297
Views
30
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Modulation of Intracellular Reactive Oxygen Species Level in Chondrocytes by IGF-1, FGF, and TGF-β1

, , , &
Pages 149-158 | Received 20 Nov 2006, Accepted 03 Mar 2007, Published online: 06 Aug 2009

REFERENCES

  • Conlon I., Raff M. Size control in animal development. Cell. 1999; 96: 235–244
  • Bruckner P., Horler I., Mendler M., Houze Y., Winterhalter K. H., Eich-Bender S. G., Spycher M. A. Induction and prevention of chondrocyte hypertrophy in culture. J. Cell Biol. 1989; 109: 2537–2545
  • Michel C., Vincent F., Duval C., Poelman M. C., Adolphe M. Toxic effects and detection of oxygen free radicals on cultured articular chondrocytes generated by menadione. Free Radical Res. Commun. 1992; 17: 279–289
  • Vincent F., Brun H., Clain E., Ronot X., Adolphe M. Effects of oxygen-free radicals on proliferation kinetics of cultured rabbit articular chondrocytes. J. Cell Physiol. 1989; 141: 262–266
  • Ishizaki Y., Burne J. F., Raff M. C. Autocrine signals enable chondrocytes to survive in culture. J. Cell Biol. 1994; 126: 1069–1077
  • Oh C. D., Chun J. S. Signaling mechanisms leading to the regulation of differentiation and apoptosis of articular chondrocytes by insulin-like growth factor-1. J. Biol. Chem. 2003; 278: 36563–36571
  • Loeser R. F., Pacione C. A., Chubinskaya S. The combination of insulin-like growth factor 1 and osteogenic protein 1 promotes increased survival of and matrix synthesis by normal and osteoarthritic human articular chondrocytes. Arth. Rheum. 2003; 48: 2188–2196
  • van Osch G. J., Van den Berg W. B., Hunziker E. B., Hauselmann H. J. Differential effects of IGF-1 and TGF beta-2 on the assembly of proteoglycans in pericellular and territorial matrix by cultured bovine articular chondrocytes. Osteoarth. Cart. 1998; 6: 187–195
  • Verschure P. J., van der Kraan P. M., Vitters E. L., Van den Berg W. B. Stimulation of proteoglycan synthesis by triamcinolone acetonide and insulin-like growth factor 1 in normal and arthritic murine articular cartilage. J. Rheumatol. 1994; 21: 920–926
  • van der Kraan P. M., Vitters E. L., Van den Berg W. B. Inhibition of proteoglycan synthesis by transforming growth factor beta in anatomically intact articular cartilage of murine patellae. Ann. Rheum. Dis. 1992; 51: 643–647
  • van der Kraan P. M., Buma P., van Kuppevelt T., Van den Berg W. B. Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarth. Cart. 2002; 10: 631–637
  • Wroblewski J., Edwall-Arvidsson C. Inhibitory effects of basic fibroblast growth factor on chondrocyte differentiation. J. Bone Miner. Res. 1995; 10: 735–742
  • Martin I., Vunjak-Novakovic G., Yang J., Langer R., Freed L. E. Mammalian chondrocytes expanded in the presence of fibroblast growth factor 2 maintain the ability to differentiate and regenerate three-dimensional cartilaginous tissue. Exp. Cell Res. 1999; 253: 681–688
  • Lee E. A., Seo J. Y., Jiang Z., Yu M. R., Kwon M. K., Ha H., Lee H. B. Reactive oxygen species mediate high glucose-induced plasminogen activator inhibitor-1 up-regulation in mesangial cells and in diabetic kidney. Kidney Int. 2005; 67: 1762–1771
  • Ayache N., Boumediene K., Mathy-Hartert M., Reginster J. Y., Henrotin Y., Pujol J. P. Expression of TGF-betas and their receptors is differentially modulated by reactive oxygen species and nitric oxide in human articular chondrocytes. Osteoarth. Car. 2002; 10: 344–352
  • Glansbeek H. L., van Beuningen H. M., Vitters E. L., van der Kraan P. M., Van den Berg W. B. Stimulation of articular cartilage repair in established arthritis by local administration of transforming growth factor-beta into murine knee joints. Lab Invest. 1998; 78: 133–142
  • Fortier L. A., Nixon A. J., Mohammed H. O., Lust G. Altered biological activity of equine chondrocytes cultured in a three-dimensional fibrin matrix and supplemented with transforming growth factor beta-1. Am. J. Vet. Res. 1997; 58: 66–70
  • Serra R., Johnson M., Filvaroff E. H., LaBorde J., Sheehan D. M., Derynck R., Moses H. L. Expression of a truncated, kinase-defective TGF-beta type II receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis. J. Cell Biol. 1997; 139: 541–552
  • Boumediene K., Conrozier T., Mathieu P., Richard M., Marcelli C., Vignon E., Pujol J. P. Decrease of cartilage transforming growth factor-beta receptor II expression in the rabbit experimental osteoarthritis–potential role in cartilage breakdown. Osteoarth. Cart. 1998; 6: 146–149
  • Mi Z., Ghivizzani S. C., Lechman E., Glorioso J. C., Evans C. H., Robbins P. D. Adverse effects of adenovirus-mediated gene transfer of human transforming growth factor beta 1 into rabbit knees. Arth. Res. Ther. 2003; 5: R132–R139
  • van Beuningen H. M., Glansbeek H. L., van der Kraan P. M., Van den Berg W. B. Osteoarthritis-like changes in the murine knee joint resulting from intra-articular transforming growth factor-beta injections. Osteoarth. Cart. 2000; 8: 25–33
