319
Views
0
CrossRef citations to date
0
Altmetric
Original Article: BiGART 2023 Issue

Geometric distortions in clinical MRI sequences for radiotherapy: insights gained from a multicenter investigation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1551-1560 | Received 23 May 2023, Accepted 28 Sep 2023, Published online: 10 Oct 2023

References

  • Edmund JM, Nyholm T. A review of substitute CT generation for MRI-only radiation therapy. Radiat Oncol. 2017;12(1):28. doi: 10.1186/s13014-016-0747-y.
  • Seppälä T, Visapää H, Collan J, et al. Converting from CT- to MRI-only-based target definition in radiotherapy of localized prostate cancer. Strahlenther Onkol. 2015;191(11):862–868. http://link.springer.com/10.1007/s00066-015-0868-5.
  • Raaymakers BW, Lagendijk JJW, Overweg J, et al. Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept. Phys Med Biol. 2009;54(12):N229–N237. doi: 10.1088/0031-9155/54/12/N01.
  • Bertelsen AS, Schytte T, Møller PK, et al. First clinical experiences with a high field 1.5 T MR linac. Acta Oncol. 2019;58(10):1352–1357. doi: 10.1080/0284186X.2019.1627417.
  • Wang D, Strugnell W, Cowin G, et al. Geometric distortion in clinical MRI systems. Magn Reson Imaging. 2004;22(9):1211–1221. doi: 10.1016/j.mri.2004.08.012.
  • Weygand J, Fuller CD, Ibbott GS, et al. Spatial precision in magnetic resonance imaging-guided radiation therapy: the role of geometric distortion. Int J Radiat Oncol Biol Phys. 2016;95(4):1304–1316. doi: 10.1016/j.ijrobp.2016.02.059.
  • Port JD, Pomper MG. Quantification and minimization of magnetic susceptibility artifacts on GRE images. J Comput Assist Tomogr. 2000;24(6):958–964. doi: 10.1097/00004728-200011000-00024.
  • Walker A, Liney G, Metcalfe P, et al. MRI distortion: considerations for MRI based radiotherapy treatment planning. Australas Phys Eng Sci Med. 2014;37(1):103–113. doi: 10.1007/s13246-014-0252-2.
  • Jezzard P, Clare S. Sources of distortion in functional MRI data. Hum. Brain Mapp. 1999;8(2–3):80–85. doi: 10.1002/(SICI)1097-0193(1999)8:2/3<80::AID-HBM2>3.0.CO;2-C.
  • Glide-Hurst C, Paulson ES, McGee KP, et al. Task group 284 report: magnetic resonance imaging simulation in radiotherapy: considerations for clinical implementation, optimization, and quality assurance. Med Phys. 2021;48:e636–e670.
  • Moerland MA, Beersma R, Bhagwandien R, et al. Analysis and correction of geometric distortions in 1.5 T magnetic resonance images for use in radiotherapy treatment planning. Phys Med Biol. 1995;40(10):1651–1654. doi: 10.1088/0031-9155/40/10/007.
  • Patel I. Physics aspects of quality control in radiotherapy – IPEM report 81. 2nd ed. New York: Institution of Physics & Engineering in Medicine & Biology; 2018.
  • Paulson ES, Crijns SPM, Keller BM, et al. Consensus opinion on MRI simulation for external beam radiation treatment planning. Radiother Oncol. 2016;121(2):187–192. doi: 10.1016/j.radonc.2016.09.018.
  • Kavaluus H, Nousiainen K, Kaijaluoto S, et al. Determination of acceptance criteria for geometric accuracy of magnetic resonance imaging scanners used in radiotherapy planning. Phys Imaging Radiat Oncol. 2021;17:58–64. doi: 10.1016/j.phro.2021.01.003.
  • Lagendijk JJW, Raaymakers BW, Raaijmakers AJE, et al. MRI/linac integration. Radiother Oncol. 2008;86(1):25–29. doi: 10.1016/j.radonc.2007.10.034.
  • Bol GH, Lagendijk JJW, Raaymakers BW. Virtual couch shift (VCS): accounting for patient translation and rotation by online IMRT re-optimization. Phys Med Biol. 2013;58(9):2989–3000. doi: 10.1088/0031-9155/58/9/2989.
  • Klüter S. Technical design and concept of a 0.35 T MR-Linac. Clin Transl Radiat Oncol. 2019;18:98–101.
  • Niyazi M, Brada M, Chalmers AJ, et al. ESTRO-ACROP guideline “target delineation of glioblastomas. Radiother Oncol. 2016;118(1):35–42. doi: 10.1016/j.radonc.2015.12.003.
  • Ellingson BM, Bendszus M, Boxerman J, et al. Consensus recommendations for a standardized brain tumor imaging protocol in clinical trials. Neuro Oncol. 2015;17:1188–1198.
