517
Views
41
CrossRef citations to date
0
Altmetric
Oncology

An overview on the current status of cancer nanomedicines

, , , , & ORCID Icon
Pages 911-921 | Received 17 Aug 2017, Accepted 20 Dec 2017, Published online: 22 Jan 2018

References

  • Du W, Elemento O. Cancer systems biology: embracing complexity to develop better anticancer therapeutic strategies. Oncogene 2015;34:3215-25
  • WHO. WHO | Cancer. Available at: http://www.who.int/cancer/en/ [Last accessed 10 November 2016]
  • Marchal S, Hor AE, Millard M, et al. Anticancer drug delivery: an update on clinically applied nanotherapeutics. Drugs 2015;75:1601-11
  • Jardim PM, Júnior A, Islam M, et al. Assessment of chemotherapy on various biochemical markers in breast cancer patients. J Cell Biochem 2017: doi: 10.1002/jcb.26487
  • Jabir NR, Tabrez S, Ashraf GM, et al. Nanotechnology-based approaches in anticancer research. Int J Nanomedicine 2012;7:4391-408
  • Tabrez S, Priyadarshini M, Urooj M, et al. Cancer chemoprevention by polyphenols and their potential application as nanomedicine. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2013;31:67-98
  • Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009;3:16-20
  • McNeil SE. Nanoparticle therapeutics: a personal perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2009;1:264-71
  • Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J 2005;19:311-30
  • Loo C, Lowery A, Halas N, et al. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 2005;5:709-11
  • Kim YK, Kwak HS, Kim CS, et al. Hepatocellular carcinoma in patients with chronic liver disease: comparison of SPIO-enhanced MR imaging and 16-detector row CT. Radiology 2006;238:531-41
  • Portney NG, Ozkan M. Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem 2006;384:620-30
  • Hirsch LR, Stafford RJ, Bankson JA, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 2003;100:13549-54
  • Harisinghani MG, Barentsz J, Hahn PF, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 2003;348:2491-9
  • Kooi ME, Cappendijk VC, Cleutjens KBJM, et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 2003;107:2453-8
  • Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 2006;114:165-72
  • Mikhaylova M, Kim DK, Bobrysheva N, et al. Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir 2004;20:2472-7
  • Tan WB, Zhang Y. Surface modification of gold and quantum dot nanoparticles with chitosan for bioapplications. J Biomed Mater Res A 2005;75:56-62
  • Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 2008;60:1615-26
  • Steichen SD, Caldorera-Moore M, Peppas NA. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharmaceut Sci 2013;48:416-27
  • Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics 2017;9:12
  • Seema R, Chanchal C, Ravi S, et al. Liposomes: Preparations and applications. Int J Drug Dev Res 2012;4(4):108-115
  • O’Shaughnessy J. Liposomal anthracyclines for breast cancer: overview. Oncologist 2003;8(Suppl 2):1-2
  • Pillai G. Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. SOJ Pharm Pharm Sci 2014;1:13
  • Fassas A, Buffels R, Anagnostopoulos A, et al. Safety and early efficacy assessment of liposomal daunorubicin (DaunoXome) in adults with refractory or relapsed acute myeloblastic leukaemia: a phase I–II study. Br J Haematol 2002;116:308-15
  • Liu F-T, Kelsey SM, Newland AC, Jia L. Liposomal encapsulation diminishes daunorubicin-induced generation of reactive oxygen species, depletion of ATP and necrotic cell death in human leukaemic cells. Br J Haematol 2002;117:333-42
  • Morgensztern D, Baggstrom MQ, Pillot G, et al. A phase I study of pegylated liposomal doxorubicin and irinotecan in patients with solid tumors. Chemotherapy 2009;55:441-5
  • .Chang H, Cheng M, Yeh M. Clinically-proven liposome-based drug delivery: formulation characterization and therapeutic efficacy. Open Access Scientific Reports 2012;1:195
