121
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Novel Properties of P450s in Streptomyces coelicolor

&
Pages 343-352 | Published online: 09 Oct 2008

REFERENCES

  • Aojula H. S., Wilson M. T., Drake A. Characterization of haem disorder by circular dichroism. Biochem. J. 1986; 237: 613–616
  • Austin M. A., Izumikawa M., Bowman M. E., Udwary D. W., Ferrer J.-L., Moore B. S., Noel J.P. Crystal structure of a bacterial type III polyketide synthase and enzymatic control of reactive polyketide intermediates. J. Biol. Chem. 2004; 279: 45162–45174
  • Banci L., Bertini I., Rosato A., Sacchieri S. Solution structure of oxidized microsomal rabbit cytochrome b5. Factors determining the heterogenous binding of the heme. Eur. J. Biochem. 2000; 267: 755–766
  • Barnes H. J. Heterologous expression of bovine cytochrome P450 17α-hydroxylase. Ph.D. dissertation. Graduate School of Biomedical Sciences, The University of Texas Southwestern Medical School. 150–157
  • Bellamine A., Mangla A. T., Nes W. D., Waterman M. R. Characterization and catalytic properties of the sterol 14α-demethylase from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 1999; 96: 8937–8942
  • Chen S., Zhou D. Functional domains of aromatase cytochrome P450 inferred from comparative analysis of amino acid sequences and substantiated by site-directed mutagenesis experinment. J. Biol. Chem. 1992; 267: 22587–22594
  • Chun Y.-J., Shimada T., Sanchez-Ponce R., Martin M. V., Lei L., Zhao B., Kelly S. L., Waterman M. R., Lamb D. C., Guengerich F. P. Electron transport pathway for a streptomyces cytochrome P450: Cytochrome P450105D5-catalyzed fatty acid hydroxylation in Streptomyces coelicolor A3(2). J. Biol. Chem. 2007; 282: 17486–17500
  • Funa N., Funabashi, Yoshimura E., Horinouchi S. A novel quinine-forming monooxygenase family involved in modification of aromatic polyketides. J. Biol. Chem. 2005; 280: 14514–14523
  • Hasemann C. A., Jurumbail R. G., Boddupalli S. S., Peterson J. A., Deisenhofer J. Structure and function of cytochromes P450: A comparative analysis of three crystal structures. Structure 1995; 3: 41–62
  • Hatae T., Hara S., Yokoyama C., Yabuki T., Iuoue H., Ullrich V., Tanabe T. Site-directed mutagenesis of human prostacyclin synthase: Alteration of Cys 441 of the Cys-pocket, and Ghi 347 and Arg 350 of the EXXR motif. FEBS Lett. 1996; 389: 268–272
  • Hopwood D. A. Forty years of genetics in Streptomyces: From In Vitro through In Vitro to In Silico. Microbiology 1999; 145: 2183–2202
  • Izumikawa M., Shipley P. R., Hopke J. N., O'Hare T., Xiang L., Noel J. P., Moore B. S. Expression and characterization of the type III polypeptide synthase 1,3,6,8-tetrahydroxynaphthalene synthase from Streptomyces coelicolor A3(2). J. Ind. Microbiol. Tiotechmol. 2003; 30: 510–515
  • Keller R. M., Wuthrich K. Structural study of the heme crevice in cytochrome b5on individual assignments of the IH-NMR lines of the heme group and selected amino acid residues. Biochim. Biophys. Acta. 1980; 621: 204–217
  • Kieser T., Bibb M. J., Buttner M. J., Chater F., Hopwood D. A. Practical Streptomyces Genetic. The John Innes Foundation, NorwichU.K. 2000
  • LaMar G. N., David N. L., Parish D. W., Smith K. M. Heme orientational disorder in reconstituted and native sperm whale myoglobin. Proton nuclear magnetic resonance characterizations of heme methyl deuterium labeling in the Met-cyano protein. J. Mol. Biol. 1983; 168: 887–896
