225
Views
89
CrossRef citations to date
0
Altmetric
Research Article

BMP Responsiveness in Human Mesenchymal Stem Cells

, , &
Pages 305-311 | Published online: 06 Aug 2009

References

  • Hogan, B.L.M. (1996). Bone morphogenetic proteins: Multifunctional regulators of vertebrate development. Genes Dev. 10:1580–1594.
  • Lecanda, F., Avioli, L.V., and Cheng, S.L. (1997). Regulation of bone matrix protein expression and induction of differentiation of human os- teoblasts and human bone marrow stromal cells by bone morphogenetic protein-2. J. Cell Biochem. 67:386–398.
  • Cheifetz, S., Li, I.W.S., McCulloch, C.A.G., Sampath, K., and Sodek,J. (1996). Influence of osteogenic protein-1 (OP-1;BMP-7) and trans- forming growth factor-β1 on bone formation in vitro. Connect. Tiss. Res. 34(5):125–132.
  • Sampath, T.K., Maliakal, J.C., Hauschka, P.V., Jones, W.K., Sasak, H.,Tucker, R.F., White, K.H., Coughlin, J.E., Tucker, M.M., Pang, R.H.L., Corbett, C., O<sup>¨</sup> zkaynak, E., Oppermann, H., and Rueger, D.C. (1992). Re- combinant human osteogenic protein-1 (hOP-1) induces new bone for- mation in vivo with a specific activity comparable with natural bovine osteogenic protein and stimulates osteoblast proliferation and differentia- tion in vitro. J. Biol. Chem. 267:20352–20362.
  • Puleo, D.A. (1997). Dependence of mesenchymal cell responses on dura- tion of exposure to bone morphogenetic protein-2 in vitro. J. Cell Physiol. 173:93–101.
  • Fromigue´, O., Marie, P.J., and Lomri, A. (1998). Bone morphogenetic protein-2 and transforming growth factor-β2 interact to modulate hu- man bone marrow stromal cell proliferation and differentiation. J. Cell Biochem. 68:411–426.
  • Yamaguchi, A., Ishizuya, T., Kintou, N., Wada, Y., Katagiri, T., Wozney, J.M., Rosen, V., and Yoshiki, S. (1996). Effects of BMP-2, BMP-4, and BMP-6 on osteoblastic differentiation of bone marrow-derived stromal cell lines, ST2 and MC3T3-G2/PA6. Biochem. Biophys. Res. Comm. 220:366–371.
  • Reddi, A.H. (1995). Bone morphogenetic proteins, bone marrow stromal cells, and mesenchymal stem cells: Maureen Owen revisited. Clin. Orthop. 313:115–119.
  • Rickard, D.J., Sullivan, T.A., Shenker, B.J., Leboy, P.S., and Kazhdan, I. (1994). Induction of rapid osteoblast differentiation in rat bone marrow stromal cell cultures by dexamethasone and BMP-2. Dev. Biol. 161:218–228.
  • Abe, E., Yamamoto, M., Taguchi, Y., Lecka-Czernik, B., O’Brien, C.A., Economides, A.N., Stahl, N., Jilka, R.L., and Manolagas, S.C. (2000). Essential requirement of BMPs-2/4 for both osteoblast and osteoclast for- mation in murine bone marrow cultures from adult mice: Antagonism by noggin. J. Bone Miner. Res. 15:663–673.
  • Wozney, J.M., and Rosen, V. (1998). Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair. Clin. Orthop. Related Res. 346:26–37.
  • Lane, J.M. (2001). BMPs: Why are they not in everyday use? J. Bone Joint Surg. [Am.] 83A:S161–S163.
  • Service, R. (2000). Tissue engineers build new bone. Science 289:1498–1500.
  • Boden, S.D. (2001). Clinical application of the BMPs. J. Bone Joint Surg. [Am.] 83A:S161.