  • Li W. Q., Qureshi H. Y., Liacini A., Dehnade F., Zafarullah M. Transforming growth factor Beta1 induction of tissue inhibitor of metalloproteinases 3 in articular chondrocytes is mediated by reactive oxygen species. Free Radic. Biol. Med. 2004; 37: 196–207
  • Dugan L. L., Creedon D. J., Johnson E. M., Jr., Holtzman D. M. Rapid suppression of free radical formation by nerve growth factor involves the mitogen-activated protein kinase pathway. Proc. Natl. Acad. Sci. USA. 1997; 94: 4086–4091
  • Noble N. A., Harper J. R., Border W. A. In vivo interactions of TGF-beta and extracellular matrix. Prog. Growth Factor Res. 1992; 4: 369–382
  • Qi W. N., Scully S. P. Extracellular collagen modulates the regulation of chondrocytes by transforming growth factor-beta 1. J. Orthop. Res. 1997; 15: 483–490
  • Qi W. N., Scully S. P. Extracellular collagen regulates expression of transforming growth factor-beta1 gene. J. Orthop. Res. 2000; 18: 928–932
  • von der M. K., Gauss V., von der M. H., Muller P. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature. 1977; 267: 531–532
  • Jallali N., Ridha H., Thrasivoulou C., Underwood C., Butler P. E., Cowen T. Vulnerability to ROS-induced cell death in ageing articular cartilage: the role of antioxidant enzyme activity. Osteoarth. Cart. 2005; 13: 614–622
  • Cohen G., Dembiec D., Marcus J. Measurement of catalase activity in tissue extracts. Anal. Biochem. 1970; 34: 30–38
  • Paglia D. E., Valentine W. N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab Clin. Med. 1967; 70: 158–169
  • Grogan S. P., Aklin B., Frenz M., Brunner T., Schaffner T., Mainil-Varlet P. In vitro model for the study of necrosis and apoptosis in native cartilage. J. Pathol. 2002; 198: 5–13
  • Frenkel S. R., Saadeh P. B., Mehrara B. J., Chin G. S., Steinbrech D. S., Brent B., Gittes G. K., Longaker M. T. Transforming growth factor beta superfamily members: role in cartilage modeling. Plast. Reconstr. Surg. 2000; 105: 980–990
  • Droge W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002; 82: 47–95
  • Suzukawa K., Miura K., Mitsushita J., Resau J., Hirose K., Crystal R., Kamata T. Nerve growth factor-induced neuronal differentiation requires generation of Rac1-regulated reactive oxygen species. J. Biol. Chem. 2000; 275: 13175–13178
  • Bae Y. S., Kang S. W., Seo M. S., Baines I. C., Tekle E., Chock P. B., Rhee S. G. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem. 1997; 272: 217–221
  • Gu Y., Wang C., Cohen A. Effect of IGF-1 on the balance between autophagy of dysfunctional mitochondria and apoptosis. FEBS Lett. 2004; 577: 357–360
  • Meister A. Glutathione metabolism and its selective modification. J. Biol. Chem. 1988; 263: 17205–17208
  • Carlo M. D., Jr., Loeser R. F. Increased oxidative stress with aging reduces chondrocyte survival: correlation with intracellular glutathione levels. Arth. Rheum. 2003; 48: 3419–3430
  • Monsonego E., Halevy O., Gertler A., Hurwitz S., Pines M. Growth hormone inhibits differentiation of avian epiphyseal growth-plate chondrocytes. Mol. Cell Endocrinol. 1995; 114: 35–42
  • Gustafsson H., Soderdahl T., Jonsson G., Bratteng J. O., Forsby A. Insulin-like growth factor type 1 prevents hyperglycemia-induced uncoupling protein 3 down-regulation and oxidative stress. J. Neurosci. Res. 2004; 77: 285–291
  • Chrysis D., Zaman F., Chagin A. S., Takigawa M., Savendahl L. Dexamethasone induces apoptosis in proliferative chondrocytes through activation of caspases and suppression of the Akt-phosphatidylinositol 3′-kinase signaling pathway. Endocrinology. 2005; 146: 1391–1397
  • Zhong J., Deng J., Phan J., Dlouhy S., Wu H., Yao W., Ye P., D'Ercole A. J., Lee W. H. Insulin-like growth factor-I protects granule neurons from apoptosis and improves ataxia in weaver mice. J. Neurosci. Res. 2005; 80: 481–490
  • Subramaniam S., Shahani N., Strelau J., Laliberte C., Brandt R., Kaplan D., Unsicker K. Insulin-like growth factor 1 inhibits extracellular signal-regulated kinase to promote neuronal survival via the phosphatidylinositol 3-kinase/protein kinase A/c-Raf pathway. J. Neurosci. 2005; 25: 2838–2852
  • Fernandez M., Sanchez-Franco F., Palacios N., Sanchez I., Fernandez C., Cacicedo L. IGF-I inhibits apoptosis through the activation of the phosphatidylinositol 3-kinase/Akt pathway in pituitary cells. J. Mol. Endocrinol. 2004; 33: 155–163
  • Loeser R. F., Shanker G., Carlson C. S., Gardin J. F., Shelton B. J., Sonntag W. E. Reduction in the chondrocyte response to insulin-like growth factor 1 in aging and osteoarthritis: studies in a non-human primate model of naturally occurring disease. Arth. Rheum. 2000; 43: 2110–2120
  • Rousseau N., Brazeau P., Lapierre H., Abribat T. Effect of aging on growth hormone-induced insulin-like growth factor-I secretion from cultured rat chondrocytes. Growth Horm. IGF. Res. 1998; 8: 403–409

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.