, W. S. Barney, and G. Cass. 2002. Kinetics of submicron oleic acid aerosols with ozone: A novel aerosol mass spectrometric technique. Geophys. Res. Lett. 29 (9):71–1. doi:10.1029/2002GL014692.
  • Müller, M., A. Mishra, T. Berkemeier, E. Hausammann, T. Peter, and U. K. Krieger. 2022. Electrodynamic balance–mass spectrometry reveals impact of oxidant concentration on product composition in the ozonolysis of oleic acid. Phys. Chem. Chem. Phys. 24 (44):27086–104. doi:10.1039/D2CP03289A.
  • Müller, M., F. Stefanetti, and U. Krieger. 2023. Oxidation pathways of linoleic acid revisited with electrodynamic balance–mass spectrometry. Environ. Sci: Atmos. 3 (1):85–96. doi:10.1039/D2EA00127F.
  • Pope, C. A., M. Ezzati, and D. W. Dockery. 2013. Fine particulate air pollution and life expectancies in the United States: The role of influential observations. J. Air Waste Manag. Assoc. 63 (2):129–32. doi:10.1080/10962247.2013.760353.
  • Pope, F. D., P. J. Gallimore, S. J. Fuller, R. A. Cox, and M. Kalberer. 2010. Ozonolysis of maleic acid aerosols: Effect upon aerosol hygroscopicity, phase and mass. Environ. Sci. Technol. 44 (17):6656–60. doi:10.1021/es1008278.
  • Pöschl, U. 2005. Atmospheric aerosols: Composition, transformation, climate and health effects. Angew. Chem. Int. Ed. Engl. 44 (46):7520–40. doi:10.1002/anie.200501122.
  • Pöschl, U., and M. Shiraiwa. 2015. Multiphase chemistry at the atmosphere–biosphere interface influencing climate and public health in the anthropocene. Chem. Rev. 115 (10):4440–75. doi:10.1021/cr500487s.
  • Prather, K. A., C. D. Hatch, and V. H. Grassian. 2008. Analysis of atmospheric aerosols. Annu. Rev. Anal. Chem. (Palo. Alto. Calif). 1 (1):485–514. doi:10.1146/annurev.anchem.1.031207.113030.
  • Preston, T. C., and J. P. Reid. 2015. Determining the size and refractive index of microspheres using the mode assignments from Mie resonances. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 32 (11):2210–7. doi:10.1364/JOSAA.32.002210.
  • Price, C. L., A. Bain, B. J. Wallace, T. C. Preston, and J. F. Davies. 2020. Simultaneous retrieval of the size and refractive index of suspended droplets in a linear quadrupole electrodynamic balance. J. Phys. Chem. A. 124 (9):1811–20. doi:10.1021/acs.jpca.9b10748.
  • Price, C. L., R. Kaur Kohli, B. Shokoor, and J. F. Davies. 2022. Connecting the phase state and volatility of dicarboxylic acids at elevated temperatures. J. Phys. Chem. A. 126 (39):6963–72. doi:10.1021/acs.jpca.2c04546.
  • Richards, L. W. 1988. Sight path measurements for visibility monitoring and research. Japca. 38 (6):784–91. doi:10.1080/08940630.1988.10466418.
  • Rissanen, M. P., T. Kurtén, M. Sipilä, J. A. Thornton, O. Kausiala, O. Garmash, H. G. Kjaergaard, T. Petäjä, D. R. Worsnop, M. Ehn, et al. 2015. Effects of chemical complexity on the autoxidation mechanisms of endocyclic alkene ozonolysis products: From methylcyclohexenes toward understanding α-pinene. J. Phys. Chem. A. 119 (19):4633–50. doi:10.1021/jp510966g.
  • Rogge, W. F., L. M. Hildemann, M. A. Mazurek, G. R. Cass, and B. R. T. Simoneit. 1991. Sources of fine organic aerosol. 1. Charbroilers and meat cooking operations. Environ. Sci. Technol. 25 (6):1112–25. doi:10.1021/es00018a015.
  • Rosenfeld, D., S. Sherwood, R. Wood, and L. Donner. 2014. Climate effects of aerosol-cloud interactions. Sci. 343 (6169):379–80. doi:10.1126/science.1247490.
  • Roveretto, M., M. Li, N. Hayeck, M. Brüggemann, C. Emmelin, S. Perrier, and C. George. 2019. Real-time detection of gas-phase organohalogens from aqueous photochemistry using orbitrap mass spectrometry. ACS Earth Space Chem. 3 (3):329–34. doi:10.1021/acsearthspacechem.8b00209.
  • Shiraiwa, M., M. Ammann, T. Koop, and U. Pöschl. 2011. Gas uptake and chemical aging of semisolid organic aerosol particles. Proc. Natl. Acad. Sci. USA. 108 (27):11003–8. doi:10.1073/pnas.1103045108.
  • Shiraiwa, M., C. Pfrang, and U. Pöschl. 2010. Kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB): The influence of interfacial transport and bulk diffusion on the oxidation of oleic acid by ozone. Atmos. Chem. Phys. 10 (8):3673–91. doi:10.5194/acp-10-3673-2010.
  • Shiraiwa, M., K. Ueda, A. Pozzer, G. Lammel, C. J. Kampf, A. Fushimi, S. Enami, A. M. Arangio, J. Fröhlich-Nowoisky, Y. Fujitani, et al. 2017. Aerosol health effects from molecular to global scales. Environ. Sci. Technol. 51 (23):13545–67. doi:10.1021/acs.est.7b04417.
  • Simoneit, B. R. T. 1989. Organic matter of the troposphere ? V: Application of molecular marker analysis to biogenic emissions into the troposphere for source reconciliations. J. Atmos. Chem. 8 (3):251–75. doi:10.1007/BF00051497.
