197
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Aspects of 3D printed drugs

&
Pages 472-480 | Received 10 Aug 2020, Accepted 24 Aug 2020, Published online: 29 Oct 2020

References

  • Kurzrock R, Stewart JD. Click chemistry, 3D-printing, and omics: the future of drug development. On co-Target. 2016; 7(3):2155–2158.
  • Ventola LC. Medial applications of 3D printing: current and projected use. P T. 2014;39(10):704–711.
  • Szczebra JR. FDA approves first 3-D printed drug. Tech. August 4, 2015; Available from: http://www.forbes.com/sites/robertszczerba/2015/08/04/fda-approves-first-3d-printed-drug/
  • ASTM International, ISO. Terminology for Additive Manufacturing Accordinate Systems and Test Methodologies (ISO/ASTM52910:2018). Available from: https://www.iso.org/obp/ui/#iso:std:iso-astm:52910:ed-1:v1:en
  • Melocchi A, Parietti F, Maroni A, et al. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling. Int J Pharm. 2016;509(1–2):255–263.
  • Goyanes A, Buanz ABM, Basit AW, et al. Fused-filament 3D printing (3DP) for fabrication of tablets. Int J Pharm. 2014;476(1–2):88–92.
  • Skowyra J, Pietrzak K, Alhnan MA. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur J Pharm Sci. 2015;68:11–17.
  • Goyanes A, Chang H, Sedough D, et al. Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. Int J Pharm. 2015;496(2):414–420.
  • Li Q, Guan X, Cui M, et al. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing. Int J Pharm. 2018;535(1–2):325–332.
  • Zhang J, Feng X, Patil H, et al. Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets. Int J Pharm. 2017;519(1–2):186–197.
  • Öblom H, Zhang J, Pimparade M, et al. 3D-printed isoniazid tablets for the treatment and prevention of tuberculosis-personalized dosing and drug release. AAPS PharmSciTech. 2019;20(2):52.
  • Okwuosa TC, Pereira BC, Arafat B, et al. Fabricating a shell-core delayed release tablet using dual FDM 3D printing for patient-centred therapy. Pharm Res. 2017;34(2):427–437.
  • Goyanes A, Fina F, Martorana A, et al. Development of modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive manufacturing. Int J Pharm. 2017;527(1–2):21–30.
  • Verstraete G, Samaro A, Grymonpré W, et al. 3D printing of high drug loaded dosage forms using thermoplastic polyurethanes. Int J Pharm. 2018;536(1):318–325.
  • Verstraete G, Mertens P, Grymonpré W, et al. A comparative study between melt granulation/compression and hot melt extrusion/injection molding for the manufacturing of oral sustained release thermoplastic polyurethane matrices. Int J Pharm. 2016;513(1–2):602–611.
  • Goyanes A, Wang J, Buanz A, et al. 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Mol Pharm. 2015;12(11):4077–4084.
  • Dukeck R, Sieger P, Karmwar P. Investigation and correlation of physical stability, dissolution behaviour and interaction parameter of amorphous solid dispersions of telmisartan: a drug development perspective. Eur J Pharm Sci. 2013;49(4):723–731.
  • Costa P, Lobo JS. Influence of dissolution medium agitation on release profiles of sustained-release tablets. Drug Dev Ind Pharm. 2001;27(8):811–817.
  • Zema L, Melocchi A, Maroni A, et al. Three-dimensional printing of medicinal products and the challenge of personalized therapy. J Pharm Sci. 2017;106(7):1697–1705.
  • Parojčić J, Vasiljević D, Ibrić S, et al. Tablet disintegration and drug dissolution in viscous media: paracetamol IR tablets. Int J Pharm. 2008;355(1–2):93–99.
  • Khaled SA, Burley JC, Alexander MR, et al. 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm. 2015;494(2):643–650.
  • Khaled SA, Burley JC, Alexander MR, et al. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J Control Release. 2015;217:308–314.
  • Kyobula M, Adedeji A, Alexander MR, et al. 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release. J Control Release. 2017;261:207–215.
  • Vaezi M, Chianrabutra S, Mellor B, et al. Multiple material additive manufacturing. Virt Phys Prototyp. 2013;8(1):19–50.
  • Ho CMB, Ng SH, Li KHH, et al. 3D printed microfluidics for biological applications. Lab Chip. 2015;15(18):3627–3637.
  • Clark EA, Alexander MR, Irvine DJ, et al. 3D printing of tablets using inkjet with UV photoinitiation. Int J Pharm. 2017;529(1–2):523–530.
