33
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Artificial intelligence and machine learning responses to COVID-19 related inquiries

Pages 301-320 | Received 14 Nov 2021, Accepted 18 Feb 2024, Published online: 16 Apr 2024

References

  • Fan D-P, Zhou T, Ji G-P, et al. Inf-Net: automatic COVID-19 lung infection segmentation from CT images. IEEE Trans Med Imaging. 2020;39(8):2626–2637. doi: 10.1109/TMI.2020.2996645.
  • Lytkina E, Reeskens T. Rally around the government or a populist response? How concerns about COVID-19 and emotional responses relate to institutional trust and support for right-wing populism. American Behavioral Scientist. 2024;2024:00027642241240418. doi: 10.1177/00027642241240418.
  • Zaeri N, Qasim R. Thermal image identification against pose and expression variations using deep learning. J Eng Res. in press. [cited 2023 Nov 4]. doi: 10.1016/j.jer.2023.10.043.
  • Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–733. doi: 10.1056/NEJMoa2001017.
  • Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 2018;23(2):130–137. doi: 10.1111/resp.13196.
  • Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;588(7836):E6–E6. doi: 10.1038/s41586-020-2012-7.
  • Sun Y, Goh B, Sarkar H. China’s Feb auto sales plunge 79%, biggest monthly drop ever. CNBC. Mar 2020. https://www.cnbc.com/2020/03/12/reuters-america-chinas-feb-autosales-p%lunge-79-percent-biggest-monthly-drop-ever.html.
  • Wang L, Lin ZQ, Wong A. Covid-net: a tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images. Sci Rep. 2020;10(1):19549. doi: 10.1038/s41598-020-76550-z.
  • Khalifa NEM, Taha MHN, Hassanien AE, et al. Detection of coronavirus (COVID-19) associated pneumonia based on generative adversarial networks and a fine-tuned deep transfer learning model using chest X-ray dataset. In: International conference on advanced intelligent systems and informatics. Springer International Publishing, Cham; 2022. p. 234–247.
  • Jin Y-H, Cai L, Cheng Z-S, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Military Med Res. 2020;7(1):4. doi: 10.1186/s40779-020-0233-6.
  • Narin A, Kaya C, Pamuk Z. Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks. Pattern Anal Appl. 2021;24(3):1207–1220. doi: 10.1007/s10044-021-00984-y.
  • Apostolopoulos ID, Mpesiana TA. Covid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks. Phys Eng Sci Med. 2020;43(2):635–640. doi: 10.1007/s13246-020-00865-4.
  • Khan AI, Shah JL, Bhat MM. CoroNet: a deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Comput Methods Programs Biomed. 2020;196:105581. doi: 10.1016/j.cmpb.2020.105581.
  • Blain M, Kassin M, Varble N, et al. Determination of disease severity in COVID-19 patients using deep learning in chest X-ray images. Diagn Interv Radio. 2021;27:20–27.
  • Abbas A, Abdelsamea MM, Gaber MM. Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. Appl Intell (Dordr). 2021;51(2):854–864. doi: 10.1007/s10489-020-01829-7.
  • Gomes JC, Barbosa V, Santana MA, et al. IKONOS: an intelligent tool to support diagnosis of COVID-19 by texture analysis of X-ray images. Res Biomed Eng. 2020;38(1):15–28. doi: 10.1007/s42600-020-00091-7.
  • Zhou C, Song J, Zhou S, et al. COVID-19 detection based on image regrouping and ResNet-SVM using chest X-ray images. IEEE Access. 2021;9:81902–81912. doi: 10.1109/ACCESS.2021.3086229.
  • Delft Imaging. The diagnostic pathway for COVID-19. 2024. https://www.delft.care/cad4covid
  • Sharma V, Dyreson C. 2020, December). COVID-19 screening using residual attention network an artificial intelligence approach. In 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 1354–1361). IEEE. MIAMI, FLORIDA, USA doi: 10.1109/ICMLA51294.2020.00211.