  • Jensen K, Al-Farra G, Dejanovic D, et al. Imaging for target delineation in head and neck cancer radiotherapy. Semin Nucl Med. 2021;51(1):59–67. doi: 10.1053/j.semnuclmed.2020.07.010.
  • DNOG. Dansk Neuro Onkologisk Gruppe Retningslinjer for strålebehandling [Danish Neuro Oncology Group Guidelines for Radiotherapy]. 2016.
  • DAPROCA. Billeddiagnostik ved prostatacancer [Medical Imaging for Prostate Cancer Danish Guidelines]. 2022.
  • van der Heide UA, Frantzen-Steneker M, Astreinidou E, et al. MRI basics for radiation oncologists. Clin Transl Radiat Oncol. 2019;18:74–79. doi: 10.1016/j.ctro.2019.04.008.
  • Bertelsen A, Bernchou U, Schytte T, et al. The effect of respiration-induced target motion on 3D magnetic resonance images used to guide radiotherapy. Phys Imaging Radiat Oncol. 2022;24:167–172. doi: 10.1016/j.phro.2022.11.010.
  • Whiteside L, McDaid L, Hales RB, et al. To see or not to see: evaluation of magnetic resonance imaging sequences for use in MR linac-based radiotherapy treatment. J Med Imaging Radiat Sci. 2022;53(3):362–373. doi: 10.1016/j.jmir.2022.06.005.
  • Devic S. MRI simulation for radiotherapy treatment planning. Med Phys. 2012;39(11):6701–6711. doi: 10.1118/1.4758068.
  • Nousiainen K, Mäkelä T, Peltonen JI. Characterizing geometric distortions of 3D sequences in clinical head MRI. MAGMA. 2022;35(6):983–995. doi: 10.1007/s10334-022-01020-8.
  • Eccles CL, Adair Smith G, Bower L, et al. Magnetic resonance imaging sequence evaluation of an MR linac system; early clinical experience. Tech Innov Patient Support Radiat Oncol. 2019;12:56–63. doi: 10.1016/j.tipsro.2019.11.004.
  • Danish Comprehensive Cancer Center. National interdisciplinary network for quality assurance of MR images in radiotherapy (NIMBUS) [Internet]. https://www.dccc.dk/english/projectsandnetwork/nimbus/.
  • The Phantom Laboratory. Magphan ® RT phantom product guide. Salem: The Phantom Laboratory; 2022. p. 1–20.
  • Baldwin LN, Wachowicz K, Fallone BG. A two-step scheme for distortion rectification of magnetic resonance images. Med Phys. 2009;36(9):3917–3926. doi: 10.1118/1.3180107.
  • Baldwin LN, Wachowicz K, Thomas SD, et al. Characterization, prediction, and correction of geometric distortion in 3 T MR images. Med Phys. 2007;34(2):388–399. doi: 10.1118/1.2402331.
  • Nejad-Davarani SP, Kim JP, Du D, et al. Large field of view distortion assessment in a low-field MR-linac. Med Phys. 2019;46(5):2347–2355. doi: 10.1002/mp.13467.
  • NEMA PS3/ISO 12052. Digital imaging and communications in medicine (DICOM) standard. [Internet]. Rosslyn (VA): National Electrical Manufacturers National Electrical Manufacturers. http://medical.nema.org/.
  • Jezzard P, Balaban RS. Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med. 1995;34(1):65–73. doi: 10.1002/mrm.1910340111.
  • Andersson JLR, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage. 2003;20(2):870–888. doi: 10.1016/S1053-8119(03)00336-7.
  • Danziger Z. Theil-Sen Robust linear regression [Internet]. MATLAB Cent. File Exch. 2023 [cited 2023 May 8]. https://www.mathworks.com/matlabcentral/fileexchange/48294-theil-sen-robust-linear-regression.
  • Xie L. Spherical Hough transform for 3D images [Internet]. MATLAB Cent. File Exch. 2023 [cited 2023 May 3]. https://uk.mathworks.com/matlabcentral/fileexchange/48219-spherical-hough-transform-for-3d-images.
  • Hasler SW, Bernchou U, Bertelsen A, et al. Tumor-site specific geometric distortions in high field integrated magnetic resonance linear accelerator radiotherapy. Phys Imaging Radiat Oncol. 2020;15:100–104. doi: 10.1016/j.phro.2020.07.007.
  • Keesman R, van de Lindt TN, Juan-Cruz C, et al. Correcting geometric image distortions in slice-based 4D-MRI on the MR-linac. Med Phys. 2019;46(7):3044–3054. doi: 10.1002/mp.13602.
  • Walker A, Chlap P, Causer T, et al. Development of a vendor neutral MRI distortion quality assurance workflow. J Appl Clin Med Phys. 2022;23(10):e13735.
