865
Views
2
CrossRef citations to date
0
Altmetric
Original Articles: BiGART 2023 Issue

An experimental setup for proton irradiation of a murine leg model for radiobiological studies

, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1566-1573 | Received 14 Jun 2023, Accepted 03 Aug 2023, Published online: 21 Aug 2023

References

  • Sørensen BS, Overgaard J, Bassler N. In vitro RBE-LET dependence for multiple particle types. Acta Oncol. 2011;50(6):757–762. doi: 10.3109/0284186X.2011.582518.
  • Paganetti H, Niemierko A, Ancukiewicz M, et al. Relative biological effectiveness (RBE) values for proton beam therapy. Int J Radiat Oncol Biol Phys. 2002;53(2):407–421. doi: 10.1016/s0360-3016(02)02754-2.
  • Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol. 2014;59(22):R419–R472. doi: 10.1088/0031-9155/59/22/R419.
  • Sørensen BS. Commentary: RBE in proton therapy–where is the experimental in vivo data? Acta Oncol. 2019;58(10):1337–1339. doi: 10.1080/0284186X.2019.1669819.
  • Willers H, Allen A, Grosshans D, et al. Toward A variable RBE for proton beam therapy. Radiother Oncol. 2018;128(1):68–75. doi: 10.1016/j.radonc.2018.05.019.
  • Britten RA, Nazaryan V, Davis LK, et al. Variations in the RBE for cell killing Along the Depth-Dose profile of a modulated proton therapy beam. Radiat Res. 2013;179(1):21–28. doi: 10.1667/RR2737.1.
  • Chaudhary P, Marshall TI, Perozziello FM, et al. Relative biological effectiveness variation along monoenergetic and modulated bragg peaks of a 62-MeV therapeutic proton beam: a preclinical assessment. Int J Radiat Oncol Biol Phys. 2014;90(1):27–35. doi: 10.1016/j.ijrobp.2014.05.010.
  • Wouters BG, Skarsgard LD, Gerweck LE, et al. Radiobiological intercomparison of the 160 MeV and 230 MeV proton therapy beams at the harvard cyclotron laboratory and at Massachusetts general hospital. Radiat Res. 2015;183(2):174–187. doi: 10.1667/RR13795.1.
  • Symonds P, Jones GDD. FLASH radiotherapy: the next technological advance in radiation therapy? Clin Oncol (R Coll Radiol). 2019;31(7):405–406. doi: 10.1016/j.clon.2019.05.011.
  • Lühr A, von Neubeck C, Pawelke J, et al. “Radiobiology of proton therapy”: results of an international expert workshop. Radiother Oncol. 2018;128(1):56–67. doi: 10.1016/j.radonc.2018.05.018.
  • Henry T, Ureba A, Valdman A, et al. Proton grid therapy: a proof-of-concept study. Technol Cancer Res Treat. 2017;16(6):749–757. doi: 10.1177/1533034616681670.
  • Wang Y, Deng W, Li N, et al. Combining immunotherapy and radiotherapy for cancer treatment: current challenges and future directions. Front Pharmacol. 2018;9:185. doi: 10.3389/fphar.2018.00185.
  • Kaur P, Hurwitz MD, Krishnan S, et al. Combined hyperthermia and radiotherapy for the treatment of cancer. Cancers (Basel). 2011;3(4):3799–3823. doi: 10.3390/cancers3043799.
  • Verhaegen F, Dubois L, Gianolini S, et al. ESTRO ACROP: technology for precision small animal radiotherapy research: optimal use and challenges. Radiother Oncol. 2018;126(3):471–478. doi: 10.1016/j.radonc.2017.11.016.
  • Ford E, Emery R, Huff D, et al. An image-guided precision proton radiation platform for preclinical in vivo research. Phys Med Biol. 2017;62(1):43–58. doi: 10.1088/1361-6560/62/1/43.
  • Suckert T, Müller J, Beyreuther E, et al. High-precision image-guided proton irradiation of mouse brain Sub-volumes. Radiother Oncol. 2020;146:205–212. doi: 10.1016/j.radonc.2020.02.023.
  • Suckert T, Beyreuther E, Müller J, et al. Late side effects in normal mouse brain tissue after proton irradiation. Front Oncol. 2020;10:598360. doi: 10.3389/fonc.2020.598360.
  • Gueulette J, Slabbert JP, Böhm L, et al. Proton RBE for early intestinal tolerance in mice after fractionated irradiation. Radiother Oncol. 2001;61(2):177–184. doi: 10.1016/s0167-8140(01)00446-7.