  • Li MD, Arun NT, Gidwani M, et al. Automated assessment and tracking of COVID-19 pulmonary disease severity on chest radiographs using convolutional siamese neural networks. Radiol Artif Intell. 2020;2(4):e200079. doi: 10.1148/ryai.2020200079.
  • Ozturk T, Talo M, Yildirim EA, et al. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput Biol Med. 2020;121:103792. doi: 10.1016/j.compbiomed.2020.103792.
  • Tabik S, Gomez-Rios A, Martin-Rodriguez JL, et al. COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based on chest X-ray images. IEEE J Biomed Health Inform. 2020;24(12):3595–3605. doi: 10.1109/JBHI.2020.3037127.
  • Ghoshal B, Tucker A. On cost-sensitive calibrated uncertainty in deep learning: an application on covid-19 detection. In: 2021 IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS), IEEE. 2021. p. 503–509. doi: 10.1109/CBMS52027.2021.00100.
  • Karim MR, Döhmen T, Cochez M, et al. Deepcovidexplainer: explainable COVID-19 diagnosis from chest X-ray images. In: 2020 IEEE international conference on bioinformatics and biomedicine (BIBM), IEEE, 2020. p. 1034–1037. doi: 10.1109/BIBM49941.2020.9313304.
  • Chowdhury MEH, Rahman T, Khandakar A, et al. Can AI help in screening viral and COVID-19 pneumonia? IEEE Access. 8:132665–132676. doi: 10.1109/ACCESS.2020.
  • Tsiknakis N, Trivizakis E, Vassalou EE, et al. Interpretable artificial intelligence framework for COVID‑19 screening on chest X‑rays. Exp Ther Med. 2020;20(2):727–735. doi: 10.3892/etm.2020.8797.
  • Ahsan MM, Gupta KD, Islam MM, et al. Covid-19 symptoms detection based on nasnetmobile with explainable ai using various imaging modalities. MAKE. 2020;2(4):490–504. doi: 10.3390/make2040027.
  • Ibrahim AU, Ozsoz M, Serte S, et al. Pneumonia classification using deep learning from chest X-ray images during COVID-19. Cognit Comput. 2021; doi: 10.1007/s12559-020-09787-5.
  • Greenspan H, San José Estépar R, Niessen WJ, et al. Position paper on COVID-19 imaging and AI: from the clinical needs and technological challenges to initial AI solutions at the lab and national level towards a new era for AI in healthcare. Med Image Anal. 2020;66:101800. doi: 10.1016/j.media.2020.101800.
  • Ng MY, Lee EY, Yang J, et al. Imaging profile of the COVID-19 infection: radiologic findings and literature review. Radiol Cardiothorac Imaging. 2020;2(1):e200034. doi: 10.1148/ryct.2020200034.
  • Pan F, Ye T, Sun P, et al. Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. Radiology. 2020;295(3):715–721. doi: 10.1148/radiol.2020200370.
  • Chung M, Bernheim A, Mei X, et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology. 2020;295(1):202–207. doi: 10.1148/radiol.2020200230.
  • Song F, Shi N, Shan F, et al. Emerging 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology. 2020;295(1):210–217. doi: 10.1148/radiol.2020200274.
  • Pan Y, Guan H, Zhou S, et al. Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): a study of 63 patients in Wuhan, China. Eur Radiol. 2020;30(6):3306–3309. doi: 10.1007/s00330-020-06731-x.
  • Bernheim A, Mei X, Huang M, et al. Chest CT findings in coronavirus disease- 19 (COVID-19): relationship to duration of infection. Radiology. 2020;295:(3):200463. doi: 10.1148/radiol.2020200463.
