1,428
Views
110
CrossRef citations to date
0
Altmetric
Research Article

Arylamine N-acetyltransferases: From Structure to Function

, &
Pages 479-510 | Published online: 09 Oct 2008

REFERENCES

  • Adam P. J., Berry J., Loader J. A., Tyson K. L., Craggs G., Smith P., De Belin J., Steers G., Pezzerella F., Sachsenmeir K. F., Stamps A. C., Herath A., Sim E., O'Hare M. J., Harris A. L., Terrett J. A. Arylamine N-acetyltransferase-1 is highly expressed in breast cancers and conveys enhanced growth and resistance to etoposide in vitro. Mol. Cancer Res. 2003; 1: 826–835
  • Anderton M. C., Bhakta S., Besra G. S., Jeavons P., Eltis L. D., Sim E. Characterisation of the putative operon containing arylamine N-acetyltransferase (nat) in Mycobacterium bovis BCG. Mol. Microbiol. 2006; 59: 181–192
  • Barker D. F., Husain A., Neale J. R., Martini B. D., Zhang X., Doll M. A., States J. C., Hein D. W. Functional properties of an alternative, tissue-specific promoter for human arylamine N-acetyltransferase 1. Pharmacogenet. Genomics 2006; 16: 515–525
  • Bennett E. J., Bence N. F., Jayakumar R., Kopito R. R. Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol. Cell 2005; 17: 351–365
  • Ben-Zvi A., De Los Rios P., Dietler G., Goloubinoff P. Active solubilization and refolding of stable protein aggregates by cooperative unfolding action of individual hsp70 chaperones. J. Biol. Chem. 2004; 279: 37298–37303
  • Bhakta S., Besra G. S., Upton A. M., Parish T., Sholto-Douglas-Vernon C., Gibson K. J. C., Knutton S., Gordon S., DaSilva R., Sim E. Arylamine N-acetyltransferase is required for synthesis of mycolic acids and complex lipids in Mycobacterium bovis BCG and represents a novel drug target. J. Exp. Med. 2004; 99: 1191–1199
  • Bièche I., Girault I., Urbain E., Tozlu S., Lidereau R. Relationship between intratumoral expression of genes coding for xenobiotic-metabolizing enzymes and benefit from adjuvant tamoxifen in estrogen receptor alpha-positive postmenopausal breast carcinoma. Breast Cancer Res. 2004; 6: 252–263
  • Blum M., Demierre A., Grant D. M., Heim M., Meyer U. A. Molecular mechanism of slow acetylation of drugs and carcinogens in humans. Proc. Natl. Acad. Sci. USA 1991; 88: 5237–5241
  • Blum M., Grant D. M., McBride W., Heim M., Meyer U. A. Human N-acetyltransferase genes: Isolation, chromosomal localisation and functional expression. DNA Cell Biol. 1990; 9: 193–203
  • Boukouvala S., Fakis G. Arylamine N-acetyltransferases: What we learn from genes and genomes. Drug Metab. Rev. 2005; 37: 511–564
  • Boukouvala S., Price N., Plant K. E., Sim E. Structure and transcriptional regulation of the Nat2 gene encoding for the drug-metabolising enzyme arylamine N-acetyltransferase type 2 in mice. Biochem. J. 2003; 375: 593–602
  • Boukouvala S., Price N., Sim E. Identification and functional characterization of novel polymorphisms associated with the genes for arylamine N-acetyltransferases in mice. Pharmacogenetics 2002; 12: 385–394
  • Boukouvala S., Sim E. Structural analysis of the genes for human arylamine N-acetyltransferases and characterization of alternative transcripts. Basic Clin. Pharmacol. Toxicol. 2005; 96: 343–351
  • Boukouvala S., Westwood I. M., Butcher N. J., Fakis G. Current trends in NAT research arising from the 2007 International Workshop on the Arylamine N-acetyltransferases. Pharmacogenomics 2008; 9: 765–771
  • Brockmöller J., Cascorbi I., Kerb R., Roots I. Combined analysis of inherited polymorphisms in arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1, microsomal epoxide hydrolase, and cytochrome P450 enzymes as modulators of bladder cancer risk. Cancer Res. 1996; 56: 3915–3925