  • Overgaard J. Effect of misonidazole and hyperthermia on the radiosensitivity of a C3H mouse mammary carcinoma and its surrounding normal tissue. Br J Cancer. 1980;41(1):10–21. doi: 10.1038/bjc.1980.2.
  • Pedersen KH, Kunugi KA, Hammer CG, et al. Radiation biology irradiator dose verification survey. Radiat Res. 2016;185(2):163–168. doi: 10.1667/RR14155.1.
  • Desrosiers M, DeWerd L, Deye J, et al. The importance of dosimetry standardization in radiobiology. J Res Natl Inst Stand Technol. 2013;118:403.
  • Koontz BF, Verhaegen F, Ruysscher DDE. Tumour and normal tissue radiobiology in mouse models : how close are mice to mini-humans ? Br J Radiol. 2017;90:1–7.
  • Singers Sørensen B, Bassler N, Nielsen S, et al. Relative biological effectiveness (RBE) and distal edge effects of proton radiation on early damage in vivo. Acta Oncol. 2017;56(11):1387–1391. doi: 10.1080/0284186X.2017.1351621.
  • Mather SJ, Mansi L. IAEA technical report series. Eur J Nucl Med Mol Imaging. 2008;35(5):1030–1031. doi: 10.1007/s00259-008-0767-4.
  • Palmans H, Lourenço A, Medin J, et al. Current best estimates of beam quality correction factors for reference dosimetry of clinical proton beams. Phys Med Biol. 2022;67:195012. doi: 10.1088/1361-6560/ac9172.
  • Von der Maase H. Effect of cancer chemotherapeutic drugs on the radiation-induced skin reactions in mouse feet. Br J Radiol. 1984;57(680):697–707. doi: 10.1259/0007-1285-57-680-697.
  • Stone HB. Leg contracture in mice: an assay of normal tissue response. Int J Radiat Oncol Biol Phys. 1984;10(7):1053–1061. doi: 10.1016/0360-3016(84)90177-9.
  • Nawroth I, Alsner J, Behlke MA, et al. Intraperitoneal administration of chitosan/DsiRNA nanoparticles targeting TNFα prevents radiation-induced fibrosis. Radiother Oncol. 2010;97(1):143–148. doi: 10.1016/j.radonc.2010.09.010.
  • Straub JM, New J, Hamilton CD, et al. Radiation-induced fibrosis: mechanisms and implications for therapy. Radiation-Induced Fibros Mech Implic Ther. 2016;141:1–16.
  • Rockwell S, Dobrucki I, Kim E, et al. Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr Mol Med. 2009;9(4):442–458. doi: 10.2174/156652409788167087.
  • Overgaard J. Hypoxic radiosensitization: adored and ignored. J Clin Oncol. 2007;25(26):4066–4074. doi: 10.1200/JCO.2007.12.7878.
  • Churchill‐Davidson I. Oxygen effect on radiosensitivity. Cancer. 1960;13(S6):122–132. doi: 10.1002/1097-0142(196011/12)13:6+<122::AID-CNCR2820130719>3.0.CO;2-Q.
  • Elming PB, Sørensen BS, Oei AL, et al. Hyperthermia: the optimal treatment to overcome radiation resistant hypoxia. Cancers (Basel). 2019;11(1):60. doi: 10.3390/cancers11010060.
  • Merriam G, Focht E, Parsons W, et al. Influence of anesthesia on radiation effect. Radiology 1968;91(4):694–697. doi: 10.1148/91.4.694.
  • Suit HD, Sedlacek RS, Silver G, et al. Pentobarbital anesthesia and the response of tumor and normal tissue in the C3Hf/sed mouse to radiation. Radiat Res. 1985;104(1):47–65. doi: 10.2307/3576776.
  • Wondergem J, Haveman J, Van Der Schueren E, et al. The influence of misonidazole on the radiation response of murine tumors of different size: possible artifacts caused by pentobarbital sodium anesthesia. Int J Radiat Oncol Biol Phys. 1981;7(6):755–760. doi: 10.1016/0360-3016(81)90469-7.
  • Singers Sørensen B, Krzysztof Sitarz M, Ankjærgaard C, et al. In vivo validation and tissue sparing factor for acute damage of pencil beam scanning proton FLASH. Radiother Oncol. 2022;167:109–115. doi: 10.1016/j.radonc.2021.12.022.
  • Sørensen BS, Horsman MR, Alsner J, et al. Relative biological effectiveness of carbon ions for tumor control, acute skin damage and late radiation-induced fibrosis in a mouse model. Acta Oncol. 2015;54(9):1623–1630. doi: 10.3109/0284186X.2015.1069890.