  • Zaeri N. AI modeling to combat COVID-19 using CT scan imaging algorithms and simulations: a study. Simul Model. 2021;
  • Peng Q-Y, Wang X-T, Zhang L-N, et al. Findings of lung ultrasonography of novel corona virus pneumonia during the 2019–2020 epidemic. Intensive Care Med. 2020;46(5):849–850. doi: 10.1007/s00134-020-05996-6.
  • Huang Y, Wang S, Liu Y, et al. A preliminary study on the ultrasonic manifestations of peripulmonary lesions of Non-Critical novel coronavirus pneumonia (COVID-19). 2020. https://ssrn.com/abstract=3544750. or doi: 10.2139/ssrn.3544750.
  • Foo MX-L, S, T, Kim M, Paschali, et al. Interactive segmentation for COVID-19 infection quantification on longitudinal CT scans. In: IEEE Access, vol. 11, 2023. p. 77596–77607. doi: 10.1109/ACCESS.2023.3297506.
  • Buda N, Segura-Grau E, Cylwik J, et al. Lung ultrasound in the diagnosis of COVID-19 infection - a case series and review of the literature. Adv Med Sci. 2020;65(2):378–385. doi: 10.1016/j.advms.2020.06.005.
  • Brahier T, Meuwly J-Y, Pantet O, et al. Lung ultrasonography for risk stratification in patients with COVID-19: a prospective observational cohort study. Clin Infect Dis. 2020;73(11):e4189–e4196. doi: 10.1093/cid/ciaa1408.
  • Karagöz A, Sağlam C, Demirbaş HB, et al. Accuracy of bedside lung ultrasound as a rapid triage tool for suspected covid-19 cases. Ultrasound Q. 2020;36(4):339–344. doi: 10.1097/RUQ.0000000000000530.
  • Bakhshayeshkaram M, Haseli S, Iranpour P. Radiological mimickers of COVID-19 pneumonia: a pictorial review. Tanaffos. 2020;19(2):100.
  • Honarmandpour F, Jahangirimehr A, Tahmasbi M, et al. Follow‐up the severity of abnormalities diagnosed in chest CT imaging of COVID‐19 patients: a cross‐sectional study. Health Sci Rep. 2022; 5(5):e818. doi: 10.1002/hsr2.818.
  • Bassetti M, Kollef MH, Timsit JF. Bacterial and fungal superinfections in critically ill patients with COVID-19. Intensive Care Med. 2020;46(11):2071–2074. doi: 10.1007/s00134-020-06219-8.
  • Li L, Qin L, Xu Z, et al. Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: evaluation of the diagnostic accuracy. Radiology. 2020;296(2):E65–E71. doi: 10.1148/radiol.2020200905.
  • Wang X, Deng X, Fu Q, et al. A weakly-supervised framework for COVID-19 classification and lesion localization from chest CT. IEEE Trans Med Imaging. 2020;39(8):2615–2625. doi: 10.1109/TMI.2020.2995965.
  • Gozes O, Frid-Adar M, Sagie N, et al. A weakly supervised deep learning framework for covid-19 CT detection and analysis. In: Thoracic Image Analysis: second International Workshop, TIA 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings 2. Springer International Publishing. 2020. p. 84–93.
  • Öztürk Ş, Özkaya U, Barstuğan M. Classification of coronavirus (COVID‐19) from X‐ray and CT images using shrunken features. Int J Imaging Syst Technol. 2021;31(1):5–15. doi: 10.1002/ima.22469.
  • Caruso D, Zerunian M, Polici M, et al. Chest CT features of COVID-19 in Rome, Italy. Radiology. 2020;296(2):E79–E85. doi: 10.1148/radiol.2020201237.
  • Salehi, S., Abedi, A., Balakrishnan, S., & Gholamrezanezhad, A. (2020). Coronavirus disease 2019 (COVID-19): a systematic review of imaging findings in 919 patients. Ajr Am J Roentgenol, 215(1), 87–93.
