Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 55, 2020 - Issue 2
636
Views
18
CrossRef citations to date
0
Altmetric
Articles

Anaerobic digestion of livestock and poultry manures spiked with tetracycline antibiotics

ORCID Icon, ORCID Icon, ORCID Icon, &

References

  • Halling-Sørensen, G.; Sengel, B. Toxicity of Tetracyclines and Tetracycline Degradation Products to Environmentally Relevant Bacteria, Including Selected Tetracycline-Resistant Bacteria. Arch. Environ. Contam. Toxicol. 2002, 42, 263–271. DOI: 10.1007/s00244-001-0017-2.
  • Jeong, J.; Song, W.; Cooper, W. J.; Jung, J.; Greaves, J. Degradation of Tetracycline Antibiotics: Mechanisms and Kinetic Studies for Advanced Oxidation/Reduction Processes. Chemosphere 2010, 78, 533–540. DOI: 10.1016/j.chemosphere.2009.11.024.
  • López-Peñalver, J. J.; Sánchez-Polo, M.; Gómez-Pacheco, C. V.; Rivera-Utrilla, J. Photodegradation of Tetracyclines in Aqueous Solution by Using UV and UV/H2O2 Oxidation Processes. J. Chem. Technol. Biotechnol. 2010, 85, 1325–1333. DOI: 10.1002/jctb.2435.
  • Daghrir, R.; Drogui, P. Tetracycline Antibiotics in the Environment: A Review. Environ. Chem. Lett. 2013, 11, 209–227. DOI: 10.1007/s10311-013-0404-8.
  • Granados-Chinchilla, F.; Rodríguez, C. Tetracyclines in Food and Feedingstuffs: From Regulation to Analytical Methods, Bacterial Resistance, and Environmental and Health Implications. J. Anal. Methods Chem. 2017, 2017, 1–24. DOI: 10.1155/2017/1315497.
  • DuPont, H. L.; Steele, J. H. Use of Antimicrobial Agents in Animal Feeds: Implications for Human Health. Clin. Infect. Dis. 1987, 9, 447–460. DOI: 10.1093/clinids/9.3.447.
  • Diarra, M. S.; Malouin, F.; Jacques, M. Postantibiotic and Physiological Effects of Tilmicosin, Tylosin, and Apramycin at Subminimal and Suprainhibitory Concentrations on Some Swine and Bovine Respiratory Tract Pathogens. Int. J. Antimicrob. Agents 1999, 12, 229–237. DOI: 10.1016/S0924-8579(99)00069-2.
  • Aga, D. S.; O'Connor, S.; Ensley, S.; Payero, J. O.; Snow, D.; Tarkalson, D. Determination of the Persistence of Tetracycline Antibiotics and Their Degradates in Manure-Amended Soil Using Enzyme-Linked Immunosorbent Assay and Liquid Chromatography-Mass Spectrometry. J. Agric. Food Chem. 2005, 53, 7165–7171. DOI: 10.1021/jf050415+.
  • Loftin, K. A.; Henny, C.; Adams, C. D.; Surampali, R.; Mormile, M. R. Inhibition of Microbial Metabolism in Anaerobic Lagoons by Selected Sulfonamides, Tetracyclines, Lincomycin, and Tylosin Tartrate. Environ. Toxicol. Chem. 2005, 24, 782. DOI: 10.1897/04-093R.1.
  • US FDA. New Animal Drugs and New Animal Drug Combination Products Administered in or on Medicated Feed or Drinking Water of Food Producing Animals: Recommendations for Drug Sponsors for Voluntarily Aligning Product Use Conditions with GFI #209. 2013.
  • Koluman, A.; Dikici, A. Antimicrobial Resistance of Emerging Foodborne Pathogens: Status Quo and Global Trends. Crit. Rev. Microbiol. 2013, 39, 57–69. DOI: 10.3109/1040841X.2012.691458.
