181
Views
1
CrossRef citations to date
0
Altmetric
Original Articles: BiGART 2023 Issue

Accelerated loss of lean body mass in head and neck cancer patients during cisplatin-based chemoradiation

, , , ORCID Icon & ORCID Icon
Pages 1403-1411 | Received 22 May 2023, Accepted 01 Aug 2023, Published online: 17 Aug 2023

References

  • Ottosson S, Zackrisson B, Kjellen E, et al. Weight loss in patients with head and neck cancer during and after conventional and accelerated radiotherapy. Acta Oncol. 2013;52(4):711–718. doi: 10.3109/0284186X.2012.731524.
  • Lønbro S, Petersen GB, Andersen JR, et al. Prediction of critical weight loss during radiation treatment in head and neck cancer patients is dependent on BMI. Support Care Cancer. 2016;24(5):2101–2109. doi: 10.1007/s00520-015-2999-8.
  • Langius JA, van Dijk AM, Doornaert P, et al. More than 10% weight loss in head and neck cancer patients during radiotherapy is independently associated with deterioration in quality of life. Nutr Cancer. 2013;65(1):76–83. doi: 10.1080/01635581.2013.741749.
  • Langius JA, Bakker S, Rietveld DH, et al. Critical weight loss is a major prognostic indicator for disease-specific survival in patients with head and neck cancer receiving radiotherapy. Br J Cancer. 2013;109(5):1093–1099. doi: 10.1038/bjc.2013.458.
  • Ferrão B, Neves PM, Santos T, et al. Body composition changes in patients with head and neck cancer under active treatment: a scoping review. Support Care Cancer. 2020;28(10):4613–4625. doi: 10.1007/s00520-020-05487-w.
  • Silver HJ, Dietrich MS, Murphy BA. Changes in body mass, energy balance, physical function, and inflammatory state in patients with locally advanced head and neck cancer treated with concurrent chemoradiation after low-dose induction chemotherapy. Head Neck. 2007;29(10):893–900. doi: 10.1002/hed.20607.
  • Schmidt K, Vogt L, Thiel C, et al. Validity of the six-minute walk test in cancer patients. Int J Sports Med. 2013;34(7):631–636. doi: 10.1055/s-0032-1323746.
  • Ng K, Leung SF, Johnson PJ, et al. Nutritional consequences of radiotherapy in nasopharynx cancer patients. Nutr Cancer. 2004;49(2):156–161. doi: 10.1207/s15327914nc4902_6.
  • Jager-Wittenaar H, Dijkstra PU, Vissink A, et al. Changes in nutritional status and dietary intake during and after head and neck cancer treatment. Head Neck. 2011;33(6):863–870. doi: 10.1002/hed.21546.
  • Almada-Correia I, Neves PM, Mäkitie A, et al. Body composition evaluation in head and neck cancer patients: a review. Front Oncol. 2019;9:1112. doi: 10.3389/fonc.2019.01112.
  • Lønbro S, Dalgas U, Primdahl H, et al. Lean body mass and muscle function in head and neck cancer patients and healthy individuals–results from the DAHANCA 25 study. Acta Oncol. 2013;52(7):1543–1551. doi: 10.3109/0284186X.2013.822553.
  • Wendrich AW, Swartz JE, Bril SI, et al. Low skeletal muscle mass is a predictive factor for chemotherapy dose-limiting toxicity in patients with locally advanced head and neck cancer. Oral Oncol. 2017;71:26–33. doi: 10.1016/j.oraloncology.2017.05.012.
  • Grossberg AJ, Chamchod S, Fuller CD, et al. Association of body composition with survival and locoregional control of Radiotherapy-Treated head and neck squamous cell carcinoma. JAMA Oncol. 2016;2(6):782–789. doi: 10.1001/jamaoncol.2015.6339.
  • Fairman CM, Lønbro S, Cardaci TD, et al. Muscle wasting in cancer: opportunities and challenges for exercise in clinical cancer trials. JCSM Rapid Commun. 2022;5(1):52–67. doi: 10.1002/rco2.56.