  • Xu X, Jiang X, Ma C, et al. A deep learning system to screen novel coronavirus disease 2019 pneumonia. Engineering. 2020;6(10):1122–1129. doi: 10.1016/j.eng.2020.04.010.
  • Belfiore MP, Urraro F, Grassi R, et al. Artificial intelligence to codify lung CT in covid‑19 patients. Radiol Med. 2020;125(5):500–504. doi: 10.1007/s11547-020-01195-x.
  • Mei X, Lee H-C, Diao K-Y, et al. Artificial intelligence–enabled rapid diagnosis of patients with COVID-19. Nat Med. 2020;26(8):1224–1228. www.nature.com/naturemedicine doi: 10.1038/s41591-020-0931-3.
  • Chen Y, Wang Y, Hu F, et al. A lung dense deep convolution neural network for robust lung parenchyma segmentation. IEEE Access. 2020;8:93527–93547. doi: 10.1109/ACCESS.2020.2993953.
  • Sedeh SS, Fatemi A, Nematbakhsh MA. Development and application of an optimal COVID-19 screening scale utilizing an interpretable machine learning algorithm. Eng Appl Artif Intell. 2023;126:106786. doi: 10.1016/j.engappai.2023.106786.
  • Shuai W, Chen X, Shan Y, et al. Clinical characteristics and CT findings in 148 Non-COVID-19 Influenza-Like illness cases: a retrospective control study. Front Public Health. 2021;9:616963. doi: 10.3389/fpubh.2021.616963.
  • Bhosale YH, Patnaik KS. Application of deep learning techniques in diagnosis of covid-19 (coronavirus): a systematic review. Neural Process Lett. 2023;55(3):3551–3603. doi: 10.1007/s11063-022-11023-0.
  • Bai HX, Wang R, Xiong Z, et al. Artificial intelligence augmentation of radiologist performance in distinguishing COVID-19 from pneumonia of other origin at chest CT. Radiology. 2020;296(3):E156–E165. doi: 10.1148/radiol.2020201491.Volume 296: number 3—September 2020
  • Kumar R, Khan AA, Kumar J, et al. Blockchain-federated-learning and deep learning models for covid-19 detection using ct imaging. IEEE Sens J 2021;21(14):16301–16314. doi: 10.1109/JSEN.2021.3076767.
  • Ko H, Chung H, Kang WS, et al. COVID-19 pneumonia diagnosis using a simple 2D deep learning framework with a single chest CT image: model development and validation. J Med Internet Res. 2020;22(6):e19569. doi: 10.2196/19569.
  • Zhao C, Xu Y, He Z, et al. Lung segmentation and automatic detection of COVID-19 using radiomic features from chest CT images. Pattern Recognit. 2021;119:108071. doi: 10.1016/j.patcog.2021.108071.
  • Gao F, Deng K, Hu C. Construction of TCM health management model for patients with convalescence of coronavirus disease based on artificial intelligence. 2020 International Conference on Big Data and Informatization Education (ICBDIE), Zhangjiajie, China; 2020, pp. 417–420. doi: 10.1109/ICBDIE50010.2020.00104.
  • Jin C, Chen W, Cao Y, et al. Development and evaluation of an artificial intelligence system for COVID-19 diagnosis. Nat Commun. 2020;11(1):5088. www.nature.com/naturecommunications doi: 10.1038/s41467-020-18685-1.
  • Chen J, Wu L, Zhang J, et al. Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography. Sci Rep. 2020;10(1):19196. doi: 10.1038/s41598-020-76282-0.
  • Gieraerts C, Dangis A, Janssen L, et al. Prognostic value and reproducibility of AI-assisted analysis of lung involvement in COVID-19 on low-Dose submillisievert chest CT: sample size implications for clinical trials. Radiol Cardiothorac Imaging. 2020;2(5):e200441. doi: 10.1148/ryct.2020200441.
