313
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Thermodynamics of Ligand Binding to P450 2B4 and P450eryF Studied by Isothermal Titration Calorimetry

&
Pages 539-556 | Published online: 09 Oct 2008

REFERENCES

  • Aldridge J. E., Gibbons J. A., Flaherty M. M., Kreider M. L., Romano J. A., Levin E. D. Heterogeneity of toxicant response: Sources of human variability. Toxicol. Sci. 2003; 76: 3–20
  • Amulphi C., Jin L., Tricerri M. A., Jonas A. Enthalpy-driven apolipoprotein A-I and lipid bilayer interaction indicating protein penetration upon lipid binding. Biochemistry 2004; 43: 12258–12264
  • Anderson T. G., Tan A., Ganz P., Seelig J. Calorimetric measurement of phospholipid interaction with methyl-beta-cyclodextrin. Biochemistry 2004; 43: 2251–2261
  • Atkins W. M. Implications of the allosteric kinetics of cytochrome P450s. Drug Discovery Today 2004; 9: 478–484
  • Atkins W. M., Wang R. W., Lu A. Y. H. Allosteric behavior in cytochrome p450-dependent in vitro drug-drug interactions: a prospective based on conformational dynamics. Chem. Res. Toxicol. 2000; 14: 338–347
  • Baas B. J., Denisov I. G., Sligar S. G. Homotropic cooperativity of monomeric cytochrome P450 3A4 in a nanoscale native bilayer environment. Arch. Biochem. Biophys. 2004; 430: 218–228
  • Bayburt T. H., Leitz A. J., Xie G., Oprian D. D., Sligar S. G. Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. J. Biol. Chem. 2007, Mar 29, Epub.
  • Bayburt T. H., Sligar S. G. Single-molecule height measurements on microsomal cytochrome P450 in nanometer-scale phospholipid bilayer disks. Proc. Natl. Acad. Sci. U.S.A. 2002; 99: 6725–6730
  • Bridges A., Gruenke L., Chang Y. T., Vakser I. A., Loew G., Waskell L. Identification of the binding site on cytochrome P450 2B4 for cytochrome b5 and cytochrome P450 reductase. J. Biol. Chem. 1998; 273: 17036–17049
  • Campoy A. V., Freire E. ITC in the post-genomic era…? Priceless. Biophy. Chem. 2005; 115: 115–124
  • Campoy A. V., Freire E. Isothermal titration calorimetry to determine association constants for high-affinity ligands. Nature Protocols 2006; 1: 186–191
  • Cupp-Vickery J. R., Garcia C., Hofacre A., McGee-Estrada K. Ketoconazole-induced conformational changes in the active site of cytochrome P450eryF. J. Mol. Biol. 2001; 311: 101–110
  • Cupp-Vickery J., Anderson R., Hatziris Z. Crystal structures of ligand complexes of P450eryF exhibiting homotropic cooperativity. Proc. Natl. Acad. Sci. U.S.A. 2000; 97: 3050–3055
  • Davydov D. R., Botchkareva A. E., Davydova N. E., Halpert J. R. Resolution of two substrate-binding sites in an engineered cytochrome P450eryF bearing a fluorescent probe. Biophys. J. 2005; 89: 418–432
  • Davydov D. R., Botchkareva A. E., Kumar S., He Y. Q., Halpert J. R. An electrostatically driven conformational transition is involved in the mechanisms of substrate binding and cooperativity in cytochrome P450eryF. Biochemistry 2004; 43: 6475–6485
  • Davydov D. R., Fernando H., Baas B. J., Sligar S. G., Halpert J. R. Kinetics of dithionite-dependent reduction of cytochrome P450 3A4: heterogeneity of the enzyme caused by its oligomerization. Biochemistry 2005; 44: 13902–13913
