188
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Macrophages in the process of osseointegration around the implant and their regulatory strategies

, , , , , , , , & show all
Pages 1-15 | Received 08 Sep 2023, Accepted 15 Dec 2023, Published online: 07 Jan 2024

References

  • Xu X, Li Y, Wang L, Li Y, Pan J, Fu X, Luo Z, Sui Y, Zhang S, Wang L, Ni Y, Zhang L, Wei S. Triple-functional polyetheretherketone surface with enhanced bacteriostasis and anti-inflammatory and osseointegrative properties for implant application. Biomaterials. 2019;212:98–114.
  • Trindade R, Albrektsson T, Galli S, Prgomet Z, Tengvall P, Wennerberg A. Bone immune response to materials, part i: titanium, peek and copper in comparison to sham at 10 days in rabbit tibia. J Clin Med. 2018;7(12):526. doi:10.3390/jcm7120526.
  • Trindade R, Albrektsson T, Tengvall P, Wennerberg A. Foreign body reaction to biomaterials: on mechanisms for buildup and breakdown of osseointegration. Clin Implant Dent Relat Res. 2016;18(1):192–203. doi:10.1111/cid.12274.
  • Xia Y, He X-T, Xu X-Y, Tian B-M, An Y, Chen F-M. Exosomes derived from m0, m1 and m2 macrophages exert distinct influences on the proliferation and differentiation of mesenchymal stem cells. PeerJ. 2020;8(e8970):e8970. doi:10.7717/peerj.8970.
  • Qiao W, Xie H, Fang J, Shen J, Li W, Shen D, Wu J, Wu S, Liu X, Zheng Y, Cheung KMC, Yeung KWK. Sequential activation of heterogeneous macrophage phenotypes is essential for biomaterials-induced bone regeneration. Biomaterials. 2021;276:121038.
  • Roszer T. Understanding the mysterious m2 macrophage through activation markers and effector mechanisms. Mediators Inflamm. 2015;2015(816460):1–16. doi:10.1155/2015/816460.
  • Chavez-Galan L, Olleros ML, Vesin D, Garcia I. Much more than m1 and m2 macrophages, there are also cd169(+) and tcr(+) macrophages. Front Immunol. 2015;6(263). doi:10.3389/fimmu.2015.00263.
  • Batoon L, Millard SM, Wullschleger ME, Preda C, Wu AC, Kaur S, Tseng HW, Hume DA, Levesque JP, Raggatt LJ, Pettit AR. Cd169(+) macrophages are critical for osteoblast maintenance and promote intramembranous and endochondral ossification during bone repair. Biomaterials. 2019;196:51–66.
  • Tardito S, Martinelli G, Soldano S, Paolino S, Pacini G, Patane M, Alessandri E, Smith V, Cutolo M. Macrophage m1/m2 polarization and rheumatoid arthritis: a systematic review. Autoimmun Rev. 2019;18(11):102397. doi:10.1016/j.autrev.2019.102397.
  • Zhang B, Su Y, Zhou J, Zheng Y, Zhu D. Toward a better regeneration through implant-mediated immunomodulation: harnessing the immune responses. Adv Sci (Weinh). 2021;8(16):e2100446. doi:10.1002/advs.202100446.
  • Schlundt C, El Khassawna T, Serra A, Dienelt A, Wendler S, Schell H, van Rooijen N, Radbruch A, Lucius R, Hartmann S, Duda GN, Schmidt-Bleek K. Macrophages in bone fracture healing: their essential role in endochondral ossification. Bone. 2018;106:78–89.
  • Lin T-H, Tamaki Y, Pajarinen J, Waters HA, Woo DK, Yao Z, Goodman SB. Chronic inflammation in biomaterial-induced periprosthetic osteolysis: nf-κb as a therapeutic target. Acta Biomater. 2014;10(1):1–10. doi:10.1016/j.actbio.2013.09.034.
  • Wei F, Zhou Y, Wang J, Liu C, Xiao Y. The immunomodulatory role of bmp-2 on macrophages to accelerate osteogenesis. Tissue Eng Part A. 2018;24(7–8):584–594. doi:10.1089/ten.tea.2017.0232.
  • Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016;44(3):450–462. doi:10.1016/j.immuni.2016.02.015.
  • Araújo-Gomes N, Romero-Gavilán F, Zhang Y, Martinez-Ramos C, Elortza F, Azkargorta M, Martín de Llano JJ, Gurruchaga M, Goñi I, van den Beucken JJJP. Complement proteins regulating macrophage polarisation on biomaterials. Colloids Surf B Biointerfaces. 2019;181:125–133.
  • Walsh MC, Takegahara N, Kim H, Choi Y. Updating osteoimmunology: regulation of bone cells by innate and adaptive immunity. Nat Rev Rheumatol. 2018;14(3):146–156. doi:10.1038/nrrheum.2017.213.
  • He Y, Gao Y, Ma Q, Zhang X, Zhang Y, Song W. Nanotopographical cues for regulation of macrophages and osteoclasts: emerging opportunities for osseointegration. J Nanobiotechnology. 2022;20(1):510. doi:10.1186/s12951-022-01721-1.
  • Hotchkiss KM, Reddy GB, Hyzy SL, Schwartz Z, Boyan BD, Olivares-Navarrete R. Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomater. 2016;31:425–434. doi:10.1016/j.actbio.2015.12.003.
  • Konnecke I, Serra A, El Khassawna T, Schlundt C, Schell H, Hauser A, Ellinghaus A, Volk HD, Radbruch A, Duda GN. T and b cells participate in bone repair by infiltrating the fracture callus in a two-wave fashion. Bone. 2014;64:155–165.
  • Yang Y, Lin Y, Xu R, Zhang Z, Zeng W, Xu Q, Deng F. Micro/Nanostructured topography on titanium orchestrates dendritic cell adhesion and activation via beta2 integrin-fak signals. Int J Nanomedicine. 2022;17:5117–5136. doi:10.2147/IJN.S381222.
  • Guerriero JL. Macrophages: their untold story in t cell activation and function. Int Rev Cell Mol Biol. 2019;342:73–93.
  • Brodbeck WG, Macewan M, Colton E, Meyerson H, Anderson JM. Lymphocytes and the foreign body response: lymphocyte enhancement of macrophage adhesion and fusion. J Biomed Mater Res A. 2005;74(2):222–229. doi:10.1002/jbm.a.30313.
  • Juhas U, Ryba-Stanisławowska M, Szargiej P, Myśliwska J. Different pathways of macrophage activation and polarization. Postepy Hig Med Dosw (Online). 2015;69:496–502. doi:10.5604/17322693.1150133.
  • Locati M, Mantovani A, Sica A. Macrophage activation and polarization as an adaptive component of innate immunity. Adv Immunol. 2013;120:163–184.
  • Zhou D, Huang C, Lin Z, Zhan S, Kong L, Fang C, Li J. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal. 2014;26(2):192–197. doi:10.1016/j.cellsig.2013.11.004.
  • Albrektsson T, Tengvall P, Amengual L, Coli P, Kotsakis GA, Cochran D. Osteoimmune regulation underlies oral implant osseointegration and its perturbation. Front Immunol. 2022;13(1056914). doi:10.3389/fimmu.2022.1056914.
  • Michalski MN, McCauley LK. Macrophages and skeletal health. Pharmacol Ther. 2017;174:43–54. doi:10.1016/j.pharmthera.2017.02.017.
  • Yan D, Wang X, Li D, Qu Z, Ruan Q. Macrophages overexpressing VEGF, transdifferentiate into endothelial-like cells in vitro and in vivo. Biotechnol Lett. 2011;33(9):1751–1758. doi:10.1007/s10529-011-0645-1.
  • Hu K, Olsen BR. Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J Clin Invest. 2016;126(2):509–526. doi:10.1172/JCI82585.
  • Mantsounga CS, Lee C, Neverson J, Sharma S, Healy A, Berus JM, Parry C, Ceneri NM, López-Giráldez F, Chun HJ, Lu Q, Sellke F, Choudhary G, Morrison AR. Macrophage il-1β promotes arteriogenesis by autocrine stat3- and nf-κb-mediated transcription of pro-angiogenic VEGF-A. Cell Rep. 2022;38(5):110309. doi:10.1016/j.celrep.2022.110309.