  • Forssen EA, Ross ME. Daunoxome treatment of solid tumors: preclinical and clinical investigations. J Liposome Res 1994;4:481-512
  • Lowis S, Lewis I, Elsworth A, et al. A phase I study of intravenous liposomal daunorubicin (DaunoXome) in paediatric patients with relapsed or resistant solid tumours. Br J Cancer 2006;95:571-80
  • Fassas A, Anagnostopoulos A. The use of liposomal daunorubicin (DaunoXome) in acute myeloid leukemia. Leuk Lymphoma 2005;46:795-802
  • Latagliata R, Breccia M, Fazi P, et al. Liposomal daunorubicin versus standard daunorubicin: long term follow-up of the GIMEMA GSI 103 AMLE randomized trial in patients older than 60 years with acute myelogenous leukaemia. Br J Haematol 2008;143:681-9
  • Russo D, Piccaluga PP, Michieli M, et al. Liposomal daunorubicin (DaunoXome) for treatment of poor-risk acute leukemia. Ann Hematol 2002;81:462-6
  • Clavio M, Venturino C, Pierri I, et al. Combination of liposomal daunorubicin (DaunoXome), fludarabine, and cytarabine (FLAD) in patients with poor-risk acute leukemia. Ann Hematol 2004;83:696-703
  • Sano K, Nakajima T, Choyke PL, Kobayashi H. The effect of photoimmunotherapy followed by liposomal daunorubicin in a mixed tumor model: a demonstration of the super-enhanced permeability and retention effect after photoimmunotherapy. Mol Cancer Ther 2014;13:426-32
  • Marta T, Luca S, Serena M, et al. What is the role of nanotechnology in diagnosis and treatment of metastatic breast cancer? Promising scenarios for the near future. J Nanomaterials 2016;2016:e5436458
  • Dawidczyk CM, Kim C, Park JH, et al. State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines. J Control Release 2014;187:133-44
  • Yang F, Teves SS, Kemp CJ, Henikoff S. Doxorubicin, DNA torsion, and chromatin dynamics. Biochimica et Biophysica Acta 2014;1845:84-9
  • Khan DR, Webb MN, Cadotte TH, Gavette MN. Use of targeted liposome-based chemotherapeutics to treat breast cancer. Breast Cancer (Auckl) 2015;9(Suppl 2):1-5
  • Elbayoumi TA, Torchilin VP. Tumor-specific antibody-mediated targeted delivery of Doxil reduces the manifestation of auricular erythema side effect in mice. Int J Pharm 2008;357:272-9
  • Leonard RCF, Williams S, Tulpule A, et al. Improving the therapeutic index of anthracycline chemotherapy: focus on liposomal doxorubicin (Myocet). The Breast 2009;18:218-24
  • Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 2006;1:297-315
  • Rafiyath S, Rasul M, Lee B, et al. Comparison of safety and toxicity of liposomal doxorubicin vs. conventional anthracyclines: a meta-analysis. Exp Hematol Oncol 2012;1:10
  • Batist G, Harris L, Azarnia N, et al. Improved anti-tumor response rate with decreased cardiotoxicity of non-pegylated liposomal doxorubicin compared with conventional doxorubicin in first-line treatment of metastatic breast cancer in patients who had received prior adjuvant doxorubicin: results of a retrospective analysis. Anticancer Drugs 2006;75:587-95
  • Gennari A, D’Amico M. Anthracyclines in the management of metastatic breast cancer: state of the art. Eur J Canc Suppl 2011;9:11-15
  • Batist G, Ramakrishnan G, Rao CS, et al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol 2001;19:1444-54
  • Harris L, Batist G, Belt R, et al. Liposome-encapsulated doxorubicin compared with conventional doxorubicin in a randomized multicenter trial as first-line therapy of metastatic breast carcinoma. Cancer 2002;94:25-36
  • Dell’Olio M, Scalzulli RP, Sanpaolo G, et al. Non-pegylated liposomal doxorubicin (Myocet) in patients with poor-risk aggressive B-cell non-Hodgkin lymphoma. Leuk Lymphoma 2011;52:1222-9
  • Chan S, Davidson N, Juozaityte E, et al. Phase III trial of liposomal doxorubicin and cyclophosphamide compared with epirubicin and cyclophosphamide as first-line therapy for metastatic breast cancer. Ann Oncol 2004;15:1527-34
  • Galmarini CM, JRM, CD, Dumontet C. Nucleoside analogues: mechanisms of drug resistance and reversal strategies. Leukemia 2001;15(6):875-90