  • Davydov D. R., Fernando H., Halpert J. R. Variable path length and counter-flow continuous variation methods for the study of the formation of high-affinity complexes by absorbance spectroscopy. An application to the studies of substrate binding in cytochrome P450. Biophys. Chem. 2006; 123: 95–101
  • Davydov D. R., Hui Bon Hoa G., Peterson J. A. Dynamics of protein-bound water in the heme domain of P450BM3 studied by high-pressure spectroscopy: comparison with P450cam and P450 2B4. Biochemistry 1999; 38: 751–761
  • Davydov D., Kumar S., Halpert J. R. Allosteric mechanisms in P450eryF probed with 1‐pyrenebutanol, a novel fluorescent substrate. Biochem. Biophys. Res. Commun. 2002; 294: 806–812
  • Denisov I. G., Makris T. M., Sligar S. G., Schlichting I. Structure and chemistry of cytochrome P450. Chem. Rev. 2005; 105: 2253–2277
  • Denisov I. G., Grinkova Y. Y., Lazarides A. A., Sligar S. G. Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J. Am. Chem. Soc. 2004; 126: 1377–1387
  • Ekroos M., Sjogren T. Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc. Natl. Acad. Sci. U S A 2006; 103: 13682–13687
  • Fernando F., Halpert J. R., Davydov D. R. Resolution of multiple substrate binding sites in cytochrome P450 3A4: the stoichiometry of the enzyme-substrate complexes probed by FRET and Job's titration. Biochemistry 2006; 45: 4199–4209
  • French J. S., Guengerich F. P., Coon M. J. Interactions of cytochrome P-450, NADPH-cytochrome P-450 reductase, phospholipid, and substrate in the reconstituted liver microsomal enzyme system. J. Biol. Chem. 1980; 225: 4112–4119
  • de Graaf C., Vermeulen N. P., Feenstra K. A. Cytochrome p450 in silico: An integrative modeling approach. J. Med. Chem. 2005; 48: 2725–2755
  • de Groot M. J. Designing better drugs: predicting cytochrome P450 metabolism. Drug. Discov. Today 2006; 11: 601–606
  • Guengerich F. P. Cytochrome P450s and other enzymes in drug metabolism and toxicity. AAPS J 2006; 8: E101–E111
  • Harlow G. R., Halpert J. R. Analysis of human cytochrome P450 3A4 cooperativity: construction and characterization of a site-directed mutant that displays hyperbolic steroid hydroxylation kinetics. Proc. Natl. Acad. Sci. USA. 1998; 95: 6636–6641
  • Hilser V. J., Garcia-Moreno E. B., Oas T. G., Kapp G., Whitten S. T. A statistical thermodynamic model of the protein ensemble. Chem. Rev. 2006; 106: 1545–1558
  • Huang Y. Y., Hara T., Sligar S., Coon M. J., Kimura T. Thermodynamic properties of oxidation-reduction reactions of bacterial, microsomal, and mitochondrial cytochromes P-450: an entropy-enthalpy compensation effect. Biochemistry 1986; 25: 1390–1394
  • Isin E. M., Guengerich F. P. Kinetics and thermodynamics of ligand binding by cytochrome P450 3A4. J. Biol. Chem. 2006; 281: 9127–9136
  • Johnson E. F., Stout C. D. Structural diversity of human xenobiotic-metabolizing cytochrome P450 monooxygenases. Biochem. Biophys. Res. Commun. 2005; 338: 331–336
  • Khan K. K., He Y. A., He Y. Q., Halpert J. R. Site-directed mutagenesis of cytochrome P450eryF: implications for substrate oxidation, cooperativity, and topology of the active site. Chem. Res. Toxicol. 2002; 15: 843–853
  • Khan K. K., Liu H., Halpert J. R. Homotropic versus heterotopic cooperativity of cytochrome P450eryF: a substrate oxidation and spectral titration study. Drug Metab. Dispos. 2003; 31: 356–359