  • Smith, G. D., E. Woods, C. L. DeForest, T. Baer, and R. E. Miller. 2002. Reactive uptake of ozone by oleic acid aerosol particles: Application of single-particle mass spectrometry to heterogeneous reaction kinetics. J. Phys. Chem. A. 106 (35):8085–95. doi:10.1021/jp020527t.
  • Smith, J. D., J. H. Kroll, C. D. Cappa, D. L. Che, C. L. Liu, M. Ahmed, S. R. Leone, D. R. Worsnop, and K. R. Wilson. 2009. The heterogeneous reaction of hydroxyl radicals with sub-micron squalane particles: A model system for understanding the oxidative aging of ambient aerosols. Atmos. Chem. Phys. 9 (9):3209–22. doi:10.5194/acp-9-3209-2009.
  • Srivastava, A. K., S. Dey, and S. N. Tripathi. 2012. Aerosol characteristics over the Indo-Gangetic Basin: Implications to regional climate. In Atmospheric Aerosols – Regional Characteristics – Chemistry and Physics, ed. Hayder Abdul-Razzak. InTech. doi:10.5772/2695.
  • Steimer, S. S., T. Berkemeier, A. Gilgen, U. K. Krieger, T. Peter, M. Shiraiwa, and M. Ammann. 2015. Shikimic acid ozonolysis kinetics of the transition from liquid aqueous solution to highly viscous glass. Phys. Chem. Chem. Phys. 17 (46):31101–9. doi:10.1039/C5CP04544D.
  • Swanson, K. D., A. L. Worth, and G. L. Glish. 2018. Use of an open port sampling interface coupled to electrospray ionization for the on-line analysis of organic aerosol particles. J. Am. Soc. Mass Spectrom. 29 (2):297–303. doi:10.1007/s13361-017-1776-y.
  • Tang, M., C. K. Chan, Y. J. Li, H. Su, Q. Ma, Z. Wu, G. Zhang, Z. Wang, M. Ge, M. Hu, et al. 2019. A review of experimental techniques for aerosol hygroscopicity studies. Atmos. Chem. Phys. 19 (19):12631–86. doi:10.5194/acp-19-12631-2019.
  • Thornberry, T., and J. P. D. Abbatt. 2004. Heterogeneous reaction of ozone with liquid unsaturated fatty acids: Detailed kinetics and gas-phase product studies. Phys. Chem. Chem. Phys. 6 (1):84. doi:10.1039/b310149e.
  • Van Berkel, G. J., and V. Kertesz. 2015. An open port sampling interface for liquid introduction atmospheric pressure ionization mass spectrometry. Rapid Commun. Mass Spectrom. 29 (19):1749–56. doi:10.1002/rcm.7274.
  • Virtanen, A., J. Joutsensaari, T. Koop, J. Kannosto, P. Yli-Pirilä, J. Leskinen, J. M. Mäkelä, J. K. Holopainen, U. Pöschl, M. Kulmala, et al. 2010. An amorphous solid state of biogenic secondary organic aerosol particles. Nature. 467 (7317):824–7. doi:10.1038/nature09455.
  • Wang, Q., and J. Z. Yu. 2021. Ambient measurements of heterogeneous ozone oxidation rates of oleic, elaidic, and linoleic acid using a relative rate constant approach in an urban environment. Geophys. Res. Lett. 48 (19):e2021GL095130. doi:10.1029/2021GL095130.
  • Wiegel, A. A., K. R. Wilson, W. D. Hinsberg, and F. A. Houle. 2015. Stochastic methods for aerosol chemistry: A compact molecular description of functionalization and fragmentation in the heterogeneous oxidation of squalane aerosol by OH radicals. Phys. Chem. Chem. Phys. 17 (6):4398–411. doi:10.1039/c4cp04927f.
  • Willis, M. D., G. Rovelli, and K. R. Wilson. 2020. Combining mass spectrometry of picoliter samples with a multicompartment electrodynamic trap for probing the chemistry of droplet arrays. Anal. Chem. 92 (17):11943–52. doi:10.1021/acs.analchem.0c02343.
  • Xu, S., F. Mahrt, F. K. A. Gregson, and A. K. Bertram. 2022. Possible effects of ozone chemistry on the phase behavior of skin oil and cooking oil films and particles indoors. ACS Earth Space Chem. 6 (7):1836–45. doi:10.1021/acsearthspacechem.2c00092.
  • Zahardis, J., and G. A. Petrucci. 2007. The oleic acid-ozone heterogeneous reaction system: Products, kinetics, secondary chemistry, and atmospheric implications of a model system – A review. Atmos. Chem. Phys. 7 (5):1237–74. doi:10.5194/acp-7-1237-2007.
  • Zhang, Q., J. L. Jimenez, M. R. Canagaratna, J. D. Allan, H. Coe, I. Ulbrich, M. R. Alfarra, A. Takami, A. M. Middlebrook, Y. L. Sun, et al. 2007. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes: Ubiquity and dominance of oxygenated OA. Geophys. Res. Lett. 34 (13):n/a–n/a. doi:10.1029/2007GL029979.
  • Zhang, R., A. Khalizov, L. Wang, M. Hu, and W. Xu. 2012. Nucleation and growth of nanoparticles in the atmosphere. Chem. Rev. 112 (3):1957–2011. doi:10.1021/cr2001756.
  • Zhao, Z., R. Tolentino, J. Lee, A. Vuong, X. Yang, and H. Zhang. 2019. Interfacial dimerization by organic radical reactions during heterogeneous oxidative aging of oxygenated organic aerosols. J. Phys. Chem. A. 123 (50):10782–92. doi:10.1021/acs.jpca.9b10779.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.