  • Kong L, Wang Y, Smith W, Hao D. Macrophages in bone homeostasis. Curr Stem Cell Res Ther. 2019;14(6):474–481. doi:10.2174/1574888X14666190214163815.
  • Kommineni VK, Nagineni CN, William A, Detrick B, Hooks JJ. Ifn-γ acts as anti-angiogenic cytokine in the human cornea by regulating the expression of VEGF-A and sVEGF-R1. Biochem Biophys Res Commun. 2008;374(3):479–484. doi:10.1016/j.bbrc.2008.07.042.
  • Xiao Y, Ding Y, Zhuang J, Sun R, Sun H, Bai L. Osteoimmunomodulation role of exosomes derived from immune cells on osseointegration. Front Bioeng Biotechnol. 2022;10(989537). doi:10.3389/fbioe.2022.989537.
  • Yang N, Liu Y. The role of the immune microenvironment in bone regeneration. Int J Med Sci. 2021;18(16):3697–3707. doi:10.7150/ijms.61080.
  • Yu L, Hu M, Cui X, Bao D, Luo Z, Li D, Li L, Liu N, Wu Y, Luo X, Ma Y. M1 macrophage-derived exosomes aggravate bone loss in postmenopausal osteoporosis via a microRNA-98/dusp1/jnk axis. Cell Biol Int. 2021;45(12):2452–2463. doi:10.1002/cbin.11690.
  • Cho D-I, Kim MR, H-Y J, Jeong HC, Jeong MH, Yoon SH, Kim YS, Ahn Y. Mesenchymal stem cells reciprocally regulate the m1/m2 balance in mouse bone marrow-derived macrophages. Exp Mol Med. 2014;46(1):e70. doi:10.1038/emm.2013.135.
  • Pandey C, Rokaya D, Bhattarai BP, Mendes Tribst JP. Contemporary concepts in osseointegration of dental implants: a review. Biomed Res Int. 2022;2022(6170452):1–11. doi:10.1155/2022/6170452.
  • Liang B, Wang H, Wu D, Wang Z. Macrophage m1/m2 polarization dynamically adapts to changes in microenvironment and modulates alveolar bone remodeling after dental implantation. J Leukoc Biol. 2021;110(3):433–447. doi:10.1002/JLB.1MA0121-001R.
  • Tan L, Fu J, Feng F, Liu X, Cui Z, Li B, Han Y, Zheng Y, Yeung KWK, Li Z, Zhu S, Liang Y, Feng X, Wang X, Wu S. Engineered probiotics biofilm enhances osseointegration via immunoregulation and anti-infection. Sci Adv. 2020;6(46). doi:10.1126/sciadv.aba5723.
  • Zhang J, Shi H, Zhang N, Hu L, Jing W, Pan J. Interleukin-4-loaded hydrogel scaffold regulates macrophages polarization to promote bone mesenchymal stem cells osteogenic differentiation via tgf-β1/smad pathway for repair of bone defect. Cell Prolif. 2020;53(10):e12907. doi:10.1111/cpr.12907.
  • Kim J, Hematti P. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol. 2009;37(12):1445–1453. doi:10.1016/j.exphem.2009.09.004.
  • Kang M, Huang CC, Lu Y, Shirazi S, Gajendrareddy P, Ravindran S, Cooper LF. Bone regeneration is mediated by macrophage extracellular vesicles. Bone. 2020;141:115627. doi:10.1016/j.bone.2020.115627.
  • Guo G, Xu Q, Zhu C, Yu J, Wang Q, Tang J, Huan Z, Shen H, Chang J, Zhang X. Dual-temporal bidirectional immunomodulation of cu-zn bi-layer nanofibrous membranes for sequentially enhancing antibacterial activity and osteogenesis. Appl Mater Today. 2021;22. doi:10.1016/j.apmt.2020.100888.
  • Kim YH, Oreffo ROC, Dawson JI. From hurdle to springboard: the macrophage as target in biomaterial-based bone regeneration strategies. Bone. 2022;159:116389. doi:10.1016/j.bone.2022.116389.
  • Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simoes MJ, Cerri PS. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int. 2015;2015(421746):1–17. doi:10.1155/2015/421746.
  • Clarkin CE, Gerstenfeld LC. VEGF and bone cell signalling: an essential vessel for communication? Cell Biochem Funct. 2013;31(1):1–11. doi:10.1002/cbf.2911.
  • Yao Z, Getting SJ, Locke IC. Regulation of tnf-induced osteoclast differentiation. Cells. 2021;11(1):132. doi:10.3390/cells11010132.
  • Hofbauer LC, Schoppet M. Clinical implications of the osteoprotegerin/rankl/rank system for bone and vascular diseases. JAMA. 2004;292(4):490–495. doi:10.1001/jama.292.4.490.
  • Pigossi SC, Medeiros MC, Saska S, Cirelli JA, Scarel-Caminaga RM. Role of Osteogenic Growth Peptide (OGP) and OGP(10–14) in Bone Regeneration: a Review. Int J Mol Sci. 2016;17(11):1885. doi:10.3390/ijms17111885.
  • Fu YX, Gu JH, Zhang YR, Tong XS, Zhao HY, Yuan Y, Liu XZ, Bian JC, Liu ZP. Osteoprotegerin influences the bone resorption activity of osteoclasts. Int J Mol Med. 2013;31(6):1411–1417. doi:10.3892/ijmm.2013.1329.
  • Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL. Tnf-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of rank ligand. J Clin Invest. 2000;106(12):1481–1488. doi:10.1172/JCI11176.
  • Yang C, Ouyang L, Wang W, Chen B, Liu W, Yuan X, Luo Y, Cheng T, Yeung KWK, Liu X. Sodium butyrate-modified sulfonated polyetheretherketone modulates macrophage behavior and shows enhanced antibacterial and osteogenic functions during implant-associated infections. J Mater Chem B. 2019;7(36):5541–5553. doi:10.1039/C9TB01298B.
  • Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JW. Biofilm formation in staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials. 2012;33(26):5967–5982. doi:10.1016/j.biomaterials.2012.05.031.
  • Li M, Yu J, Guo G, Shen H. Interactions between macrophages and biofilm during staphylococcus aureus-associated implant infection: difficulties and solutions. J Innate Immun. 2023;15(1):499–515. doi:10.1159/000530385.
  • Liu X, Zhang H, Yan B, Yeung KWK, Liao Y, Ouyang L, Liu X. On-off phagocytosis and switchable macrophage activation stimulated with nir for infected percutaneous tissue repair of polypyrrole-coated sulfonated peek. Adv Sci (Weinh). 2023;10(5):e2205048. doi:10.1002/advs.202205048.
  • Scislowska-Czarnecka A, Menaszek E, Szaraniec B, Kolaczkowska E. Ceramic modifications of porous titanium: effects on macrophage activation. Tissue Cell. 2012;44(6):391–400. doi:10.1016/j.tice.2012.08.002.
  • Lyu Z, Zhao Y, Huo S, Wang F, Meng X, Yuan Z, Long T, Wang Y. Mussel-inspired dopamine-cuii coated polyetheretherketone surface with direct and immunomodulatory effect to facilitate osteogenesis, angiogenesis, and antibacterial ability. Mater Des Design. 2022;222:111069. doi:10.1016/j.matdes.2022.111069.
  • Ouyang L, Chen B, Liu X, Wang D, Li Y, Liao Y, Yeung KWK, Liu X. Puerarin@chitosan composite for infected bone repair through mimicking the bio-functions of antimicrobial peptides. Bioact Mater. 2023;21:520–530. doi:10.1016/j.bioactmat.2022.09.005.
  • Zheng Y, Gao A, Bai J, Liao Q, Wu Y, Zhang W, Guan M, Tong L, Geng D, Zhao X. A programmed surface on polyetheretherketone for sequentially dictating osteoimmunomodulation and bone regeneration to achieve ameliorative osseointegration under osteoporotic conditions. Bioact Mater. 2022;14:364–376.