  • Afif M, Ayachi R, Said Y, et al. Deep learning-based technique for lesions segmentation in CT scan images for COVID-19 prediction. Multimed Tools Appl. 2023;82(17):26885–26899. doi: 10.1007/s11042-023-14941-w.
  • Wu J, Feng LC, Xian XY, et al. Novel coronavirus pneumonia (COVID-19) CT distribution and sign features. Chin J Tuberculosis Respir Dis. 2020;43(4):321–326.
  • Song Y, Zheng S, Li L, et al. Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images. IEEE/ACM Trans Comput Biol Bioinform. 2021;18(6):2775–2780. doi: 10.1109/TCBB.2021.3065361.
  • Wang B, Jin S, Yan Q, et al. AI-assisted CT imaging analysis for COVID-19 screening: building and deploying a medical AI system. Appl Soft Comput. 2021;98:106897. doi: 10.1016/j.asoc.2020.106897.
  • Shan F, Gao Y, Wang J, et al. Abnormal lung quantification in chest CT images of COVID‐19 patients with deep learning and its application to severity prediction. Med Phys. 2021;48(4):1633–1645. doi: 10.1002/mp.14609.
  • Lalmuanawma S, Hussain J, Chhakchhuak L. Applications of machine learning and artificial intelligence for covid-19 (SARS-CoV-2) pandemic: a review. Chaos Solitons Fractals. 2020;139:110059. doi: 10.1016/j.chaos.2020.110059.
  • Cohen JP, Dao L, Roth K, et al. Predicting covid-19 pneumonia severity on chest x-ray with deep learning. Cureus. 2020;12(7):e9448. doi: 10.7759/cureus.9448.
  • Zhu J, Shen B, Abbasi A, et al. Deep transfer learning artificial intelligence accurately stages covid-19 lung disease severity on portable chest radiographs. PLoS One. 2020;15(7):e0236621. doi: 10.1371/journal.pone.0236621.
  • Signoroni A, Savardi M, Benini S, et al. BS-Net: learning COVID-19 pneumonia severity on a large chest X-ray dataset. Med Image Anal. 2021;71:102046. doi: 10.1016/j.media.2021.102046.
  • Gourdeau D, Potvin O, Archambault P, et al. Tracking and predicting COVID-19 radiological trajectory on chest X-rays using deep learning. Sci Rep. 2022;12(1):5616. doi: 10.1038/s41598-022-09356-w.
  • Jiang X, Coffee M, Bari A, et al. Towards an artificial intelligence framework for data-driven prediction of coronavirus clinical severity. Comput Mater Continua. 2020;62(3):537–551. doi: 10.32604/cmc.2020.010691.
  • Sujath R, Chatterjee JM, Hassanien AE. A machine learning forecasting model for COVID-19 pandemic in India. Stoch Environ Res Risk Assess. 2020;34(7):959–972. doi: 10.1007/s00477-020-01827-8.
  • Wismüller A, Stockmaster L, Vosoughi MA. Investigating covid-19 pandemic-induced effects on detection of emergent clinical imaging findings by large-scale tracking of utilization and reading results for AI-based image analysis services. In: Medical imaging 2021: biomedical applications in molecular, structural, and functional imaging. Vol. 11600. SPIE; 2021. p. 191–202. doi: 10.1117/12.2582307.
  • Suri JS, Puvvula A, Biswas M, et al. COVID-19 pathways for brain and heart injury in comorbidity patients: a role of medical imaging and artificial intelligence-based COVID severity classification: a review. Comput Biol Med. 2020;124:103960. doi: 10.1016/j.compbiomed.2020.103960.
  • Lessmann N, Sánchez CI, Beenen L, et al. Automated assessment of CO-RADS and chest CT severity scores in patients with suspected COVID-19 using artificial intelligence. Radiology. 2020;298(1):E18–E28. doi: 10.1148/radiol.2020202439.
  • Chassagnon G, Vakalopoulou M, Battistella E, et al. AI-driven quantification, staging and outcome prediction of COVID-19 pneumonia. Med Image Anal. 2021;67:101860. doi: 10.1016/j.media.2020.101860.