  • Bharti N, Gonzalez S, Buhler A. “3D technology in libraries: applications for teaching and research,” 4th International Symposium on Emerging Trends and Technologies in Libraries and Information Services; 2015 Jan 6,8; Noida, India. p. 161–166.
  • Wang J, Goyanes A, Gaisford S, et al. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm. 2016;503(1–2):207–212.
  • Martinez PR, Goyanes A, Basit AW, et al. Fabrication of drug-loaded hydrogels with stereolithographic 3D printing. Int J Pharm. 2017;532(1):313–317.
  • Changez M, Burugapalli K, Koul V, et al. The effect of composition of poly(acrylic acid)-gelatin hydrogel on gentamicin sulphate release: in vitro. Biomaterials. 2003;24(4):527–536.
  • Huang W, Zheng Q, Sun W, et al. Levofloxacin implants with predefined microstructure fabricated by three-dimensional printing technique. Int J Pharm. 2007;339(1–2):33–38.
  • Wu W, Zheng Q, Guo X, et al. The controlled-releasing drug implant based on the three-dimensional printing technology: fabrication and properties of drug releasing in vivo. J Wuhan Univ Technol Mat Sci Edit. 2009;24(6):977–981.
  • Wu W, Zheng Q, Guo X, et al. A programmed release multi-drug implant fabricated by three-dimensional printing technology for bone tuberculosis therapy. Biomed Mater. 2009;4(6):065005.
  • Rowe C, Katstra W, Palazzolo R, et al. Multimechanism oral dosage forms fabricated by three dimensional printing™. J Controlled Release. 2000;66(1):11–17.
  • Ursan I, Chiu L, Pierce A. Three-dimensional drug printing: a structured review. J Am Pharm Assoc (2003). 2013;53(2):136–144.
  • Basulto D. Why it matters that the FDA just approved the first 3-D-printed drug. The Washington Post. 2015.
  • Brniak W, Jachowicz R, Krupa A, et al. Evaluation of co-processed excipients used for direct compression of orally disintegrating tablets [ODT] using novel disintegration apparatus. Pharm Dev Technol. 2013;18(2):464–474.
  • Jamróz W, Szafraniec J, Kurek M, et al. 3D printing in pharmaceutical and medical applications - recent achievements and challenges. Pharm Res. 2018; 35(9):176.
  • Fina F, Goyanes A, Gaisford S, et al. Selective laser sintering (SLS) 3D printing of medicines. Int J Pharm. 2017;529(1–2):285–293.
  • Fina F, Madla CM, Goyanes A, et al. Fabricating 3D printed orally disintegrating printlets using selective laser sintering. Int J Pharm. 2018;541(1–2):101–107.
  • Viljoen JM, Steenekamp JH, Marais AF, et al. Effect of moisture content, temperature and exposure time on the physical stability of chitosan powder and tablets. Drug Dev Ind Pharm. 2014;40(6):730–742.
  • Syamala US, Kumar RS, Pushkarajan TA, et al. Assessment of formulation factors on the release behaviour of BCS class II drug from tablet dosage form using DoE. Curr Drug Deliv. 2014;11(4):511–520.
  • Goyanes A, Robles Martinez P, Buanz A, et al. Effect of geometry on drug release from 3D printed tablets. Int J Pharm. 2015;494(2):657–663.
  • Kimber JA, Kazarian SG, Štěpánek F. DEM simulation of drug release from structurally heterogeneous swelling tablets. Powder Technol. 2013;248:68–76.
  • Sadia M, Arafat B, Ahmed W, et al. Channelled tablets: an innovative approach to accelerating drug release from 3D printed tablets. J Control Release. 2018;269:355–363.
  • Arafat B, Wojsz M, Isreb A, et al. Tablet fragmentation without a disintegrant: a novel design approach for accelerating disintegration and drug release from 3D printed cellulosic tablets. Eur J Pharm Sci. 2018;03:19.
  • Sadia M, Sośnicka A, Arafat B, et al. Adaptation of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets. Int J Pharm. 2016;513(1–2):659–668.
  • Mazhar M, Ansari A, Rajput SK. Clinical pharmacy in India: recent advances and perspective. PharmaTutor. 2015;3(3):31–36.
  • Alomari M, Mohamed FH, Basit AW, et al. Personalised dosing: printing a dose of one’s own medicine. Int J Pharm. 2015;494(2):568–577.
  • Vuddanda PR, Alomari M, Dodoo CC, et al. Personalisation of warfarin therapy using thermal ink-jet printing. Eur J Pharm Sci. 2018;117:80–87.