  • Gmeiner WH, Skradis A, Pon RT, Liu J. Cytarabine-induced destabilization of a model Okazaki fragment. Nucl Acids Res 1998;26:2359-65
  • Aye Y, Li M, Long MJC, Weiss RS. Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies. Oncogene 2015;34:2011-21
  • Bhojwani D, Pui C-H. Intrathecal liposomal cytarabine: more friend than foe? Leuk Lymphoma 2008;49:1427-30
  • Jurczak W, Kroll-Balcerzak R, Giebel S, et al. Liposomal cytarabine in the prophylaxis and treatment of CNS lymphoma: toxicity analysis in a retrospective case series study conducted at Polish Lymphoma Research Group Centers. Med Oncol 2015;32:90
  • Angst MS, Drover DR. Pharmacology of drugs formulated with DepoFoam: a sustained release drug delivery system for parenteral administration using multivesicular liposome technology. Clin Pharmacokinet 2006;45:1153-76
  • Gökbuget N, Hartog C-M, Bassan R, et al. Liposomal cytarabine is effective and tolerable in the treatment of central nervous system relapse of acute lymphoblastic leukemia and very aggressive lymphoma. Haematologica 2011;96:238-44
  • Garcia-Marco JA, Panizo C, Garcia ES, et al. Efficacy and safety of liposomal cytarabine in lymphoma patients with central nervous system involvement from lymphoma. Cancer 2009;115:1892-8
  • Shapiro W, Schmid R, Glantz M. A randomized phase III/IV study to determine benefit and safety of cytarabine liposome injection for treatment of neoplastic meningitis. J Clin Oncol 2006;24(S18):1528
  • Jahn F, Jordan K, Behlendorf T, et al. Safety and efficacy of liposomal cytarabine in the treatment of neoplastic meningitis. Oncology 2015;89:137-42
  • Brion A, Helias P, Danguindau E, et al. Efficacy and safety of intrathecal depocyte (liposomal cytarabine) in patients with primary CNS lymphoma (PCNSL) or leukaemic meningitis associated with acute leukaemias: a single institution experience in France. Haematologica 2007;92(S1):Abstr.0736
  • McClune B, Buadi FK, Aslam N, Przepiorka D. Intrathecal liposomal cytarabine for prevention of meningeal disease in patients with acute lymphocytic leukemia and high-grade lymphoma. Leuk Lymphoma 2007;48:1849-51
  • Jabbour E, O’Brien S, Kantarjian H, et al. Neurologic complications associated with intrathecal liposomal cytarabine given prophylactically in combination with high-dose methotrexate and cytarabine to patients with acute lymphocytic leukemia. Blood 2007;109:3214-18
  • Hochberg J, Harrison L, Morris E, et al. Safety of liposomal cytarabine CNS prophylaxis in children, adolescent and young adult hematopoietic stem cell transplant recipients with acute leukemia and non-Hodgkin lymphoma. Bone Marrow Transplant 2016;51:1249-52
  • Clinicaltrials.gov. Treatment for Advanced B-Cell Lymphoma – Tabular View – ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/record/NCT01859819 [Last accessed 10 November 2016]
  • Segot A, Raffoux E, Lengline E, et al. Liposomal cytarabine in prophylaxis or curative treatment of central nervous system involvement in Burkitt leukemia/lymphoma. Ann Hematol 2015;94:1859-63
  • Raj R, Raj PM, Ram A. Lipid based noninvasive vesicular formulation of cytarabine: nanodeformable liposomes. Eur J Pharm Sci 2016;88:83-90
  • Spina M, Chimienti E, Martellotta F, et al. Phase 2 study of intrathecal, long-acting liposomal cytarabine in the prophylaxis of lymphomatous meningitis in human immunodeficiency virus-related non-Hodgkin lymphoma. Cancer 2010;116:1495-501
  • González-Barca E, Canales M, Salar A, et al. Central nervous system prophylaxis with intrathecal liposomal cytarabine in a subset of high-risk patients with diffuse large B-cell lymphoma receiving first line systemic therapy in a prospective trial. Ann Hematol 2016;95:893-9
  • Krawczyk K, Jurczak W, Długosz-Danecka M, et al. Central nervous system prophylaxis with intrathecal liposomal cytarabine in diffuse large B-cell lymphomas. Pol Arch Med Wewn 2013;123:589-95
  • Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 2014;0:364-78
  • Stathopoulos GP, Boulikas T. Lipoplatin formulation review article. J Drug Delivery 2011;2012:e581363
  • Boulikas T. Clinical overview on Lipoplatin: a successful liposomal formulation of cisplatin. Expert Opin Investig Drugs 2009;18:1197-218
  • Boulikas T. Molecular mechanisms of cisplatin and its liposomally encapsulated form, Lipoplatin. Lipoplatin as a chemotherapy and antiangiogenesis drug. 2007;5:349
  • Mylonakis N, Athanasiou A, Ziras N, et al. Phase II study of liposomal cisplatin (Lipoplatin) plus gemcitabine versus cisplatin plus gemcitabine as first line treatment in inoperable (stage IIIB/IV) non-small cell lung cancer. Lung Cancer 2010;68:240-7
  • Jehn CF, Boulikas T, Kourvetaris A, et al. Pharmacokinetics of liposomal cisplatin (Lipoplatin) in combination with 5-FU in patients with advanced head and neck cancer: first results of a phase III study. Anticanc Res 2007;27:471-5
  • Koukourakis MI, Giatromanolaki A, Pitiakoudis M, et al. Concurrent liposomal cisplatin (Lipoplatin), 5-fluorouracil and radiotherapy for the treatment of locally advanced gastric cancer: a phase I/II study. Int J Radiation Oncol Biol Phys 2010;78:150-5
  • Casagrande N, De Paoli M, Celegato M, et al. Preclinical evaluation of a new liposomal formulation of cisplatin, Lipoplatin, to treat cisplatin-resistant cervical cancer. Gynecol Oncol 2013;131:744-52
  • Casagrande N, Celegato M, Borghese C, et al. Preclinical activity of the liposomal cisplatin Lipoplatin in ovarian cancer. Clin Cancer Res 2014;20:5496-506
  • Kipps E, Young K, Starling N. Liposomal irinotecan in gemcitabine-refractory metastatic pancreatic cancer: efficacy, safety and place in therapy. Ther Adv Med Oncol 2017;9:159-70
  • Drummond DC, Noble CO, Guo Z, et al. Development of a highly active nanoliposomal irinotecan using a novel intraliposomal stabilization strategy. Canc Res 2006;66:3271-7
  • Chang TC, Shiah HS, Yang CH, et al. Phase I study of nanoliposomal irinotecan (PEP02) in advanced solid tumor patients. Canc Chemother Pharmacol 2015;75:579-86
  • Chabot GG. Clinical pharmacokinetics of irinotecan. Clin Pharmacokinet 1997;33:245-59
  • Wang-Gillam A, Li C-P, Bodoky G, et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet 2016;387:545-57
  • Hann BPK, Wang D, Gysin S, et al. Lipidic nanoparticle CPT-11 in a bioluminescent orthotopic pancreas cancer model. American Association of Cancer Research Annual Meeting, 2007:abstract 5648
  • Ko AH, Tempero MA, Shan YS, et al. A multinational phase 2 study of nanoliposomal irinotecan sucrosofate (PEP02, MM-398) for patients with gemcitabine-refractory metastatic pancreatic cancer. Br J Cancer 2013;109:920-5
  • Yoo C, Hwang JY, Kim JE, et al. A randomised phase II study of modified FOLFIRI.3 vs modified FOLFOX as second-line therapy in patients with gemcitabine-refractory advanced pancreatic cancer. Br J Cancer 2009;101:1658-63
  • NCT02231723. A Study of BBI608 in Combination With Standard Chemotherapies in Adult Patients With Pancreatic Cancer. Clinicaltrialsgov, 2017. Available at: https://clinicaltrials.gov/ct2/show/NCT02231723
  • NCT02551991. Study of Nanoliposomal Irinotecan (Nal-IRI)-Containing Regimens in Patients With Previously Untreated, Metastatic Pancreatic Adenocarcinoma. Clinicaltrialsgov, 2017. Available at: https://clinicaltrials.gov/ct2/show/NCT02551991
  • NCT02697058. Phase II of BAX2398/5-FU/Calcium Levofolinate in Pancreatic Cancer. Clinicaltrialsgov, 2017. Available at: https://clinicaltrials.gov/ct2/show/NCT02697058
  • Hare J, Lammers T, Ashford M, et al. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev 2017;108:25-38
  • AdisInsightDrugs. Ferumoxytol. 2017. Available at: http://adisinsight.springer.com/drugs/800014223