  • Koley A. P., Buters J. T., Robinson R. C., Markowitz A., Friedman F. K. Differential mechanisms of cytochrome P450 inhibition and activation by alpha-naphthoflavone. J. Biol. Chem. 1997; 272: 3149–3159
  • Korzekwa K. R., Krishnamachary N., Shou M., Ogai A., Parise R. A., Rettie A. E., Gonzalez F. J., Tracy T. S. Evaluation of atypical cytochrome P450 kinetics with two-substrate models: evidence that multiple substrates can simultaneously bind to cytochrome P450 active sites. Biochemistry 1998; 37: 4137–4147
  • Lawson R. J., Leys D., Sutcliffe M. J., Kemp C. A., Cheesman M. R., Smith S. J., Clarkson J., Smith W. E., Haq I., Perkins J. B., Munro A. W. Thermodynamic and biophysical characterization of cytochrome P450 BioI from Bacillus subtilis. Biochemistry 2004; 43: 12410–12426
  • Leavitt S., Freire E. Direct measurement of protein binding energetics by isothermal titration calorimetry. Curr. Opin. Struct. Biol. 2001; 11: 560–566
  • Lewis D. F. Human cytochromes P450 associated with the phase 1 metabolism of drugs and other xenobiotics: a compilation of substrates and inhibitors of the CYP1, CYP2 and CYP3 families. Curr. Med. Chem. 2003; 10: 1955–1972
  • Li H., Poulos T. L. Crystallization of cytochromes P450 and substrate-enzyme interactions. Curr. Top. Med. Chem. 2004; 4: 1789–1802
  • Lokesh G. L., Muralidhara B. K., Negi S. S., Natarajan A. Thermodynamics of phosphopeptide tethering to BRCT: The structural minima for inhibitor design. J. Am. Chem. So. 2007, In Press.
  • Lopez M. M., Makhatadze G. I. Isothermal titration calorimetry. Methods Mol. Biol. 2002; 173: 121–126
  • Miller G. P., Guengerich F. P. Binding and oxidation of alkyl 4-nitrophenyl ethers by rabbit cytochrome P450 1A2: evidence for two binding sites. Biochemistry 2001; 40: 7262–7272
  • Muralidhara B. K., Chen M., Ma J., Wittung-Stafshede P. Effect of inorganic phosphate on FMN binding and loop flexibility in Desulfovibrio desulfuricans apo-flavodoxin. J. Mol. Biol. 2005; 349: 89–97
  • Muralidhara B. K., Negi S. S., Halpert J. R. Dissecting the thermodynamics and cooperativity of ligand binding in cytochrome P450eryF. J. Am. Chem. Soc. 2007; 129: 2015–2024
  • Muralidhara B. K., Negi S., Chin C. C., Braun W., Halpert J. R. Conformational flexibility of mammalian cytochrome P450 2B4 in binding imidazole inhibitors with different ring chemistry and side chains. Solution thermodynamics and molecular modeling. J. Biol. Chem. 2006; 281: 8051–8061
  • Muralidhara B. K., Prakash V. Interaction of 3′-O-caffeoyl D-quinic acid with human serum albumin. Int. J Pept. Protein Res. 1995; 41: 1–8
  • Muralidhara B. K., Wittung-Stafshede P. Can cofactor-binding sites in proteins be flexible? Desulfovibrio desulfuricans flavodoxin binds FMN dimer. Biochemistry 2003; 42: 13074–13080
  • Muralidhara B. K., Wittung-Stafshede P. Thermal unfolding of Apo and Holo Desulfovibrio desulfuricans flavodoxin: cofactor stabilizes folded and intermediate states. Biochemistry 2004; 43: 12855–12864
  • Muralidhara B. K., Wittung-Stafshede P. FMN binding and unfolding of Desulfovibrio desulfuricans flavodoxin: “hidden” intermediates at low denaturant concentrations. Biochem. Biophys. Acta 2005; 1747: 239–250
  • Nagano S., Cupp-Vickery J. R., Poulos T. L. Crystal structures of the ferrous dioxygen complex of wild-type cytochrome P450eryF and its mutants, A245S and A245T: investigation of the proton transfer system in P450eryF. J. Biol. Chem. 2005; 280: 22102–22107
