Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 58, 2023 - Issue 7
74
Views
0
CrossRef citations to date
0
Altmetric
Articles

Development of methods based on low-temperature partitioning (LTP) for monitoring cresols and chlorophenols in sewage sludge, soil, and water in column leaching

, , & ORCID Icon

References

  • Hoang, S. A.; Bolan, N.; Madhubashani, A. M. P.; Vithanage, M.; Perera, V.; Wijesekara, H.; Wang, H.; Srivastava, P.; Kirkham, M. B.; Mickan, B. S.; et al. Treatment Processes to Eliminate Potential Environmental Hazards and Restore Agronomic Value of Sewage Sludge: A Review. Environ. Pollut. 2022, 293, 118564–118582. DOI: 10.1016/j.envpol.2021.118564.
  • Steele, J. C.; Meng, X. Z.; Venkatesan, A. K.; Halden, R. U. Comparative Meta-Analysis of Organic Contaminants in Sewage Sludge from the United States and China. Sci. Total Environ. 2022, 821, 153423–153433. DOI: 10.1016/j.scitotenv.2022.153423.
  • National Council for the Environment (CONAMA). Resolution No 375/2006. Defines Criteria and Procedures for the Agricultural Use of Sewage Sludge Generated in Sewage Treatment Plants and Their Derivate Products, and Makes Other Provisions. Environment Ministry. 2006. http://www.mma.gov.br/port/conama/res/res06/res37506.pdf.
  • Agency for Toxic Substances and Disease Registry (ATSDR). Substance Priority List; U. S. Department of Health and Human Services: Atlanta, GA, 2017. http://www.atsdr.cdc.gov/spl/#2017spl.
  • Bai, Y.; Yan, L.; Li, G.; Zhao, R.; Li, F. Effects of Demineralization on Phenols Distribution and Formation during Coal Pyrolysis. Fuel 2014, 134, 368–374. DOI: 10.1016/j.fuel.2014.05.076.
  • Harzallah, B.; Grama, S. B.; Bousseboua, H.; Jouanneau, Y.; Yang, J.; Li, J. Isolation and Characterization of Indigenous Bacilli Strains from an Oil Refinery Wastewater with Potential Applications for Phenol/Cresol Bioremediation. J. Environ. Manag. 2023, 332, 117322–117331. DOI: 10.1016/j.jenvman.2023.117322.
  • Duan, W.; Meng, F.; Cui, H.; Lin, Y.; Wang, G.; Wu, J. Ecotoxicity of Phenol and Cresols to Aquatic Organisms: A Review. Ecotoxicol. Environ. Saf. 2018, 157, 441–456. DOI: 10.1016/j.ecoenv.2018.03.089.
  • Yang, Y.; Li, X.; Zhu, H.; Xu, X.; Bao, L. Chemical Removal of m-Cresol: A Critical Review. Rev. Chem. Eng. 2022, 38, 1023–1044. DOI: 10.1515/revce-2021-0001.
  • Badanthadka, M.; Mehendale, H. M. Cresols. In Encyclopedia of Toxicology, 3rd ed.; Cambridge: Elsevier, 2014.
  • Asmadi, M.; Kawamoto, H.; Saka, S. Gas- and Solid/Liquid-Phase Reactions during Pyrolysis of Softwood and Hardwood Lignins. J. Anal. Appl. Pyrolysis 2011, 92, 417–425. DOI: 10.1016/j.jaap.2011.08.003.
  • Zhang, H.; Zhao, F.; Liu, Y.; Li, Y.; Liu, H.; Sun, H. Assessment of the Inhibition Risk of Chlorophenol Substances on Cytochrome P450 via Cocktail Inhibition Assays. Toxicol. Appl. Pharmacol. 2023, 461, 116401–116412. DOI: 10.1016/j.taap.2023.116401.
  • Olaniran, A. O.; Igbinosa, E. O. Chlorophenols and Other Related Derivatives of Environmental Concern: Properties, Distribution and Microbial Degradation Processes. Chemosphere 2011, 83, 1297–1306. DOI: 10.1016/j.chemosphere.2011.04.009.
  • Ahlborg, U. G.; Thunberg, T. M. Chlorinated Phenols – Occurrence, Toxicity, Metabolism, and Environmental-Impact. Crit. Rev. Toxicol. 1980, 7, 1–35. DOI: 10.3109/10408448009017934.
  • Aken, P. V.; Lambert, N. R.; Broeck, V.; Degrève, J.; Dewil, R. Advances in Ozonation and Biodegradation Processes to Enhance Chlorophenol Abatement in Multisubstrate Wastewaters: A Review. Environ. Sci. Water Res. Technol. 2019, 5, 444–482.
  • Pera-Titus, M.; Garcı́a-Molina, V.; Baños, M. A.; Giménez, J.; Esplugas, Sant. i. ago Degradation of chlorophenols by Means of Advanced Oxidation Processes: A General Review. Appl. Catal. B Environ. 2004, 47, 219–256. DOI: 10.1016/j.apcatb.2003.09.010.