  • Sachdev JC, Ramanathan RK, Raghunand N, et al. Characterization of metastatic breast cancer lesions with ferumoxytol MRI and treatment response to MM-398, nanoliposomal irinotecan (nal-IRI). Canc Res 2015;75(9 Supplement):Abstract P5-01-06
  • Farrell BT, Hamilton BE, Dosa E, et al. Using iron oxide nanoparticles to diagnose CNS inflammatory diseases and PCNSL. Neurology 2013;81:256-63
  • Hedgire SS, Mino-Kenudson M, Elmi A, et al. Enhanced primary tumor delineation in pancreatic adenocarcinoma using ultrasmall super paramagnetic iron oxide nanoparticle-ferumoxytol: an initial experience with histopathologic correlation. Int J Nanomedicine 2014;9:1891-6
  • Tardi P, Johnstone S, Harasym N, et al. In vivo maintenance of synergistic cytarabine:daunorubicin ratios greatly enhances therapeutic efficacy. Leukemia Res 2009;33:129-39
  • Feldman EJ, Lancet JE, Kolitz JE, et al. First-in-man study of CPX-351: a liposomal carrier containing cytarabine and daunorubicin in a fixed 5:1 molar ratio for the treatment of relapsed and refractory acute myeloid leukemia. J Clin Oncol 2011;29:979-85
  • Lancet JE, Cortes JE, Hogge DE, et al. Phase 2 trial of CPX-351, a fixed 5:1 molar ratio of cytarabine/daunorubicin, vs cytarabine/daunorubicin in older adults with untreated AML. Blood 2014;123:3239-46
  • Cortes JE, Goldberg SL, Feldman EJ, et al. Phase II, multicenter, randomized trial of CPX-351 (cytarabine:daunorubicin) liposome injection versus intensive salvage therapy in adults with first relapse AML. Cancer 2015;121:234-42
  • Lancet JE, Uy GL, Cortes JE, et al. Final results of a phase III randomized trial of CPX-351 versus 7 + 3 in older patients with newly diagnosed high risk (secondary) AML. J Clin Oncol 2016;34(15 Suppl):7000
  • USFDA. FDA approves first treatment for certain types of poor-prognosis acute myeloid leukemia. 2017. Available at:
  • Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002;54:631-51
  • Gu FX, Karnik R, Wang AZ, et al. Targeted nanoparticles for cancer therapy. Nano Today 2007;2:14-21
  • Liechty WB, Peppas NA. Expert opinion: responsive polymer nanoparticles in cancer therapy. Eur J Pharmaceut Biopharmaceut 2012;80:241-6
  • Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 2000;41:147-62
  • Yoo HS, Park TG. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release 2004;96:273-83
  • Thomas T, Huang B, Choi S, et al. Polyvalent dendrimer-methotrexate as a folate receptor-targeted cancer therapeutic. Mol Pharm 2012;9:2669-76
  • Tabasi O, Falamaki C, Khalaj Z. Functionalized mesoporous silicon for targeted-drug-delivery. Colloids Surf B Biointerfaces 2012;98:18-25
  • Sahoo SK, Labhasetwar V. Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Mol Pharmaceut 2005;2:373-83
  • Sahoo SK, Ma W, Labhasetwar V. Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int J Canc 2004;112:335-40
  • Guo Y, Wang L, Lv P, Zhang P. Transferrin-conjugated doxorubicin-loaded lipid-coated nanoparticles for the targeting and therapy of lung cancer. Oncol Lett 2015;9:1065-72
  • Dhar S, Gu FX, Langer R, et al. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci USA 2008;105:17356-61
  • Estévez M, Huang Y, Kang H, et al. Nanoparticle–aptamer conjugates for cancer cell targeting and detection. Methods Mol Biol 2010;624:235-48
  • Kang H, O’Donoghue MB, Liu H, Tan W. A liposome-based nanostructure for aptamer directed delivery. Chem Commun 2010;46:249-51
  • Mann AP, Bhavane RC, Somasunderam A, et al. Thioaptamer conjugated liposomes for tumor vasculature targeting. Oncotarget 2011;2:298-304
  • Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat Biotechnol 2005;23:1147-57
  • Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2004;56:1649-59
  • Weber J. Review: anti CTLA-4 antibody ipilimumab: case studies of clinical response and immune-related adverse events. Oncologist 2007;12:864-72
  • Weiner LM, Surana R, Wang S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 2010;10:317-27