  • Jjemba, P. K. The Potential Impact of Veterinary and Human Therapeutic Agents in Manure and Biosolids on Plants Grown on Arable Land: A Review. Agriculture. Ecosyst. Environ. 2002, 93, 267–278. DOI: 10.1016/S0167-8809(01)00350-4.
  • Álvarez, J. A.; Otero, L.; Lema, J. M.; Omil, F. The Effect and Fate of Antibiotics during the Anaerobic Digestion of Pig Manure. Bioresour. Technol. 2010, 101, 8581–8586. DOI: 10.1016/j.biortech.2010.06.075.
  • Karthikeyan, K. G.; Meyer, M. T. Occurrence of Antibiotics in Wastewater Treatment Facilities in Wisconsin, USA. Sci. Total Environ. 2006, 361, 196–207. DOI: 10.1016/j.scitotenv.2005.06.030.
  • Campagnolo, E. R.; Johnson, K. R.; Karpati, A.; Rubin, C. S.; Kolpin, D. W.; Meyer, M. T.; Esteban, J. E.; Currier, R. W.; Smith, K.; Thu, K. M.; McGeehin, M. Antimicrobial Residues in Animal Waste and Water Resources Proximal to Large-Scale Swine and Poultry Feeding Operations. Sci. Total Environ. 2002, 299, 89–95. DOI: 10.1016/S0048-9697(02)00233-4.
  • Bautitz, I. R.; Nogueira, R. F. P. Degradation of Tetracycline by photo-Fenton Process—Solar Irradiation and Matrix Effects. J. Photochem. Photobiol. A: Chem. 2007, 187, 33–39. DOI: 10.1016/j.jphotochem.2006.09.009.
  • Wei, R.; Ge, F.; Huang, S.; Chen, M.; Wang, R. Occurrence of Veterinary Antibiotics in Animal Wastewater and Surface Water around Farms in Jiangsu Province, China. Chemosphere 2011, 82, 1408–1414. DOI: 10.1016/j.chemosphere.2010.11.067.
  • He, L.-Y.; Ying, G.-G.; Liu, Y.-S.; Su, H.-C.; Chen, J.; Liu, S.-S.; Zhao, J.-L. Discharge of Swine Wastes Risks Water Quality and Food Safety: Antibiotics and Antibiotic Resistance Genes from Swine Sources to the Receiving Environments. Environ. Int. 2016, 92–93, 210–219. DOI: 10.1016/j.envint.2016.03.023.
  • Chee-Sanford, J. C.; Aminov, R. I.; Krapac, I. J.; Garrigues-Jeanjean, N.; Mackie, R. I. Occurrence and Diversity of Tetracycline Resistance Genes in Lagoons and Groundwater Underlying Two Swine Production Facilities. Appl. Environ. Microbiol. 2001, 67, 1494–1502. DOI: 10.1128/AEM.67.4.1494-1502.2001.
  • Koike, S.; Krapac, I. G.; Oliver, H. D.; Yannarell, A. C.; Chee-Sanford, J. C.; Aminov, R. I.; Mackie, R. I. Monitoring and Source Tracking of Tetracycline Resistance Genes in Lagoons and Groundwater Adjacent to Swine Production Facilities over a 3-Year Period. Appl. Environ. Microbiol. 2007, 73, 4813–4823. DOI: 10.1128/AEM.00665-07.
  • Gao, P.; Munir, M.; Xagoraraki, I. Correlation of Tetracycline and Sulfonamide Antibiotics with Corresponding Resistance Genes and Resistant Bacteria in a Conventional Municipal Wastewater Treatment Plant. Sci. Total Environ. 2012, 421–422, 173–183. DOI: 10.1016/j.scitotenv.2012.01.061.
  • Agga, G. E.; Arthur, T. M.; Durso, L. M.; Harhay, D. M.; Schmidt, J. W. Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste. PLoS One 2015, 10, e0132586. DOI: 10.1371/journal.pone.0132586.