  • Mader C, Bernatz S, Michalik S, et al. Quantification of COVID-19 opacities on chest CT–evaluation of a fully automatic AI-approach to noninvasively differentiate critical versus noncritical patients. Acad Radiol. 2021;28(8):1048–1057. doi: 10.1016/j.acra.2021.03.001.
  • Ghesu FC, Georgescu B, Zheng Y, et al. Multi-scale deep reinforcement learning for real-time 3D-landmark detection in CT scans. IEEE Trans Pattern Anal Mach Intell. 2019;41(1):176–189. doi: 10.1109/TPAMI.2017.2782687.
  • Zaeri N. COVID-19 severity score using machine learning. Int J Comput Software Eng. 2021;6:173.
  • BlueDot. Predicting the spread of COVID-19. 2024. https://bluedot.global/outbreak-intelligence/.
  • World Health Organization. Coronavirus disease (COVID-19) pandemic. 2024. https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
  • HealthMap. COVID-19 Outbreak News. 2024. https://www.healthmap.org/covid-19/
  • Naudé W. Artificial intelligence vs COVID-19: limitations, constraints and pitfalls. AI Soc. 2020;35(3):761–765. -doi: 10.1007/s00146-020-00978-0.
  • Ng TW, Turinici G, Danchin A. A double epidemic model for the SARS propagation. BMC Infect Dis. 2003;3(1):19. doi: 10.1186/1471-2334-3-19.
  • Small M, Shi P, Tse CK. Plausible models for propagation of the SARS virus. IEICE Trans Fundam Electron Commun Comput Sci. 2004;87(9):2379–2386.
  • Zakary O, Rachik M, Elmouki I. On the impact of awareness programs in HIV/AIDS prevention: an SIR model with optimal control. IJCA. 2016;133(9):1–6. doi: 10.5120/ijca2016908030.
  • Hossain MT, Miah MM, Hossain MB. Numerical study of kermack-mckendrik SIR model to predict the outbreak of ebola virus diseases using euler and fourth order runge-kutta methods. Am Sci Res J Engin Technol Sci (ASRJETS). 2017;37(1):1–21.
  • Mikolov T, Karafiát M, Burget L, et al. Recurrent neural network based language model. In: Eleventh annual conference of the international speech communication association. Vol. 2. Makuhari, Chiba, Japan. 2010. p. 1045–1048.
  • Brockmann Lab - Research on Complex Systems - Robert Koch Institute - Berlin. Event Horizon - COVID-19. 2024. http://rocs.hu-berlin.de/corona/docs/forecast/model/.
  • Sun H, Qiu Y, Yan H, et al. Tracking reproductivity of COVID-19 epidemic in China with varying coefficient SIR model. J Data Sci. 2021;18(3):455–472. doi: 10.6339/JDS.202007_18(3).0010.
  • Concentric by Ginkgo Bioworks. Epidemic Tracker. 2024. https://www.epidemictracker.com/
  • Roques L, Klein EK, Papaïx J, et al. Using early data to estimate the actual infection fatality ratio from COVID-19 in France. Biology (Basel). 2020;9(5):97. doi: 10.3390/biology9050097.
  • Engbert R, Rabe MM, Kliegl R, et al. Sequential data assimilation of the stochastic SEIR epidemic model for regional COVID-19 dynamics. Bull Math Biol. 2021;83(1):1. doi: 10.1007/s11538-020-00834-8.
  • Feng S, Feng Z, Ling C, et al. Prediction of the COVID-19 epidemic trends based on SEIR and AI models. PLoS One. 2021;16(1):e0245101. doi: 10.1371/journal.pone.0245101.
  • Wang X, Lia C, Li Z, et al. Preliminary analysis on the early epidemic and spatiotemporal distribution of COVID-19 in Guangdong province. J Trop Med. 2020;20(4):427–430.