  • Hojman P, Fjelbye J, Zerahn B, et al. Voluntary exercise prevents cisplatin-induced muscle wasting during chemotherapy in mice. PLOS One. 2014;9(9):e109030. doi: 10.1371/journal.pone.0109030.
  • Hiensch AE, Bolam KA, Mijwel S, et al. Doxorubicin-induced skeletal muscle atrophy: elucidating the underlying molecular pathways. Acta Physiol. 2020;229(2):1–18. doi: 10.1111/apha.13400.
  • Schneider CM, Dennehy CA, Roozeboom M, et al. A model program: exercise intervention for cancer rehabilitation. Integr Cancer Ther. 2002;1(1):76–82; discussion 82. doi: 10.1177/153473540200100117.
  • Coletti D. Chemotherapy-induced muscle wasting: an update. Eur J Transl Myol. 2018;28(2):153–157. doi: 10.4081/ejtm.2018.7587.
  • Møller AB, Lønbro S, Farup J, et al. Molecular and cellular adaptations to exercise training in skeletal muscle from cancer patients treated with chemotherapy. J Cancer Res Clin Oncol. 2019;145(6):1449–1460. doi: 10.1007/s00432-019-02911-5.
  • Mijwel S, Cardinale DA, Norrbom J, et al. Exercise training during chemotherapy preserves skeletal muscle fiber area, capillarization, and mitochondrial content in patients with breast cancer. Faseb J. 2018;32(10):5495–5505. doi: 10.1096/fj.201700968R.
  • Jensen K, Friborg J, Hansen CR, et al. The danish head and neck cancer group (DAHANCA) 2020 radiotherapy guidelines. Radiother Oncol. 2020;151:149–151. doi: 10.1016/j.radonc.2020.07.037.
  • Toomey CM, McCormack WG, Jakeman P. The effect of hydration status on the measurement of lean tissue mass by dual-energy X-ray absorptiometry. Eur J Appl Physiol. 2017;117(3):567–574. doi: 10.1007/s00421-017-3552-x.
  • Lønbro S, Dalgas U, Primdahl H, et al. Progressive resistance training rebuilds lean body mass in head and neck cancer patients after radiotherapy – Results from the randomized DAHANCA 25B trial. Radiother Oncol. 2013;108(2):314–319. doi: 10.1016/j.radonc.2013.07.002.
  • Alcazar J, Kamper RS, Aagaard P, et al. Relation between leg extension power and 30-s sit-to-stand muscle power in older adults: validation and translation to functional performance. Sci Rep. 2020;10:16337. doi: 10.1038/s41598-020-73395-4.
  • Lønbro S. The effect of progressive resistance training on lean body mass in post-treatment cancer patients – A systematic review. Radiother Oncol. 2014;110(1):71–80. doi: 10.1016/j.radonc.2013.07.008.
  • Lønbro S, Dalgas U, Primdahl H, et al. Feasibility and efficacy of progressive resistance training and dietary supplements in radiotherapy treated head and neck cancer patients-the DAHANCA 25A study. Acta Oncol. 2013;52(2):310–318. doi: 10.3109/0284186X.2012.741325.
  • Peduzzi P, Concato J, Kemper E, et al. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49(12):1373–1379. doi: 10.1016/s0895-4356(96)00236-3.
  • Zhao JZ, Zheng H, Li LY, et al. Predictors for weight loss in head and neck cancer patients undergoing radiotherapy: a systematic review. Cancer Nurs. 2015;38(6):E37–E45. doi: 10.1097/NCC.0000000000000231.
  • Brouwer CL, Steenbakkers RJHM, Bourhis J, et al. CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG oncology and TROG consensus guidelines. Radiother Oncol. 2015;117(1):83–90. doi: 10.1016/j.radonc.2015.07.041.
  • Dische S, Saunders M, Barrett A, et al. A randomised multicentre trial of CHART versus conventional radiotherapy in head and neck cancer. Radiother Oncol. 1997;44(2):123–136. doi: 10.1016/s0167-8140(97)00094-7.