  • Agga, G. E.; Cook, K. L.; Netthisinghe, A. M. P.; Gilfillen, R. A.; Woosley, P. B.; Sistani, K. R. Persistence of Antibiotic Resistance Genes in Beef Cattle Backgrounding Environment over Two Years after Cessation of Operation. PLoS One 2019, 14, e0212510. DOI: 10.1371/journal.pone.0212510.
  • Xu, W.; Zhang, G.; Li, X.; Zou, S.; Li, P.; Hu, Z.; Li, J. Occurrence and Elimination of Antibiotics at Four Sewage Treatment Plants in the Pearl River Delta (PRD), South China. Water Res. 2007, 41, 4526–4534. DOI: 10.1016/j.watres.2007.06.023.
  • Sarmah, A. K.; Meyer, M. T.; Boxall, A. B. A. A Global Perspective on the Use, Sales, Exposure Pathways, Occurrence, Fate and Effects of Veterinary Antibiotics (VAs) in the Environment. Chemosphere 2006, 65, 725–759. DOI: 10.1016/j.chemosphere.2006.03.026.
  • Kemper, N. Veterinary Antibiotics in the Aquatic and Terrestrial Environment. Ecol. Indic. 2008, 8, 1–13. DOI: 10.1016/j.ecolind.2007.06.002.
  • Wu, N.; Qiao, M.; Zhang, B.; Cheng, W.-D.; Zhu, Y.-G. Abundance and Diversity of Tetracycline Resistance Genes in Soils Adjacent to Representative Swine Feedlots in China. Environ. Sci. Technol. 2010, 44, 6933–6939. DOI: 10.1021/es1007802.
  • Bagge, E.; Sahlström, L.; Albihn, A. The Effect of Hygienic Treatment on the Microbial Flora of Biowaste at Biogas Plants. Water Res. 2005, 39, 4879–4886. DOI: 10.1016/j.watres.2005.03.016.
  • Saunders, O.; Harrison, J.; Fortuna, A. M.; Whitefield, E.; Bary, A. Effect of Anaerobic Digestion and Application Method on the Presence and Survivability of E. coli and Fecal Coliforms in Dairy Waste Applied to Soil. Water. Water. Air. Soil Pollut. 2012, 223, 1055–1063. DOI: 10.1007/s11270-011-0923-5.
  • Resende, J. A.; Silva, V. L.; Oliveira, T. L. R. d.; Oliveira Fortunato, S. d.; Costa Carneiro, J. D.; Otenio, M. H.; Diniz, C. G. Prevalence and Persistence of Potentially Pathogenic and Antibiotic Resistant Bacteria during Anaerobic Digestion Treatment of Cattle Manure. Bioresour. Technol. 2014, 153, 284–291. DOI: 10.1016/j.biortech.2013.12.007.
  • Miller, J. H.; Novak, J. T.; Knocke, W. R.; Pruden, A. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters. Front. Microbiol. 2016, 7, 263 DOI: 10.3389/fmicb.2016.00263.
  • Sui, Q.; Zhang, J.; Chen, M.; Tong, J.; Wang, R.; Wei, Y. Distribution of Antibiotic Resistance Genes (ARGs) in Anaerobic Digestion and Land Application of Swine Wastewater. Environ. Poll. 2016, 213, 751–759. DOI: 10.1016/j.envpol.2016.03.038.
  • Couch, M.; Agga, G. E.; Kasumba, J.; Parekh, R. R.; Loughrin, J. H.; Conte, E. D. Abundances of Tetracycline Resistance Genes and Tetracycline Antibiotics during Anaerobic Digestion of Swine Waste. J. Environ. Quality 2019, 48, 171. DOI: 10.2134/jeq2018.09.0331.