  • Yahanda AT, Goble TJ, Sylvester PT, et al. Impact of 3-dimensional versus 2-dimensional image distortion correction on stereotactic neurosurgical navigation image fusion reliability for images acquired with intraoperative magnetic resonance imaging. Oper Neurosurg. 2020;19(5):599–607. doi: 10.1093/ons/opaa152.
  • Karger CP, Höss A, Bendl R, et al. Accuracy of device-specific 2D and 3D image distortion correction algorithms for magnetic resonance imaging of the head provided by a manufacturer. Phys Med Biol. 2006;51(12):N253–N261. doi: 10.1088/0031-9155/51/12/N04.
  • Kato Y, Okudaira K, Kamomae T, et al. Evaluation of system-related magnetic resonance imaging geometric distortion in radiation therapy treatment planning: two approaches and effectiveness of three-dimensional distortion correction. Nagoya J Med Sci. 2022;84:29–41.
  • Haukipuro E. 3D geometric correction in 2D multi-slice acquired MR images used in radiation therapy planning [Master's Thesis, Aalto University]; 2020.
  • Torfeh T, Hammoud R, Perkins G, et al. Characterization of 3D geometric distortion of magnetic resonance imaging scanners commissioned for radiation therapy planning. Magn Reson Imaging. 2016;34(5):645–653. doi: 10.1016/j.mri.2016.01.001.
  • Stemkens B, Paulson ES, Tijssen RHN. Nuts and bolts of 4D-MRI for radiotherapy. Phys Med Biol. 2018;63(21):21TR01. doi: 10.1088/1361-6560/aae56d.
  • Stanescu T, Wachowicz K, Jaffray DA. Characterization of tissue magnetic susceptibility-induced distortions for MRIgRT. Med Phys. 2012;39(12):7185–7193. doi: 10.1118/1.4764481.
  • Tijssen RHN, Vos R, Philippens MEP, et al. Online geometric fidelity inspection for MR-Guided treatments on 1.5 T MRI-Linac: vosualizing the cumulative effect of gradient errors and patient specific suceptibilities. MRinRT. 2019;7:58.
  • Glide-Hurst C, Nejad-Davarani S, Weiss S, et al. Per-organ assessment of subject-induced susceptibility distortion for MR-only male pelvis treatment planning. Radiat Oncol. 2018;13(1):149. doi: 10.1186/s13014-018-1090-2.
  • Kerkmeijer LGW, Groen VH, Pos FJ, et al. Focal boost to the intraprostatic tumor in external beam radiotherapy for patients with localized prostate cancer: results from the FLAME randomized phase III trial. J Clin Oncol. 2021;39(7):787–796. doi: 10.1200/JCO.20.02873.
  • Gurney-Champion OJ, Mahmood F, van Schie M, et al. Quantitative imaging for radiotherapy purposes. Radiother Oncol. 2020;146:66–75. doi: 10.1016/j.radonc.2020.01.026.
  • van Houdt PJ, Saeed H, Thorwarth D, et al. Integration of quantitative imaging biomarkers in clinical trials for MR-guided radiotherapy: conceptual guidance for multicentre studies from the MR-Linac consortium imaging biomarker working group. Eur J Cancer. 2021;153:64–71. doi: 10.1016/j.ejca.2021.04.041.
  • Mahmood F, Hjorth Johannesen H, Geertsen P, et al. Diffusion MRI outlined viable tumour volume beats GTV in intra-treatment stratification of outcome. Radiother Oncol. 2020;144:121–126. doi: 10.1016/j.radonc.2019.11.012.
  • Bergen RV, Ryner L, Essig M. Field-map correction in read-out segmented echo planar imaging for reduced spatial distortion in prostate DWI for MRI-guided radiotherapy applications. Magn Reson Imaging. 2020;67:43–49. doi: 10.1016/j.mri.2019.12.005.
  • Schick F. SPLICE: sub-second diffusion-sensitive MR imaging using a modified fast spin-echo acquisition mode. Magn Reson Med. 1997;38(4):638–644. doi: 10.1002/mrm.1910380418.
  • Rahbek S, Schakel T, Mahmood F, et al. Optimized flip angle schemes for the split acquisition of fast spin-echo signals (SPLICE) sequence and application to diffusion-weighted imaging. Magn Reson Med. 2023;89(4):1469–1480. doi: 10.1002/mrm.29545.
  • Kooreman ES, van Houdt PJ, Nowee ME, et al. Feasibility and accuracy of quantitative imaging on a 1.5 T MR-linear accelerator. Radiother Oncol. 2019;133:156–162. https://linkinghub.elsevier.com/retrieve/pii/S0167814019300167. doi: 10.1016/j.radonc.2019.01.011.
  • Kooreman ES, van Houdt PJ, Keesman R, et al. ADC measurements on the Unity mr-linac – A recommendation on behalf of the Elekta Unity MR-linac consortium. Radiother Oncol. 2020;153:106–113. doi: 10.1016/j.radonc.2020.09.046.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.