  • He Y, Yang X, Yuan Z, Shen X, Xu K, Lin C, Tao B, Li K, Chen M, Hu Y, Luo Z, Xia Z, Cai K. Regulation of msc and macrophage functions in bone healing by peptide ll-37-loaded silk fibroin nanoparticles on a titanium surface. Biomater Sci. 2019;7(12):5492–5505. doi:10.1039/C9BM01158G.
  • Cao L, Yang J, Li J, Zeng D, Lin Z, Yu Z, Hang S, Li W, Wang Q, Li S, Zhang P. Tantalum nanoparticles reinforced polyetheretherketone coatings on titanium substrates: bio-tribological and cell behaviour. Tribol Int. 2022;175:175.
  • Bettinger CJ, Langer R, Borenstein JT. Engineering substrate topography at the micro- and nanoscale to control cell function. Angew Chem Int Ed Engl. 2009;48(30):5406–5415. doi:10.1002/anie.200805179.
  • Yang Y, Zhang H, Komasa S, Kusumoto T, Kuwamoto S, Okunishi T, Kobayashi Y, Hashimoto Y, Sekino T, Okazaki J. Immunomodulatory properties and osteogenic activity of polyetheretherketone coated with titanate nanonetwork structures. Int J Mol Sci. 2022;23(2):612. doi:10.3390/ijms23020612.
  • Ouyang L, Zhao Y, Jin G, Lu T, Li J, Qiao Y, Ning C, Zhang X, Chu PK, Liu X. Influence of sulfur content on bone formation and antibacterial ability of sulfonated peek. Biomaterials. 2016;83:115–126. doi:10.1016/j.biomaterials.2016.01.017.
  • Gao A, Liao Q, Xie L, Wang G, Zhang W, Wu Y, Li P, Guan M, Pan H, Tong L, Chu PK, Wang H. Tuning the surface immunomodulatory functions of polyetheretherketone for enhanced osseointegration. Bio-materials. 2020;230(119642):119642. doi:10.1016/j.biomaterials.2019.119642.
  • Liu Y, Rui Z, Cheng W, Song L, Xu Y, Li R, Zhang X. Characterization and evaluation of a femtosecond laser-induced osseointegration and an anti-inflammatory structure generated on a titanium alloy. Regen Biomater. 2021;8(2):rbab006. doi:10.1093/rb/rbab006.
  • Christo SN, Diener KR, Bachhuka A, Vasilev K, Hayball JD. Innate immunity and biomaterials at the nexus: friends or foes. Biomed Res Int. 2015;2015(342304):1–23. doi:10.1155/2015/342304.
  • Li Z, Zhang K, Li X, Pan H, Li S, Chen F, Zhang J, Zheng Z, Wang J, Liu H. Wnt5a suppresses inflammation-driven intervertebral disc degeneration via a tnf-alpha/nf-kappab-wnt5a negative-feedback loop. Osteoarthr Cartilage. 2018;26(7):966–977. doi:10.1016/j.joca.2018.04.002.
  • Zhu Y, Zhao S, Cheng L, Lin Z, Zeng M, Ruan Z, Sun B, Luo Z, Tang Y, Long H. Mg2+ -mediated autophagy-dependent polarization of macrophages mediates the osteogenesis of bone marrow stromal stem cells by interfering with macrophage-derived exosomes containing mir-381. J Orthop Res. 2022;40(7):1563–1576. doi:10.1002/jor.25189.
  • Montesi M, Panseri S, Dapporto M, Tampieri A, Sprio S, Kim J-E. Sr-substituted bone cements direct mesenchymal stem cells, osteoblasts and osteoclasts fate. PLoS ONE. 2017;12(2):e0172100. doi:10.1371/journal.pone.0172100.
  • Gu Z, Xie H, Huang C, Peng H, Tan H, Li L, Yu X. Effects of strontium-doped calcium polyphosphate on angiogenic growth factors expression of co-culturing system in vitro and of host cell in vivo. RSC Adv. 2014;4(6):2783–2792. doi:10.1039/C3RA44323J.
  • Meng X, Zhang W, Lyu Z, Long T, Wang Y. Zno nanoparticles attenuate polymer-wear-particle induced inflammatory osteolysis by regulating the mek-erk-cox-2 axis. J Orthop Translat. 2022;34:1–10. doi:10.1016/j.jot.2022.04.001.