  • Zhou C, Su F, Pei T, et al. COVID-19: challenges to GIS with big data. Geography and Sustainability. 2020;1(1):77–87. doi: 10.1016/j.geosus.2020.03.005.
  • Lanteri D, Carco D, Castorina P, et al. Containment effort reduction and regrowth patterns of the covid-19 spreading. Infect Dis Model. 2021;6:632–642. doi: 10.1016/j.idm.2021.02.003.
  • Chen Z, Yang J, Dai B. Forecast possible risk for COVID-19 epidemic dissemination under current control strategies in Japan. IJERPH. 2020;17(11):3872. doi: 10.3390/ijerph17113872.
  • Al-Qaness MAA, Ewees AA, Fan H, et al. Optimization method for forecasting confirmed cases of COVID-19 in China. J Clin Med. 2020;9(3):674. doi: 10.3390/jcm9030674.
  • Fokas AS, Dikaios N, Kastis GA. Covid-19: predictive mathematical formulae for the number of deaths during lockdown and possible scenarios for the post-lockdown period. Proc R Soc A. 2021;477(2249):20200745. doi: 10.1098/rspa.2020.0745.
  • Ferguson NM, Laydon D, Nedjati-Gilani G, et al. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. London: Imperial College COVID-19 Response Team; 2020. doi: 10.25561/77482.
  • Weitz JS, Beckett SJ, Coenen AR, et al. Modeling shield immunity to reduce COVID-19 epidemic spread. Nat Med. 2020;26(6):849–854. doi: 10.1038/s41591-020-0895-3.
  • Aouissi HA, Hamimes A, Ababsa M, et al. Bayesian modeling of COVID-19 to classify the infection and death rates in a specific duration: the case of algerian provinces. Int J Environ Res Public Health. 2022;19(15):9586. doi: 10.3390/ijerph19159586.
  • Iwendi C, Bashir AK, Peshkar A, et al. COVID-19 patient health prediction using boosted random Forest algorithm. Front Public Health. 2020;8:357. doi: 10.3389/fpubh.2020.00357.
  • Yadav M, Perumal M, Srinivas M. Analysis on novel coronavirus (COVID-19) using machine learning methods. Chaos Solitons Fractals. 2020;139:110050. doi: 10.1016/j.chaos.2020.110050.
  • Yagin FH, Cicek B, Alkhateeb A, et al. Explainable artificial intelligence model for identifying COVID-19 gene biomarkers. Comput Biol Med. 2023;154:106619. doi: 10.1016/j.compbiomed.2023.106619.
  • Yan L, Zhang H-T, Goncalves J, et al. An interpretable mortality prediction model for COVID-19 patients. Nat Mach Intell. 2020;2(5):283–288. 020- 0180- 7 doi: 10.1038/s42256-.
  • Nemati M, Ansary J, Nemati N. Machine-learning approaches in COVID-19 survival analysis and discharge-time likelihood prediction using clinical data. Patterns (N Y). 2020;1(5):100074. doi: 10.1016/j.patter.2020.100074.
  • Li Y, Horowitz MA, Liu J, et al. Individual-Level fatality prediction of COVID-19 patients using AI methods. Front Public Health. 2020;8:587937. www.frontiersin.org september 2020, volumeArticle 587937, doi: 10.3389/fpubh.2020.587937.
  • Pham QV, Nguyen DC, Huynh-The T, et al. Artificial intelligence (AI) and big data for coronavirus (COVID-19) pandemic: a survey on the state-of-the-arts. IEEE Access. 2020;8:130820–130839. doi: 10.1109/ACCESS.2020.3009328.
  • Zaeri N. Drug discovery for COVID-19 and related mutations using artificial intelligence. RJPT. 2023;16(11):5384–5391. doi: 10.52711/0974-360X.2023.00872.