  • Nelson D. R., Koymans L., Kamataki T., Stegeman J. J., Feyereisen R., Waxman D. J., Waterman M. R., Gotoh O., Coon M. J., Estabrook R. W., Gunsalus I. C., Nebert D. W. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 1996; 6: 1–42
  • Ohtaka H., Velazquez-Compoy A., Xie D., Freire E. Overcoming drug resistance in HIV-1 chemotherapy: the binding thermodynamics of Amprenavir and TMC-126 to wild-type and drug-resistant mutants of the HIV-1 protease. Protein Sci. 2002; 11: 1908–1916
  • Peterson J. A., Graham S. E. A close family resemblance: the importance of structure in understanding cytochromes P450. Structure 1998; 6: 1079–1085
  • Poulos T. L., Finzel B. C., Gunsalus I. C., Wagner G. C., Kraut J. The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450. J. Biol. Chem. 1985; 260: 16122–16130
  • Poulos T. L., Johnson E. F. Cytochrome P450: Structure, Mechanism, and Biochemistry 3rd, P. R. Ortiz de Montellano. Kluwer Academic / Plenum Publishers, NY 2005; 87–114
  • Roberts A. G., Campbell A. P., Atkins W. M. The thermodynamic landscape of testosterone binding to cytochrome P450 3A4: ligand binding and spin state equilibria. Biochemistry 2005; 44: 1353–1366
  • Roberts A. G., Diaz M. D., Lampe J. N., Shireman L. M., Grinstead J. S., Dabrowski M. J., Pearson J. T., Bowman M. K., Atkins W. M., Campbell A. P. NMR studies of ligand binding to P450(eryF) provides insight into the mechanism of cooperativity. Biochemistry 2006; 45: 1673–1684
  • Rowland P., Blaney F. E., Smyth M. G., Jones J. J., Leydon V. R., Oxbrow A. K., Lewis C. J., Tennant M. G., Modi S., Eggleston D. S., Chenery R. J., Bridges A. M. Crystal structure of human cytochrome P450 2D6. J. Biol.Chem. 2006; 281: 7614–7622
  • Sakaguchi M., Omura T. Topology and biogenesis of microsomal cytochrome P450s. Medicinal Implications in Cytochrome P-450 Catalyzed Biotransformations, K. Ruckpaul, H. Rein. Akademie Verlag, Berlin 1993; 59–73
  • Sansen S., Yano J. K., Reynald R. L., Schoch G. A., Griffin K. J., Stout C. d., Johnson E. F. Adaptations for the oxidation of polycyclic aromatic hydrocarbons exhibited by the structure of human P450 1A2. J. Bio. Chem 2007; 282: 14348–14355
  • Schoch G. A., Yano J. K., Wester M. R., Griffin K. J., Stout C. D., Johnson E. F. Structure of human microsomal cytochrome P450 2C8. Evidence for a peripheral fatty acid binding site. J. Biol. Chem. 2004; 279: 9497–9503
  • Schrag M. L., Wienkers L. C. Topological alteration of the CYP3A4 active site by the divalent cation Mg(2+). Drug Metab. Dispos. 2000; 28: 1198–1201
  • Scott E. E., White M. A., He Y. A., Johnson E. F., Stout D., Halpert J. R. Structure of mammalian cytochrome P450 2B4 complexed with 4-(4-chlorophenyl)imidazole at 1.9-A resolution: insight into the range of P450 conformations and the coordination of redox partner binding. J. Biol. Chem. 2004; 279: 27294–27301
  • Scott E. E., He Y. A., Wester M. R., White M. A., Chin C. C., Halpert J. R., Johnson E. F., Stout D. An open conformation of mammalian cytochrome P450 2B4 at 1.6-A resolution. Proc. Natl. Acad. Sci. U.S.A. 2003; 100: 13196–13201
  • Shou M., Grogan J., Mancewicz J. A., Krausz K. W., Gonzalez F. J., Gelboin H. V., Korzekwa K. R. Activation of CYP3A4: evidence for the simultaneous binding of two substrates in a cytochrome P450 active site. Biochemistry 1994; 33: 6450–6455