  • Amarakoon, I. D.; Zvomuya, F.; Sura, S.; Larney, F. J.; Cessna, A. J.; Xu, S.; McAllister, T. A. Dissipation of Antimicrobials in Feedlot Manure Compost after Oral Administration versus Fortification after Excretion. J. Environ. Quality 2016, 45, 503. DOI: 10.2134/jeq2015.07.0408.
  • Arikan, O. A. Degradation and Metabolization of Chlortetracycline during the Anaerobic Digestion of Manure from Medicated Calves. J. Hazard. Mater. 2008, 158, 485–490. DOI: 10.1016/j.jhazmat.2008.01.096.
  • Arikan, O. A.; Sikora, L. J.; Mulbry, W.; Khan, S. U.; Rice, C.; Foster, G. D. The Fate and Effect of Oxytetracycline during the Anaerobic Digestion of Manure from Therapeutically Treated Calves. Process Biochem. 2006, 41, 1637–1643. DOI: 10.1016/j.procbio.2006.03.010.
  • Wilkie, A. In Anaerobic digestion of dairy manure: design and process considerations, Proceedings of the Dairy Manure Management, Cornell University, Ithaca, NY, 2005.
  • Marti, R.; Scott, A.; Tien, Y.-C.; Murray, R.; Sabourin, L.; Zhang, Y.; Topp, E. Impact of Manure Fertilization on the Abundance of Antibiotic-Resistant Bacteria and Frequency of Detection of Antibiotic Resistance Genes in Soil and on Vegetables at Harvest. Appl. Environ. Microbiol. 2013, 79, 5701–5709. DOI: 10.1128/AEM.01682-13.
  • Navarro, A. F.; Cegarra, J.; Roig, A.; Garcia, D. Relationships between Organic Matter and Carbon Contents of Organic Wastes. Bioresour. Technol. 1993, 44, 203–207. DOI: 10.1016/0960-8524(93)90153-3.
  • Moral, R.; Moreno-Caselles, J.; Perez-Murcia, M. D.; Perez-Espinosa, A.; Rufete, B.; Paredes, C. Characterisation of the Organic Matter Pool in Manures. Bioresour. Technol. 2005, 96, 153–158. DOI: 10.1016/j.biortech.2004.05.003.
  • Peters, J.; Combs, S.; Hoskins, B.; Jarman, J.; Kovar, J.; Watson, M.; Wolf, A.; Wolf, N. Recommended Methods of Manure Analysis. 2003, 30–38. Available at https://soils.wisc.edu/extension/pubs/A3769.pdf (accessed Sep 17, 2019)
  • Capone, D. G.; Weston, D. P.; Miller, V.; Shoemaker, C. Antibacterial Residues in Marine Sediments and Invertebrates following Chemotherapy in Aquaculture. Aquaculture 1996, 145, 55–75. DOI: 10.1016/S0044-8486(96)01330-0.
  • Marchaim, U.; Krause, C. Propionic to Acetic Acid Ratios in Overloaded Anaerobic Digestion. Bioresour. Technol. 1993, 43, 195–203. DOI: 10.1016/0960-8524(93)90031-6.
  • Yen, H.; Brune, D. Anaerobic co-Digestion of Algal Sludge and Waste Paper to Produce Methane. Bioresour. Technol. 2007, 98, 130–134. DOI: 10.1016/j.biortech.2005.11.010.
  • Wang, X.; Lu, X.; Li, F.; Yang, G. Effects of Temperature and Carbon-Nitrogen (C/N) Ratio on the Performance of Anaerobic Co-Digestion of Dairy Manure, Chicken Manure and Rice Straw: Focusing on Ammonia Inhibition. PLoS One 2014, 9, e97265. DOI: 10.1371/journal.pone.0097265.
  • Hamilton, D. Organic Matter Content of Wastewater and Manure 2016. Available at http://pods.dasnr.okstate.edu/docushare/dsweb/Get/v_Document-8265/BAE-1760web.pdf (accessed 17 Sep, 2019).