  • Masnoon N, Shakib S, Kalisch-Ellett L, et al. What is polypharmacy? A systematic review of definitions. BMC Geriatr. 2017;17(1):230.
  • Maher RL, Hanlon J, Hajjar ER, et al. Clinical consequences of polypharmacy in elderly. Expert Opin Drug Saf. 2014;13(1):57–65.
  • Gioumouxouzis CI, Katsamenis OL, Bouropoulos N, et al. 3D printed oral solid dosage forms containing hydrochlorothiazide for controlled drug delivery. J Drug Deliv Sci Technol. 2017;40:164–171.
  • ZipDose Technology; A revolution in formulation; Aprecia pharmaceuticals; 2018 [cited 2020 April]. Available from: https://www.aprecia.com/zipdose-platform/zipdose-technology.php
  • US Food and Drug Administration. Technical considerations for additive manufactured medical devices. Guidance for industry and food and drug administration staff. Silver Spring (MD): US Food and Drug Administration; 2017.
  • Ventola CL. Medical applications for 3D printing: current and projected uses. P T. 2014;39(10):704–711.
  • Wren K. Science and society: experts warn against bans on 3D printing. Science. 2013;342(6157):439.
  • Plastics Today. FDA tackles opportunities, challenges, of 3D printed medical devices. June 2, 2014. Available from: http://www.plasticstoday.com/articles/FDA-tackles-opportunities-challenges-3D-printed-medical-devices-140602
  • Husain SR, Ohya Y, Puri RK. Current status and challenges of three-dimensional modeling and printing of tissues and organs. Tissue Eng Part A. 2017;23(11–12):471–473.
  • Pardeike J, Strohmeier DM, Schrödl N, et al. Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. Int J Pharm. 2011;420(1):93–100.
  • Van Osch HT, Perelaer J, de Laat AW, et al. Inkjet printing of narrow conductive tracks on untreated polymeric substrates. Adv Mater. 2008;20(2):343–345.
  • Brünahl J, Grishin AM. Piezoelectric shear mode drop-on-demand inkjet actuator. Sens Actuat A. 2002;101(3):371–382.
  • Le HP. Progress and trends in ink-jet printing technology. J Imaging Sci Technol. 1998;42:49–62.
  • Yu DG, Zhu LM, Branford-White CJ, et al. Three-dimensional printing in pharmaceutics: promises and problems. J Pharm Sci. 2008;97(9):3666–3690.
  • De Gans B, Duineveld PC, Schubert US. Inkjet printing of polymers: state of the art and future developments. Adv Mater. 2004;16(3):203–213.
  • Dimitrov D, Schreve K, De Beer N. Advances in three dimensional printing-state of the art and future perspectives. Rapid Prototyp J. 2006;12(3):136–147.
  • Sachs EM, Cima MJ, Caradonna MA, et al. Massachusetts Institute of Technology. Jetting layers of powder and the formation of fine powder beds thereby. U.S. Patent. 2003;6(596):224.
  • Wu BM, Cima MJ. Effects of solvent-particle interaction kinetics on microstructure formation during three-dimensional printing. Polym Eng Sci. 1999;39(2):249–260.
  • Kulkarni P, Marsan A, Dutta D. A review of process planning techniques in layered manufacturing. Rapid Prototyp J. 2000;6(1):18–35.
  • Fukai J, Ishizuka H, Sakai Y, et al. Effects of droplet size and solute concentration on drying process of polymer solution droplets deposited on homogeneous surfaces. Int J Heat Mass Transf. 2006;49(19–20):3561–3567.
  • Sachs E, Cima M, Williams P, et al. Three dimensional printing: rapid tooling and prototypes directly from a CAD model. J Eng Ind. 1992;114(4):481–488.
  • Rowe C, Lewis WP, Cima M, et al. Therics Inc. Printing or dispensing a suspension such as three-dimensional printing of dosage forms. U.S. Patent Application 09/991,556. 2003.
  • Lewis WEP, Rowe CW, Cima MJ, et al. Massachusetts Institute of Technology. System and method for uniaxial compression of an article, such as a three-dimensionally printed dosage form. Vol. 7. U.S. Patent 2011. p. 931–914.
  • Yu DG, Yang XL, Huang WD, et al. Tablets with material gradients fabricated by three-dimensional printing. J Pharm Sci. 2007;96(9):2446–2456.
  • Zhou Z, Buchanan F, Mitchell C, et al. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Mater Sci Eng. 2014; 38:1–10.
  • Lanzetta M, Sachs E. Improved surface finish in 3D printing using bimodal powder distribution. Rapid Prototyp J. 2003;9(3):157–166.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.