  • Hoffmann T, Hafner D, Ballo H, et al. Antitumor activity of anti-epidermal growth factor receptor monoclonal antibodies and cisplatin in ten human head and neck squamous cell carcinoma lines. Anticanc Res 1997;17:4419-25
  • Nobs L, Buchegger F, Gurny R, Allémann E. Biodegradable nanoparticles for direct or two-step tumor immunotargeting. Bioconjugate Chemistry 2006;17:139-45
  • Lipson E, Drake C. Ipilimumab: an anti-CTLA-4 antibody for metastatic melanoma. Clin Cancer Res 2011;17:6958-62
  • O’Brien S, Osterborg A. Ofatumumab: a new CD20 monoclonal antibody therapy for B-cell chronic lymphocytic leukemia. Clin Lymphoma Myeloma Leuk 2010;10:361-8
  • Kim G, Grothey A. Targeting colorectal cancer with human anti-EGFR monoclonocal antibodies: focus on panitumumab. Biologics 2008;2:223-8
  • Nasongkla N, Shuai X, Ai H, et al. cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angewandte Chemie International Edition 2004;43:6323-7
  • Xin H, Jiang X, Gu J, et al. Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma. Biomaterials 2011;32:4293-305
  • Phillips MA, Gran ML, Peppas NA. Targeted nanodelivery of drugs and diagnostics. Nano Today 2010;5:143-59
  • Bharali DJ, Khalil M, Gurbuz M, et al. Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int J Nanomedicine 2009;4:1-7
  • Schiff PB, Horwitz SB. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci USA 1980;77:1561-5
  • Hawkins MJ, Soon-Shiong P, Desai N. Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 2008;60:876-85
  • Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release 2008;132:171-83
  • Guarneri V, Dieci MV, Conte P. Enhancing intracellular taxane delivery: current role and perspectives of nanoparticle albumin-bound paclitaxel in the treatment of advanced breast cancer. Expert Opin Pharmacother 2012;13:395-406
  • Lenz H-J. Management and preparedness for infusion and hypersensitivity reactions. Oncologist 2007;12:601-9
  • Tallal L, Tan C, Oettgen H, et al. E. coli L-asparaginase in the treatment of leukemia and solid tumors in 131 children. Cancer 1970;25:306-20
  • Avramis VI, Tiwari PN. Asparaginase (native ASNase or pegylated ASNase) in the treatment of acute lymphoblastic leukemia. Int J Nanomedicine 2006;1:241-54
  • Dromi S, Frenkel V, Luk A, et al. Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin Cancer Res 2007;13:2722-7
  • Poon RTP, Borys N. Lyso-thermosensitive liposomal doxorubicin: a novel approach to enhance efficacy of thermal ablation of liver cancer. Expert Opin Pharmacother 2009;10:333-43
  • Celsion. Celsion Announces Presentation Highlighting Phase III OPTIMA Study at the Asia-Pacific Primary Liver Cancer Expert Meeting (NASDAQ:CLSN). 2016. Available at: http://investor.celsion.com/releasedetail.cfm?releaseid =978853 [Last accessed 10 November 2016]
  • Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annu Rev Med 2012;63:185-98
  • Melancon MP, Stafford RJ, Li C. Challenges to effective cancer nanotheranostics. J Control Release 2012;164:177-82
  • Libutti S, Paciotti G, Myer L, et al. Results of a completed phase I clinical trial of CYT- 6091: a peglated colloidal gold-TNF. Nanomedicine 2009;27:3586
  • Libutti SK, Paciotti GF, Byrnes AA, et al. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Canc Res 2010;16:6139-49
  • Trivedi N, Patel N, Upadhyay U, Sha S. Gold nanoparticulate drug delivery system: a review. Pharmacie Globale Int J Comprehensive Pharm 2012;3:1-5
  • Reimer P, Tombach B. Hepatic MRI with SPIO: detection and characterization of focal liver lesions. Eur Radiol 1998;8:1198-204
  • Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 2001;11:2319-31
  • Weissleder R, Stark DD, Engelstad BL, et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am J Roentgenol 1989;152:167-73
  • Wang Y-XJ. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg 2011;1:35-40[Database]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.