  • Hollinger, J.O., Schmitt, J.M., Buck, D.C., Shannon, R., Joh, S.P., Zegzula, H.D., and Wozney, J.M. (1998). Recombinant human bone morphogenetic protein-2 and collagen for bone regeneration. J. Biomed. Mater. Res. 43:356–364.
  • Hanada, K., Dennis, J.E., and Caplan, A.I. (1997). Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. J. Bone Miner. Res. 12:1606–1614.
  • Harada, K., Oida, S., and Sasaki, S. (1988). Chondrogenesis and osteoge- nesis of bone marrow-derived cells by bone-inductive factor. Bone 9:177–183.
  • Chen, T.L., Shen, W.J., and Kraemer, F.B. (2001). Human BMP-7/ OP-1 induces the growth and differentiation of adipocytes and os- teoblasts in bone marrow stromal cell cultures. J. Cell Biochem. 82:187–199.
  • Balk, M.L., Bray, J., Day, C., Epperly, M., Greenberger, J., Evans, C.H., and Niyibizi, C. (1997). Effect of rhBMP-2 on the osteogenic potential of bone marrow stromal cells from an osteogenesis imperfecta mouse (oim). Bone 21:7–15.
  • Lecoeur, L., and Ouhayoun, J.P. (1997). In vitro induction of osteogenic differentiation from non-osteogenic mesenchymal cells. Biomaterials 18:989–993.
  • Locklin, R.M., Williamson, M.C., Beresford, J.N., Triffitt, J.T., and Owen, M.E. (1995). In vitro effects of growth factors and dexamethasone on rat marrow stromal cells. Clin. Orthop. 313:27–35.
  • Tenenbaum, H.C., Kamalia, N., Sukhu, B., Limeback, H., and McCulloch,C.A.G. (1995). Probing glucocorticoid-dependent osteogenesis in rat and chick cells in vitro by specific blockade of osteoblastic differentiation with progesterone and RU38486. Anat. Rec. 242:200–210.
  • Leboy, P.S., Beresford, J.N., Devlin, C., and Owen, M.E. (1991). Dex- amethasone induction of osteoblast mRNAs in rat marrow stromal cell cultures. J. Cell Physiol. 146:370–378.
  • Krebsbach, P.H., Kuznetsov, S.A., Satomura, K., Emmons, R.V.B., Rowe, D.W., and Robey, P.G. (1997). Bone formation in vivo: Comparison of os- teogenesis by transplanted mouse and human marrow stromal fibroblasts. Transplantation 63:1059–1069.
  • Beresford, J.N., Joyner, C.J., Devlin, C., and Triffitt, J.T. (1994). The effects of dexamethasone and 1,25-dihydroxyvitamin D3 on osteogenic differentiation of human marrow stromal cells in vitro. Arch. Oral Biol. 39:941–947.
  • Cheng, S.L., Yang, J.W., Rifas, L., Zhang, S.-F., and Avioli, L.V. (1994). Differentiation of human bone marrow osteogenic stromal cells in vitro: Induction of the osteoblast phenotype by dexamethasone. Endocrinology 134:277–286.
  • Mueller, S.M., and Glowacki, J. (2001). Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. J. Cell Biochem. 82:583–590.
  • D’Ippolito, G., Schiller, P.C., Ricordi, C., Roos, B.A., and Howard, G.A. (1999). Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J. Bone Miner. Res. 14:115–1122.
  • Triffitt, J.T., Joyner, C.J., Oreffo, R.O.C., and Virdi, A.S. (1998). Osteoge- nesis: Bone development from primitive progenitors. Biochem. Soc. Trans. 26:21–27.
  • Fleet, J.C., Cashman, K., Cox, K., and Rosen, V. (1996). The effects of aging on the bone inductive activity of recombinant human bone morpho- genetic protein-2. Endocrinology 137:4605–4610.
  • Nifuji, A., and Noda, M. (1999). Coordinated expression of noggin and bone morphogenetic proteins (BMPs) during early skeletogenesis and in- duction of noggin expression by BMP-7. J. Bone Miner. Res. 14:2057–2066.