  • Yang X, Zhang C, Zhang T, Xiao J. Cobalt-doped ti surface promotes immunomodulation. Biomed Mater. 2022;17(2):025003. doi:10.1088/1748-605X/ac4612.
  • Peng F, Qiu L, Yao M, Liu L, Zheng Y, Wu S, Ruan Q, Liu X, Zhang Y, Li M. A lithium-doped surface inspires immunomodulatory functions for enhanced osteointegration through pi3k/akt signaling axis regulation. Biomater Sci. 2021;9(24):8202–8220. doi:10.1039/D1BM01075A.
  • Shih Y-R, Hwang Y, Phadke A, Kang H, Hwang NS, Caro EJ, Nguyen S, Siu M, Theodorakis EA, Gianneschi NC. Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling. Proc Natl Acad Sci. 2014;111(3):990–995. doi:10.1073/pnas.1321717111.
  • Hasko G, Cronstein B. Regulation of inflammation by adenosine. Front Immunol. 2013;4(85). doi:10.3389/fimmu.2013.00085.
  • Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Morinaga T, Higashio K, Martin TJ, Suda T. Tumor necrosis factor α stimulates osteoclast differentiation by a Mechanism Independent of the Odf/Rankl–rank interaction. J Exp Med. 2000;191(2):275–285. doi:10.1084/jem.191.2.275.
  • Qiao X, Yang J, Shang Y, Deng S, Yao S, Wang Z, Guo Y, Peng C. Magnesium-doped Nanostructured Titanium Surface Modulates Macrophage-mediated Inflammatory Response for Ameliorative Osseointe-gration. Int J Nanomedicine. 2020;15:7185–7198. doi:10.2147/IJN.S239550.
  • Liu X, Ouyang L, Chen L, Qiao Y, Ma X, Xu G, Liu X. Hydroxyapatite composited peek with 3d porous surface enhances osteoblast differentiation through mediating no by macrophage. Regen Biomater. 2022;9(rbab076). doi:10.1093/rb/rbab076.
  • Li Z, Zhang K, Li X, Pan H, Li S, Chen F, Zhang J, Zheng Z, Wang J, Liu H. Wnt5a suppresses inflammation-driven intervertebral disc degeneration via a tnf-α/nf-κb-wnt5a negative-feedback loop. Osteoarthr Cartil. 2018;26(7):966–977. doi:10.1016/j.joca.2018.04.002.
  • Chai H, Sang S, Luo Y, He R, Yuan X, Zhang X. Icariin-loaded sulfonated polyetheretherketone with osteogenesis promotion and osteoclastogenesis inhibition properties via immunomodulation for advanced osseointegration. J Mater Chem B. 2022;10(18):3531–3540. doi:10.1039/D1TB02802B.
  • Sunarso TR, Tsuru K, Ishikawa K. A superhydrophilic titanium implant functionalized by ozone gas modulates bone marrow cell and macrophage responses. J Mater Sci Mater Med. 2016;27(8):127. doi:10.1007/s10856-016-5741-2.
  • Zhao X, Zhou X, Sun H, Shi H, Song Y, Wang Q, Zhang G, Xu D. 3d printed ti-5cu alloy accelerates osteogenic differentiation of mc3t3-e1 cells by stimulating the m2 phenotype polarization of macrophages. Front Immunol. 2022;13(1001526). doi:10.3389/fimmu.2022.1001526.
  • Lee CH, Kim YJ, Jang JH, Park JW. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces. Nanotechnology. 2016;27(8):085101. doi:10.1088/0957-4484/27/8/085101.
  • Lv L, Xie Y, Li K, Hu T, Lu X, Cao Y, Zheng X. Unveiling the mechanism of surface hydrophilicity-modulated macrophage polarization. Adv Healthcare Mater. 2018;7(19):e1800675. doi:10.1002/adhm.201800675.
  • Xian P, Chen Y, Gao S, Qian J, Zhang W, Udduttula A, Huang N, Wan G. Polydopamine (pda) mediated nanogranular-structured titanium dioxide (tio2) coating on polyetheretherketone (peek) for oral and maxillofacial implants application. Surf Coat Technol. 2020;401. doi:10.1016/j.surfcoat.2020.126282.