  • Salcedo, G. M.; Kupski, L.; Degang, L.; Marube, L. C.; Caldas, S. S.; Primel, E. G. Determination of Fifteen Phenols in Wastewater from Petroleum Refinery Samples Using a Dispersive Liquid-Liquid Microextraction and Liquid Chromatography with a Photodiode Array Detector. Microchem. J. 2019, 146, 722–728. DOI: 10.1016/j.microc.2019.01.075.
  • Llompart, M.; Lourido, M.; Landin, P.; García-Jares, C.; Cela, R. Optimization of a Derivatization-Solid-Phase Microextraction Method for the Analysis of Thirty Phenolic Pollutants in Water Samples. J. Chromatogr. A 2002, 963, 137–148. DOI: 10.1016/s0021-9673(02)00646-5.
  • Padilla-Sánchez, J. A.; Plaza-Bolanos, P.; Romero-González, R.; Garrido-Frenich, A.; Vidal, J. L. M. Application of a Quick, Easy, Cheap, Effective, Rugged and Safe-Based Method for the Simultaneous Extraction of Chlorophenols, Alkylphenols, Nitrophenols and Cresols in Agricultural Soils, Analyzed by Using Gas Chromatography-Triple Quadrupole-Mass Spectrometry/Mass Spectrometry. J. Chromatogr. A 2010, 1217, 5724–5731. DOI: 10.1016/j.chroma.2010.07.004.
  • Maia, M. R.; Arcanjo, A. L. P.; Pinho, G. P.; Silverio, F. O. Solid-Liquid Extraction with Low Temperature Purification Coupled with Gas Chromatography and Mass Spectrometry for Determination of Polychlorinated Biphenyls in Sewage Sludge. J. Braz. Chem. Soc. 2017, 28, 179–186.
  • Oliveira, C. I.; Cardoso, A. T.; Goulart, A. C.; Oliveira, M. A. C.; Santos, J. P. V.; Goulart, S. M. Determination of Pesticides in Soybean Seeds Incorrectly Discarded near a Spring of the Paranaiba River, GO-Brazil. Chem. Biodivers. 2022, 19, 202100560–202100568.
  • Freitas, J. F.; Queiroz, M. E. L. R.; Oliveira, A. F.; Ribeiro, L. P.; Salvador, D. V.; Miranda, L. D. L.; Alves, R. R.; Rodrigues, A. A. Z. Evaluation of Imazalil Dissipation/Migration in Postharvest Papaya Using Low-Temperature Partition Extraction and GC–MS Analysis. Food Chem. 2023, 418, 135969–135977. DOI: 10.1016/j.foodchem.2023.135969.
  • Goulart, S. M.; Alves, R. D.; Neves, A. A.; de Queiroz, J. H.; Assis, T. C.; de Queiroz, M. E. L. R. Optimization and Validation of Liquid-Liquid Extraction with Low Temperature Partitioning for Determination of Carbamates in Water. Anal. Chim. Acta 2010, 671, 41–47. DOI: 10.1016/j.aca.2010.05.003.
  • Cunha, C. C. R. F.; Freitas, M.; Gomes, R.; Silva, D. A.; Barros, A. L. C.; Ribeiro, M. C.; Sanson, A. L.; Afonso, R. J. C. F. Low-Temperature Partitioning Extraction Followed by Liquid Chromatography Tandem Mass Spectrometry Determination of Multiclass Antibiotics in Solid and Soluble Wastewater Fractions. J. Chromatogr. A 2021, 1650, 462256–462267. DOI: 10.1016/j.chroma.2021.462256.
  • Barros, A. L. C.; Abreu, C. G.; Cunha, C. C. R. F.; Rodrigues, D. A. S.; Afonso, R. J. C. F.; SiLVa, G. A. Method Development for Simultaneous Determination of Polar and Nonpolar Pesticides in Surface Water by Low-Temperature Partitioning Extraction (LTPE) Followed by HPLC-ESI-MS/MS. Environ. Sci. Pollut. Res. Int. 2019, 26, 31609–31622. DOI: 10.1007/s11356-019-06286-5.
  • Jackson, D. R.; Garrett, B. C.; Bishop, T. A. Comparison of Batch and Column Methods for Assessing Leachability of Hazardous Waste. Environ. Sci. Technol. 1984, 18, 668–673. DOI: 10.1021/es00127a007.
  • Enell, A.; Reichenberg, F.; Warfvinge, P.; Ewald, G. A Column Method for Determination of Leaching of Polycyclic Aromatic Hydrocarbons from Aged Contaminated Soil. Chemosphere 2004, 54, 707–715. DOI: 10.1016/j.chemosphere.2003.08.026.
  • Bauw, D. H.; de Wilde, P. G. M.; Rood, G. A.; Aalbers, T. A Standard Leaching Test, Including Solid-Phase Extraction, for the Determination of PAH Leachability from Waste Materials. Chemosphere 1991, 22, 713–722. DOI: 10.1016/0045-6535(91)90048-I.