  • Nifuji, A., Kellermann, O., and Noda, M. (1999). Noggin expression in a mesodermal pluripotent cell line C1 and its regulation by BMP. J. Cell Biochem. 73:437–444.
  • Ito, H., Akiyama, H., Shigeno, C., and Nakamura, T. (1999). Noggin and bone morphogenetic protein-4 coordinately regulate the progression of chondrogenic differentiation in mouse clonal EC cells, ATDC5. Biochem. Biophys. Res. Comm. 260:240–244.
  • Kameda, T., Koike, C., Saitoh, K., Kuroiwa, A., and Iba, H. (1999). Devel- opmental patterning in chondrocytic cultures by morphogenic gradients: BMP induces expression of Indian hedgehog and Noggin. Genes to Cells 4:175–184.
  • Gazzerro, E., Gangji, V., and Canalis, E. (1998). Bone morphogenetic proteins induce the expression of noggin, which limits their activity in cultured rat osteoblasts. J. Clin. Invest. 102:2106–2114.
  • Mathieu, E., and Merregaert, J. (1994). Characterization of the stromal osteogenic cell line MN7: mRNA Steady-state level of selected osteogenic markers depends on cell density and is influenced by 17β-estradiol. J. Bone Miner. Res. 9:183–192.
  • Hay¨, E., Lemonnier, J., Fromigue´, O., and Marie, P.J. (2001). Bone morphogenetic protein-2 promotes osteoblast apoptosis through a Smad- independent, protein kinase C-dependent signaling pathway. J. Biol. Chem. 276:29028–29036.
  • Ebisawa, T., Tada, K., Kitajima, I., Tojo, K., Sampath, T.K., Kawabata, M., Miyazono, K., and Imamura, T. (1999). Characterization of bone morphogenetic protein-6 signaling pathways in osteoblast differentiation. J. Cell Sci. 112:3519–3527.
  • Palcy, S., and Goltzman, D. (1999). Protein kinase signalling pathways involved in the up-regulation of the rat α1(I) collagen gene by transforminggrowth factor β1 and bone morphogenetic protein 2 in osteoblastic cells. Biochem. J. 343:21–27.
  • McMahon, J.A., Takada, S., Zimmerman, L.B., Fan, C.M., Harland, R.M., and McMahon, A.P. (1998). Noggin-mediated antagonism of BMP sig- naling is required for growth and patterning of the neural tube and somite. Genes Dev. 12:1438–1452.
  • Reshef, R., Maroto, M., and Lassar, A.B. (1998). Regulation of dorsal somitic cell fates: BMPs and Noggin control the timing and pattern of myogenic regulator expression. Genes Dev. 12:290–303.
  • Selleck, M.A., Garc´ıa-Castro, M.I., Artinger, K.B., and Bronner-Fraser, M. (1998). Effects of Shh and Noggin on neural crest formation demonstrate that BMP is required in the neural tube but not ectoderm. Development 125:4919–4930.
  • Hirsinger, E., Duprez, D., Jouve, C., Malapert, P., Cooke, J., and Pourquie´, O. (1997). Noggin acts downstream of Wnt and Sonic Hedgehog to an- tagonize BMP4 in avian somite patterning. Development 124:4605–4614.
  • Schultheiss, T.M., Burch, J.B.E., and Lassar, A.B. (1997). A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev. 11:451–462.
  • Lou, J., Tu, Y., Li, S., and Manske, P.R. (2000). Involvement of ERK in BMP-2 induced osteoblastic differentiation of mesenchymal progenitor cell line C3H10T1/2. Biochem. Biophys. Res. Comm. 268:757–762.
  • Attisano, L., and Wrana, J.L. (2000). Smads as transcriptional co- modulators. Curr. Opin. Cell Biol. 12:235–243.