  • Bolan, N.; Adriano, D.; Mahimairaja, S. Distribution and Bioavailability of Trace Elements in Livestock and Poultry Manure by-Products. Crit. Rev. Environ. Sci. Technol. 2004, 34, 291–338. DOI: 10.1080/10643380490434128.
  • Zhang, F.; Li, Y.; Yang, M.; Li, W. Content of Heavy Metals in Animal Feeds and Manures from Farms of Different Scales in Northeast China. Int. J. Environ. Res. Public Health. 2012, 9, 2658–2668. DOI: 10.3390/ijerph9082658.
  • Wang, H.; Dong, Y.; Yang, Y.; Toor, G. S.; Zhang, X. Changes in Heavy Metal Contents in Animal Feeds and Manures in an Intensive Animal Production Region of China. J. Environ. Sci. 2013, 25, 2435–2442. DOI: 10.1016/S1001-0742(13)60473-8.
  • Varel, V. H.; Wells, J. E.; Shelver, W. L.; Rice, C. P.; Armstrong, D. L.; Parker, D. B. Effect of Anaerobic Digestion Temperature on Odour, Coliforms and Chlortetracycline in Swine Manure or Monensin in Cattle Manure*: Effect of Anaerobic Digestion on Chlortetracycline and Monensin. J. Appl. Microbiol. 2012, 112, 705–715. DOI: 10.1111/j.1365-2672.2012.05250.x.
  • Weiland, P. Biogas Production: current State and Perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. DOI: 10.1007/s00253-009-2246-7.
  • Calli, B.; Mertoglu, B.; Inanc, B.; Yenigun, O. Effects of High Free Ammonia Concentrations on the Performances of Anaerobic Bioreactors. Process Biochem. 2005, 40, 1285–1292. DOI: 10.1016/j.procbio.2004.05.008.
  • Procházka, J.; Dolejš, P.; Máca, J.; Dohányos, M. Stability and Inhibition of Anaerobic Processes Caused by Insufficiency or Excess of Ammonia Nitrogen. Appl. Microbiol. Biotechnol. 2012, 93, 439–447. DOI: 10.1007/s00253-011-3625-4.
  • Stone, J. J.; Clay, S. A.; Zhu, Z.; Wong, K. L.; Porath, L. R.; Spellman, G. M. Effect of Antimicrobial Compounds Tylosin and Chlortetracycline during Batch Anaerobic Swine Manure Digestion. Water Res. 2009, 43, 4740–4750. DOI: 10.1016/j.watres.2009.08.005.
  • Kuhne, M.; Ihnen, D.; Moller, G.; Agthe, O. Stability of Tetracycline in Water and Liquid Manure. J. Vet. Med. Series A 2000, 47, 379–384. DOI: 10.1046/j.1439-0442.2000.00300.x.
  • Wu, X.; Wei, Y.; Zheng, J.; Zhao, X.; Zhong, W. The Behavior of Tetracyclines and Their Degradation Products during Swine Manure Composting. Bioresour. Technol. 2011, 102, 5924–5931. DOI: 10.1016/j.biortech.2011.03.007.
  • Thiele-Bruhn, S. Pharmaceutical Antibiotic Compounds in Soils – A Review. J. Plant Nutr. Soil Sci. 2003, 166, 145–167. DOI: 10.1002/jpln.200390023.
  • Wang, Q.; Yates, S. R. Laboratory Study of Oxytetracycline Degradation Kinetics in Animal Manure and Soil. J. Agric. Food Chem. 2008, 56, 1683–1688. DOI: 10.1021/jf072927p.
  • Loke, M.-L.; Tjørnelund, J.; Halling-Sørensen, B. Halling-Sørensen, B. Determination of the Distribution Coefficient (logKd) of Oxytetracycline, Tylosin A, Olaquindox and Metronidazole in Manure. Chemosphere 2002, 48, 351–361. DOI: 10.1016/S0045-6535(02)00078-4.