  • Lamb D. C., Skang T., Song H.-H., Jackson C. J., Podust L. M., Waterman M. R., Kell D. B., Kelly D. E., Kelly S. L. The cytochrome P450 complement (CYPome) of Streptomyces coelicolor A3(2). J. Biol. Chem. 2002; 277: 24000–24005
  • Lamb D. C., Guengerich F. P., Kelly S. L., Waterman M. R. Exploiting Streptomyces coelicolor A3(2) P450s as a model for application in drug discovery. Expert Opin. Drug Metab. Toxicol. 2006; 2: 27–40
  • Leys D., Mowat C. G., McLean K. J., Richmond A., Chapman S. K., Wakin-Shaw M. D., Munro A. D. Aromatic structure of Mycobacterium tuberculosis CYP121 to 1.06Å reveals novel features of cytochrome P450. J. Biol. Chem. 2003; 278: 5141–5147
  • McLachlan S. J., LaMar G. N., Burns P. D., Smith K. M., Langry K. C. 1H-NMR assignments and the dynamics of interconversion of the isomeric forms of cytochrome b5in solution. Biochim. Biophys. Acta 1986; 874: 274–284
  • Martinis S. A., Atkins W. M., Slayton P. S., Poulos T. L. A conserved residue of cytochrome P450 is involved in heme-oxygen stability and activation. J. Am. Chem. Soc. 1989; 20: 9252–9253
  • Moczygemba C., Guidry J., Wittung-Stafshede P. Heme concentration affects holo-myoglobin folding and unfolding kinetics. FEBS Lett. 2000; 470: 203–206
  • Podust L. M., Kim Y., Arase M., Neely B. A., Beck B. J., Bach H., Sherman D. H., Lamb D. C., Kelly S. L., Waterman M. R. The 1.92-Å structure of Streptomyces coelicolor A3(2) CYP154C1. A new monooxygenase that functionalizes macrolide ring systems. J. Biol. Chem. 2003; 278: 12214–12221
  • Podust L. M., Bach H., Kim Y., Lamb D. C., Arase M., Sherman D. H., Kelly S. L., Waterman M. R. Comparison of the 1.85Å structure of CYP154A1 from Streptomyces coelicolor A3(2) with the closely related CYP154C1 and CYPs from antibiotic biosynthetic pathways. Prot. Sci. 2004; 13: 255–268
  • Rupasinghe S., Schuler M. A., Kagawa N., Yuan H., Lei L., Zhao B., Kelly S. L., Waterman M. R., Lamb D. C. The cytochrome P450 gene family CYP157 does not contain EXXR in the K-helix reducing the absolute conserved P450 residues to a single cysteine. FEBS Lett. 2006; 280: 6338–6342
  • Shimizu T., Tateishi T., Hatano M., Fujii-Kuriyama Y. Probing the role of lysines and arginines in the catalytic function of cytochrome P450d by site-directed mutagenesis interaction with NADPH-cytochrome P450 reductase. J. Biol. Chem. 1991; 266: 3372–3375
  • Zhao B., Guengerich F. P., Bellamine A., Lamb D. C., Izumikawa M., Lei L., Podust L. M., Sundaramoorthy M., Kalaitzis J. A., Reddy L. M., Kelly S. L., Moore B. S., Stec D., Voehler M., Falck J. R., Shimada T., Waterman M. R. Binding of two flaviolin substrate molecules, oxidative coupling, and crystal structure of Streptomyces coelicolor A3(2) cytochrome P450158A2. J. Biol. Chem. 2005a; 280: 11599–11607
  • Zhao B., Guengerich F. P., Voehler M., Waterman M. R. Role of active site water molecules and substrate hydroxyl groups in oxygen activation by cytochrome P450 158A2: A new mechanism of proton transfer. J. Biol. Chem. 2005b; 280: 42188–42197
  • Zhao B., Lamb D. C., Lei L., Kelly S. L., Yuan H., Hachey D. L., Waterman M. R. Different binding modes of two flaviolin substrate molecules in cytochrome P450 158A1 (CYP158A1) compared to CYP158A2. Biochemistry 2007, (In press).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.