  • Lopez-Avila, V.; Milanes, J.; Constantine, F.; Beckert, W. F. Typical Phthalate Ester Contamination Incurred Using EPA Method 8060. J. AOAC Intern. 1990, 73, 709–720. DOI: 10.1093/jaoac/73.5.709.
  • National Institute of Metrology Standardization and Quality (INMETRO). Guidance on Validation of Analytical Methods, DOQCGCRE-008; 2020. http://www.inmetro.gov.br/Sidoq/Arquivos/Cgcre/DOQ/DOQ-Cgcre-8_08.pdf.
  • Thompson, M.; Ellison, S. L. R.; Wood, R. Harmonized Guidelines for Single-Laboratory Validation of Methods of Analysis (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 835–855. DOI: 10.1351/pac200274050835.
  • De Souza, S. V. C.; Junqueira, R. G. A Procedure to Assess Linearity by Ordinary Least Squares Method. Anal. Chim. Acta 2005, 552, 25–35. DOI: 10.1016/j.aca.2005.07.043.
  • Faludi, T.; Andrasi, N.; Vasanits-Zsigrai, A.; Záray, G.; Molnar-Perl, I. Systematic Derivatization, Mass Fragmentation and Acquisition Studies in the Analysis of Chlorophenols, as Their Silyl Derivatives by Gas Chromatography-Mass Spectrometry. J. Chromatogr. A 2013, 1302, 133–142. DOI: 10.1016/j.chroma.2013.06.004.
  • Cai, K.; Zhao, Y.; Kang, Z.; Wang, S.; Wright, A. L.; Jiang, X. Environmental Pseudotarget Metabolomics: A High Throughput and Wide Coverage Method for Metabolic Profiling of 1000-Year Paddy Soil Chronosequences. Sci. Total Environ. 2023, 858, 159978–159990. DOI: 10.1016/j.scitotenv.2022.159978.
  • Ramalho, M. B.; Duraes, A. F. S.; Silvério, F. O.; Pinho, G. P. Determination of Three Cresol Isomers in Sewage Sludge by Solid-Liquid Extraction with Low Temperature Purification and Gas Chromatography-Mass Spectrometry. J. Environ. Sci. Health B 2020, 55, 184–192. DOI: 10.1080/03601234.2019.1678952.
  • Rudakov, O. B.; Khorokhordina, E. A.; Reobrazhenskii, M. A. P.; Rudakova, L. V. Low-Temperature Liquid–Liquid Extraction of Phenols from Aqueous Solutions with Hydrophilic Mixtures of Extractants. Russ. J. Phys. Chem. 2016, 90, 1665–1668. DOI: 10.1134/S0036024416080264.
  • Fewson, C. A. Biodegradation of Xenobiotic and Other Persistent Compounds: The Causes of Recaucitrance. Trends Biotechnol. 1988, 6, 148–153. DOI: 10.1016/0167-7799(88)90084-4.
  • Nascimento, A. L.; Souza, A. J.; Andrade, P. A. M.; Andreote, F. D.; Coscione, A. R.; Oliveira, F. C.; Regitano, J. B. Sewage Sludge Microbial Structures and Relations to Their Sources, Treatments, and Chemical Attributes. Front. Microbiol. 2018, 9, 1462–1473. DOI: 10.3389/fmicb.2018.01462.
  • Lopez-Echartea, E.; Strejcek, M.; Mateju, V.; Vosahlova, S.; Kyclt, R.; Demnerova, Kat. e. r.; Uhlik, O. Bioremediation of Chlorophenol-Contaminated Sawmill Soil Using Pilot-Scale Bioreactors under Consecutive Anaerobic-Aerobic Conditions. Chemosphere 2019, 227, 670–680. DOI: 10.1016/j.chemosphere.2019.04.036.
  • Yan, J. B.; Xu, L. L.; Wei, X. Biodegradation Characteristics and Bioaugmentation Potential of an Efficient o-Cresol-Degrading Strain Isolated Strain Isolated from Petrochemical Sewage Treatment Plant. Adv. Mat. Res. 2013, 726–731, 264–268.
  • Bera, S.; Kauser, H.; Mohanty, K. Optimization of p-Cresol Biodegradation Using Novel Bacterial Strains Isolated from Petroleum Hydrocarbon Fallout. J. Water Process. Eng. 2019, 31, 100842–100848. DOI: 10.1016/j.jwpe.2019.100842.
  • Rodrigues, V. S.; Andrade, L. M.; Tenório, J. A. S. Biodegradation of Phenolic Compounds in Waste Foundry Sand: Physical and Chemical Characterization of Foundry Sand and Bacterial Degradation Kinetics. Environ. Nanotechnol. Monit. Manag. 2021, 16, 1–7.
  • Lallai, A.; Mura, G. A. Biodegradation of 2-Chlorophenol in Forest Soil: Effect of Inoculation with Aerobic Sewage Sludge. Environ. Toxicol. Chem. 2004, 23, 325–330. DOI: 10.1897/02-419.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.