  • Pils, J. R. V.; Laird, D. A. Sorption of Tetracycline and Chlortetracycline on K- and Ca-Saturated Soil Clays, Humic Substances, and Clay − Humic Complexes. Environ. Sci. Technol. 2007, 41, 1928–1933. DOI: 10.1021/es062316y.
  • Li, L.-L.; Huang, L.-D.; Chung, R.-S.; Fok, K.-H.; Zhang, Y.-S. Sorption and Dissipation of Tetracyclines in Soils and Compost. Pedosphere 2010, 20, 807–816. DOI: 10.1016/S1002-0160(10)60071-9.
  • Karcı, A.; Balcıoğlu, I. A. Investigation of the Tetracycline, Sulfonamide, and Fluoroquinolone Antimicrobial Compounds in Animal Manure and Agricultural Soils in Turkey. Science of the Total Environment 2009, 407, 4652–4664. DOI: 10.1016/j.scitotenv.2009.04.047.
  • Zhang, G.; Liu, X.; Sun, K.; Zhao, Y.; Lin, C. Sorption of Tetracycline to Sediments and Soils: assessing the Roles of pH, the Presence of Cadmium and Properties of Sediments and Soils. Front. Environ. Sci. Eng. China 2010, 4, 421–429. DOI: 10.1007/s11783-010-0265-3.
  • Wang, Z.; Jiang, Q.; Wang, R.; Yuan, X.; Yang, S.; Wang, W.; Zhao, Y. Effects of Dissolved Organic Matter on Sorption of Oxytetracycline to Sediments. Geofluids 2018, 2018, 1–12. DOI: 10.1155/2018/1254529.
  • Pollard, A. T.; Morra, M. J. Fate of Tetracycline Antibiotics in Dairy Manure-Amended Soils. Environ. Rev. 2018, 26, 102–112. DOI: 10.1139/er-2017-0041.
  • MacKay, A. A.; Canterbury, B. Oxytetracycline Sorption to Organic Matter by Metal-Bridging. J. Environ. Quality 2005, 34, 1964. DOI: 10.2134/jeq2005.0014.
  • Jiang, W.-T.; Chang, P.-H.; Wang, Y.-S.; Tsai, Y.; Jean, J.-S.; Li, Z. Sorption and Desorption of Tetracycline on Layered Manganese Dioxide Birnessite. Int. J. Environ. Sci. Technol. 2015, 12, 1695–1704. DOI: 10.1007/s13762-014-0547-6.
  • Cowley, C. A.; Brorsen, B. W.; Hamilton, D. W. Economic Feasibility of Anaerobic Digestion with Swine Operations. J. Agric. Appl. Econ. 2019, 51, 49–68. DOI: 10.1017/aae.2018.20.
  • Schmidt, T.; Harris, P.; Lee, S.; McCabe, B. K. Investigating the Impact of Seasonal Temperature Variation on Biogas Production from Covered Anaerobic Lagoons Treating Slaughterhouse Wastewater Using Lab Scale Studies. J. Environ. Chem. Eng. 2019, 7, 103077. DOI: 10.1016/j.jece.2019.103077.
  • Senés‐Guerrero, C.; Colón‐Contreras, F. A.; Reynoso‐Lobo, J. F.; Tinoco‐Pérez, B.; Siller‐Cepeda, J. H.; Pacheco, A. Biogas‐Producing Microbial Composition of an Anaerobic Digester and Associated Bovine Residues. MicrobiologyOpen 2019,8(9) e854. DOI: 10.1002/mbo3.854.
  • Winckler, C.; Grafe, A. Use of Veterinary Drugs in Intensive Animal Production: Evidence for Persistence of Tetracycline in Pig Slurry. J. Soils Sediments 2001, 1, 66–70. DOI: 10.1007/BF02987711.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.