  • Mortensen HR, Overgaard J, Specht L, et al. Prevalence and peak incidence of acute and late normal tissue morbidity in the DAHANCA 6&7 randomised trial with accelerated radiotherapy for head and neck cancer. Radiother Oncol. 2012;103(1):69–75. doi: 10.1016/j.radonc.2012.01.002.
  • Metwally MAH, Frederiksen KD, Overgaard J. Compliance and toxicity of the hypoxic radiosensitizer nimorazole in the treatment of patients with head and neck squamous cell carcinoma (HNSCC). Acta Oncol. 2014;53(5):654–661. doi: 10.3109/0284186X.2013.864050.
  • Driessen CML, Janssens GO, Van Der Graaf WTA, et al. Toxicity and efficacy of accelerated radiotherapy with concurrent weekly cisplatin for locally advanced head and neck carcinoma. Head Neck. 2016;38(Suppl 1):E559–E565. doi: 10.1002/hed.24039.
  • Jager-Wittenaar H, Dijkstra PU, Dijkstra G, et al. High prevalence of cachexia in newly diagnosed head and neck cancer patients: an exploratory study. Nutrition. 2017;35:114–118. doi: 10.1016/j.nut.2016.11.008.
  • Solís-Martínez O, Álvarez-Altamirano K, Cardenas D, et al. Cancer cachexia affects patients with head and neck cancer in all stages of disease: a prospective cross-sectional study. Nutr Cancer. 2022;74(1):82–89. doi: 10.1080/01635581.2020.1869792.
  • Ohmae N, Yasui-Yamada S, Furumoto T, et al. Muscle mass, quality, and strength; physical function and activity; and metabolic status in cachectic patients with head and neck cancer. Clin Nutr ESPEN. 2023;53:113–119. doi: 10.1016/j.clnesp.2022.12.006.
  • Møller PK, Schmidt DG, Kaalund I, et al. PO-1092: weight loss and patient-reported daily activity after curative radiotherapy for head and neck cancer. Radiother Oncol. 2018;127:S614–S615.
  • Ackerman D, Laszlo M, Provisor A, et al. Nutrition management for the head and neck cancer patient. Cancer Treat Res. 2018;174:187–208.
  • Talwar B, Donnelly R, Skelly R, et al. Nutritional management in head and neck cancer: United Kingdom national multidisciplinary guidelines. J Laryngol Otol. 2016;130(S2):S32–S40. doi: 10.1017/S0022215116000402.
  • Lonkvist CK, Lønbro S, Vinther A, et al. Progressive resistance training in head and neck cancer patients during concomitant chemoradiotherapy – design of the DAHANCA 31 randomized trial. BMC Cancer. 2017;17(1):400. doi: 10.1186/s12885-017-3388-0.
  • Rogers LQ, Anton PM, Fogleman A, et al. Pilot, randomized trial of resistance exercise during radiation therapy for head and neck cancer. Head Neck. 2013;35(8):1178–1188. doi: 10.1002/hed.23118.
  • Mavropalias G, Sim M, Taaffe DR, et al. Exercise medicine for cancer cachexia: targeted exercise to counteract mechanisms and treatment side effects. J Cancer Res Clin Oncol. 2022;148(6):1389–1406.
  • Jager-Wittenaar H, Dijkstra PU, Vissink A, et al. Malnutrition and quality of life in patients treated for oral or oropharyngeal cancer. Head Neck. 2011;33(4):490–496. doi: 10.1002/hed.21473.
  • Schenkman M, Hughes MA, Samsa G, et al. The relative importance of strength and balance in chair rise by functionally impaired older individuals. J Am Geriatr Soc. 1996;44(12):1441–1446. doi: 10.1111/j.1532-5415.1996.tb04068.x.
  • Conte E, Bresciani E, Rizzi L, et al. Cisplatin-Induced skeletal muscle dysfunction: mechanisms and counteracting therapeutic strategies. Int J Mol Sci. 2020;21:1242. doi: 10.3390/ijms21041242.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.