  • Sigurskjold B. W. Exact analysis of competition ligand binding by displacement isothermal titration calorimetry. Anal. Biochem. 2000; 277: 260–266
  • Sikka R., Magauran B., Ulrich A., Shannon M. Bench to bedside: Pharmacogenomics, adverse drug interactions, and the cytochrome P450 system. Acad. Emerg. Med. 2005; 12: 1227–1235
  • Smith B. D., Sanders J. L., Porubsky P. R., Lushington G. H., Stout C. D., Scott E. E. Structure of the human lung cytochrome P450 2A13. J. Biol. Chem. 2007; 282: 17306–17313
  • Turnbull W. B., Daranas A. H. On the value of c: can low affinity systems be studied by isothermal titration calorimetry?. J. Am. Chem. Soc. 2003; 125: 14859–14866
  • Ueng Y. F., Kuwabara T., Chun Y. J., Guengerich F. P. Cooperativity in oxidations catalyzed by cytochrome P450 3A4. Biochemistry 1997; 36: 370–381
  • Vaz A. D. N., Pernecky S. J., Raner G. M., Coon M. J. Peroxo-iron and oxenoid-iron species as alternative oxygenating agents in cytochrome P450-catalyzed reactions: switching by threonine-302 to alanine mutagenesis of cytochrome P450 2B4. Proc. Natl. Acad. Sci. U.S.A. 1996; 93: 4644–4648
  • Weber P. C., Salemme F. R. Applications of calorimetric methods to drug discovery and the study of protein interactions. Curr. Opin. Struct. Biol. 2003; 13: 115–121
  • Wester M. R., Yano J. K., Schoch G. A., Yang C., Griffin K. J., Stout C. D., Johnson E. F. The structure of human cytochrome P450 2C9 complexed with flurbiprofen at 2.0-A resolution. J. Biol. Chem. 2004; 279: 35630–35637
  • Williams P. A., Cosme J., Angove H. C., Vinkovic D. M., Jhoti H. Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 2003; 424: 464–468
  • Williams P. A., Cosme J., Sridhar V., Johnson E. F., McRee D. E. Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol. Cell 2000; 5: 121–131
  • Williams P. A., Cosme J., Vinkovic D. M., Ward A., Angove H. C., Day P. J., Vonrhein C., Tickle I. J., Jhoti H. Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 2004; 305: 683–686
  • Wiseman T., Williston S., Brandts J. F., Lin L.-N. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 1989; 179: 131–137
  • Wrighton S. A., Stevens J. C. The human hepatic cytochromes P450 involved in drug metabolism. CRC Crit. Rev. Toxicol. 1992; 22: 1–21
  • Yano J. K., Hsu M. H., Griffin K. J., Stout C. D., Johnson E. F. Structures of human microsomal cytochrome P450 2A6 complexed with coumarin and methoxsalen. Nat. Struct. Mol. Biol. 2005; 12: 822–823
  • Yano J. K., Wester M. R., Schoch G. A., Griffin K. J., Stout C. D., Johnson E. F. The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-A resolution. J. Biol. Chem. 2004; 279: 38091–38094
  • Zhao Y., White M. A., Muralidhara B. K., Sun L., Halpert J. R., Stout C. D. Structure of microsomal cytochrome P450 2B4 complexed with the antifungal drug bifonazole: insight into P450 conformational plasticity and membrane interaction. J. Biol. Chem. 2006; 281: 5973–5981
  • Zhao Y., Sun L., Muralidhara B. K., Kumar S., White M. A., Stout C. D., Halpert J. R. Structural and thermodynamic consequences of 1-(4-cholorophenyl)imidazole binding to cytochrome P450 2B4. Biochemistry 2007, in press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.