  • Fan L, Guan P, Xiao C, Wen H, Wang Q, Liu C, Luo Y, Ma L, Tan G, Yu P, Zhou L, Ning C. Exosome-functionalized polyetheretherketone-based implant with immunomodulatory property for enhancing osseointegration. Bioact Mater. 2021;6(9):2754–2766. doi:10.1016/j.bioactmat.2021.02.005.
  • Niida S, Kondo T, Hiratsuka S, Hayashi SI, Amizuka N, Noda T, Ikeda K, Shibuya M. VEGF receptor 1 signaling is essential for osteoclast development and bone marrow formation in colony-stimulating factor 1-deficient mice. Proc Natl Acad Sci U S A. 2005;102(39):14016–14021. doi:10.1073/pnas.0503544102.
  • Baseri M, Radmand F, Hamedi R, Yousefi M, Kafil HS, Lu J. Immunological aspects of dental implant rejection. Biomed Res Int. 2020;2020(7279509):1–12. doi:10.1155/2020/7279509.
  • Xie L, Wang G, Wu Y, Liao Q, Mo S, Ren X, Tong L, Zhang W, Guan M, Pan H, Chu PK, Wang H. Programmed surface on poly(aryl-ether-ether-ketone) initiating immune mediation and fulfilling bone regeneration sequentially. Innovation (Camb). 2021;2(3):100148. doi:10.1016/j.xinn.2021.100148.
  • Wu Y, Huo S, Liu S, Hong Q, Wang Y, Lyu Z. Cu-sr bilayer bioactive glass nanoparticles/polydopamine functionalized polyetheretherketone enhances osteogenic activity and prevents implant-associated infections through spatiotemporal immunomodulation. Adv Healthcare Mater. 2023;e2301772. doi:10.1002/adhm.202301772.
  • Li T, Peng M, Yang Z, Zhou X, Deng Y, Jiang C, Xiao M, Wang J. 3d-printed ifn-gamma-loading calcium silicate-beta-tricalcium phosphate scaffold sequentially activates m1 and m2 polarization of macrophages to promote vascularization of tissue engineering bone. Acta Biomater. 2018;71:96–107. doi:10.1016/j.actbio.2018.03.012.
  • Gao L, Li M, Yin L, Zhao C, Chen J, Zhou J, Duan K, Feng B. Dual-inflammatory cytokines on tio(2) nanotube-coated surfaces used for regulating macrophage polarization in bone implants. J Biomed Mater Res A. 2018;106(7):1878–1886. doi:10.1002/jbm.a.36391.
  • Liang L, Song D, Wu K, Ouyang Z, Huang Q, Lei G, Zhou K, Xiao J, Wu H. Sequential activation of m1 and m2 phenotypes in macrophages by mg degradation from ti-mg alloy for enhanced osteogenesis. Biomater Res. 2022;26(1):17. doi:10.1186/s40824-022-00262-w.
  • Zheng X, Xin L, Luo Y, Yang H, Ye X, Mao Z, Zhang S, Ma L, Gao C. Near-infrared-triggered dynamic surface topography for sequential modulation of macrophage phenotypes. ACS Appl Mater Interfaces. 2019;11(46):43689–43697. doi:10.1021/acsami.9b14808.
  • Alhamdi JR, Peng T, Al-Naggar IM, Hawley KL, Spiller KL, Kuhn LT. Controlled m1-to-m2 transition of aged macrophages by calcium phosphate coatings. Biomaterials. 2019;196:90–99. doi:10.1016/j.biomaterials.2018.07.012.
  • Pajarinen J, Lin T, Gibon E, Kohno Y, Maruyama M, Nathan K, Lu L, Yao Z, Goodman SB. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials. 2019;196:80–89. doi:10.1016/j.biomaterials.2017.12.025.
  • Quan H, Kim Y, Wu L, Park HC, Yang HC. Modulation of macrophage polarization by phospholipids on the surface of titanium. Molecules. 2020;25(11):2700. doi:10.3390/molecules25112700.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.