  • Massague´, J., and Wotton, D. (2000). Transcriptional control by the TGF-β/Smad signaling system. EMBO J. 19:1745–1754.
  • Hullinger, T.G., Pan, Q., Viswanathan, H.L., and Somerman, M.J. (2001). TGFβ and BMP-2 activation of the OPN promoter: Roles of Smad- and Hox-binding elements. Exp. Cell Res. 262:69–74.
  • Yang, X.L., Ji, X.H., Shi, X.M., and Cao, X. (2000). Smad1 domains interacting with hoxc-8 induce osteoblast differentiation. J. Biol. Chem. 275:1065–1072.
  • Verschueren, K., Remacle, J.E., Collart, C., Kraft, H., Baker, B.S., Tylzanowski, P., Nelles, L., Wuytens, G., Su, M.T., Bodmer, R., Smith, J.C., and Huylebroeck, D. (1999). SIP1, a novel zinc finger homeodomain repressor, interacts with Smad proteins and binds to 5<sup>1</sup>-CACCT sequences in candidate target genes. J. Biol. Chem. 274:20489–20498.
  • Hata, A., Seoane, J., Lagna, G., Montalvo, E., Hemmati-Brivanlou, A., and Massague´, J. (2000). OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways. Cell 100:229–240.
  • Merriman, H.L., van Wijnen, A.J., Hiebert, S.W., Bidwell, J.P., Fey, E., Lian, J.B., Stein, J., and Stein, G.S. (1995). The tissue-specific nuclear matrix protein, NMP-2, is a member of the AML/CBF/PEBP2/Runt do- main transcription factor family: Interactions with the osteocalcin gene promoter. Biochem. 34:13125–13132.
  • Ducy, P., Zhang, R., Geoffroy, V., Ridall, A.L., and Karsenty, G. (1997). Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell 89:747–754.
  • Otto, F., Thornell, A.P., Crompton, T., Denzel, A., Gilmour, K.C., Rosewell, I.R., Stamp, G.W.H., Beddington, R.S.P., Mundlos, S., Olsen, B.R., Selby, P.B., and Owen, M.J. (1997). Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentia- tion and bone development. Cell 89:765–771.
  • Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K.,Shimizu, Y., Bronson, R.T., Gao, Y.H., Inada, M., Sato, M., Okamoto, R., Kitamura, Y., Yoshiki, S., and Kishimoto, T. (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764.
  • Ducy, P., Starbuck, M., Priemel, M., Shen, J.H., Pinero, G., Geoffroy, V., Amling, M., and Karsenty, G. (1999). A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev. 13:1025–1036.
  • Lee, M.H., Javed, A., Kim, H.J., Shin, H.I., Gutierrez, S., Choi, J.Y.,Rosen, V., Stein, J.L., van Wijnen, A.J., Stein, G.S., Lian, J.B., and Ryoo, H.M. (1999). Transient upregulation of CBFA1 in response to bone mor- phogenetic protein-2 and transforming growth factor β1 in C2C12 myo- genic cells coincides with suppression of the myogenic phenotype but is not sufficient for osteoblast differentiation. J. Cell Biochem. 73:114–125.
  • Tsuji, K., Ito, Y., and Noda, M. (1998). Expression of the PEBP2αA/ AML3/CBFA1 gene is regulated by BMP4/7 heterodimer and its over-expression suppresses type I collagen and osteocalcin gene expression in osteoblastic and nonosteoblastic mesenchymal cells. Bone 22:87–92.
  • Hanai, J., Chen, L.F., Kanno, T., Ohtani-Fujita, N., Kim, W.Y., Guo, W.H., Imamura, T., Ishidou, Y., Fukuchi, M., Shi, M.J., Stavnezer, J., Kawabata, M., Miyazono, K., and Ito, Y. (1999). Interaction and functional coop- eration of PEBP2/CBF with Smads—Synergistic induction of the im- munoglobulin germline Cα promoter. J. Biol. Chem. 274:31577–31582.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.