  • Tripathi A, Misra K, Dhanuka R, et al. Artificial intelligence in accelerating drug discovery and development. Recent Pat Biotechnol. 2023;17(1):9–23. doi: 10.2174/1872208316666220802151129.
  • Cyranoski D. Profile of a killer: the complex biology powering the coronavirus pandemic. Nature. 2020;581(7806):22–26. doi: 10.1038/d41586-020-01315-7.
  • Reichardt M, Jensen PM, Dahl VA, et al. 3D virtual histopathology of cardiac tissue from covid-19 patients based on phase-contrast X-ray tomography. Elife. 2021;10:e71359. doi: 10.7554/eLife.71359.
  • Jamshidi M, Lalbakhsh A, Talla J, et al. Artificial intelligence and COVID-19: deep learning approaches for diagnosis and treatment. IEEE Access. 2020;8:109581–109595. doi: 10.1109/ACCESS.2020.3001973.
  • Lee H, Merzky A, Tan L, et al. Scalable HPC & AI infrastructure for COVID-19 therapeutics. In: Proceedings of the. Platform for Advanced Scientific Computing Conference. Geneva, Switzerland; 2021. p. 1–13 doi: 10.1145/3468267.3470573.
  • Cholissodin I, Sutrisno S, Santoso N, et al. Smart development of big data app for determining the modelling of covid-19 medicinal compounds using deep AI core engine system. J Phys Conf Ser. 2020;1665(1):012003. Ser. 1665 012003 doi: 10.1088/1742-6596/1665/1/012003Conf.
  • Ren F, Ding X, Zheng M, et al. AlphaFold accelerates artificial intelligence powered drug discovery: efficient discovery of a novel CDK20 small molecule inhibitor. Chem Sci. 2023;14(6):1443–1452. doi: 10.1039/d2sc05709c.
  • Segler MH, Preuss M, Waller MP. Planning chemical syntheses with deep neural networks and symbolic AI. Nature. 2018;555(7698):604–610. doi: 10.1038/nature25978.
  • Ge Y, Tian T, Huang S, et al. An integrative drug repositioning framework discovered a potential therapeutic agent targeting COVID-19. Signal Transduct Target Ther. 2021; 6(1):165. doi: 10.1038/s41392-021-00568-6.
  • Randhawa GS, Soltysiak MP, El Roz H, et al. Machine learning using intrinsic genomic signatures for rapid classification of novel pathogens: COVID-19 case study. PLoS One. 2020;15(4):e0232391. doi: 10.1371/journal.pone.0232391.
  • Zhang H, Saravanan KM, Yang Y, et al. Deep learning based drug screening for novel coronavirus 2019-nCov. Interdisciplinary sciences. Computational Life Sciences. 2020;12:368–376.
  • Gao K, Nguyen DD, Chen J, et al. Repositioning of 8565 existing drugs for COVID-19. J Phys Chem Lett. 2020;11(13):5373–5382. doi: 10.1021/acs.jpclett.0c01579.
  • Karki N, Verma N, Trozzi F, et al. Predicting potential SARS-COV-2 drugs—in depth drug database screening using deep neural network framework SSnet, classical virtual screening and docking. Int J Mol Sci. 2021;22(4):1573. doi: 10.3390/ijms22041573.
  • Donner Y, Kazmierczak S, Fortney K. Drug repurposing using deep embeddings of gene expression profiles. Mol Pharm. 2018;15(10):4314–4325. doi: 10.1021/acs.molpharmaceut.8b00284.
  • Awasthi R, Guliani KK, Khan SA, et al. VacSIM: learning effective strategies for COVID-19 vaccine distribution using reinforcement learning. Intell Based Med. 2022;6:100060. doi: 10.1016/j.ibmed.2022.100060.
  • Bardhan I, Chen H, Karahanna E. Connecting systems, data, and people: a multidisciplinary research roadmap for chronic disease management. Manage Inf Syst Q. 2020;44(1):185–200.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.