  • Brooke E. W., Davies S. G., Mulvaney A. W., Pompeo F., Sim E., Vickers R. J. An approach to identifying novel substrates of bacterial arylamine N-acetyltransferases. Bioorg. Med. Chem. 2003; 11: 1227–1234
  • Butcher N. J., Arulpragasam A., Goh H. L., Davey T., Minchin R. F. Genomic organization of human arylamine N-acetyltransferase type I reveals alternative promoters that generate different 5’-UTR splice variants with altered translational activities. Biochem. J. 2005; 387: 119–127
  • Butcher N. J., Arulpragasam A., Minchin R. F. Proteasomal degradation of N-acetyltransferase 1 is prevented by acetylation of the active site cysteine: a mechanism for the slow acetylator phenotype and substrate-dependent down-regulation. J. Biol. Chem. 2004; 279: 22131–22137
  • Butcher N. J., Arulpragasam A., Pope C., Minchin R. F. Identification of a minimal promoter sequence for the human N-acetyltransferase type I gene that binds AP-1 (activator protein 1) and YY-1 (Yin and Yang 1). Biochem. J. 2003; 376: 441–448
  • Butcher N. J., Boukouvala S., Sim E., Minchin R. F. Pharmacogenetics of the arylamine N-acetyltransferases. Pharmacogenomics J. 2002; 2: 30–42
  • Butcher N. J., Tetlow N. L., Cheung C., Broadhurst G. M., Minchin R. F. Induction of human arylamine N-acetyltransferase type I by androgens in human prostate cancer cells. Cancer Res. 2007; 67: 85–92
  • Cao W., Chau B., Hunter R., Strnatka D., McQueenm C. A., Erickson R. P. Only low levels of exogenous N-acetyltransferase can be achieved in transgenic mice. Pharmacogenomics J. 2005; 5: 255–261
  • Carmichael S. L., Shaw G. M., Yang W., Iovannisci D. M., Lammer E. Risk of limb deficiency defects associated with NAT1, NAT2, GSTM1, and NOS3 genetic variants, maternal smoking and vitamin supplement intake. Am. J. Med. Genet. 2006; 140A: 1915–1922
  • Chuang J. Y., Wang Y. T., Yeh S. H., Liu Y. W., Chang W. C., Hung J. J. Phosphorylation by JNK1 Regulates the Stability of Transcription Factor Sp1 during Mitosis. Mol. Biol. Cell. 2008
  • Chung J. G., Levy G. N., Weber W. W. Distribution of 2-aminofluorene and p-aminobenzoic acid N-acetyltransferase activity in the tissues of C57BL/6J rapid and B6.A-NatS slow acetylator congenic mice. Drug Metab. Dispos. 1993; 21: 1057–1063
  • Ciechanover A., Finley D., Varshavsky A. Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell 1984; 37: 57–66
  • Conaway R. C., Brower C. S., Conaway J. W. Emerging roles of ubiquitin in transcription regulation. Science 2002; 296: 1254–1258
  • Cornish V. A., Pinter K., Boukouvala S., Johnson N., Labrousse C., Payton M., Priddle H., Smith A. J., Sim E. Generation and analysis of mice with a targeted disruption of the arylamine N-acetyltransferase type 2 gene. Pharmacogenomics J. 2003; 3: 169–177
  • De Los Rios P., Ben-Zvi A., Slutsky O., Azem A., Goloubinoff P. Hsp70 chaperones accelerate protein translocation and the unfolding of stable protein aggregates by entropic pulling. Proc Natl Acad Sci USA 2006; 103: 6166–6171
  • Deloménie C., Fouix S., Longuemaux S., Brahimi N., Bizet C., Picard B., Denamur E., Dupret J. M. Identification and functional characterisation of arylamine N-acetyltransferases in eubacteria: Evidence for highly selective acetylation of 5-aminosalicylic acid. J. Bacteriol. 2001; 183: 3417–3427
  • Desmedt C., Piette F., Loi S., Wang Y., Lallemand F., Haibe-Kains B., Viale G., Delorenzi M., Zhang Y., d'Assignies M.S., Bergh J., Lidereau R., Ellis P., Harris A. L., Klijn J. G., Foekens J.A., Cardoso F., Piccart M. J., Buyse M., Sotiriou C., TRANSBIG Consortium. Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin. Cancer Res. 2007; 13: 3207–3214
  • Doll M. A., Hein D. W. Cloning, sequencing and expression of NAT1 and NAT2 encoding genes from rapid and slow acetylator inbred rats. Pharmacogenetics 1995; 5: 247–251
  • Dunning A. M., Healey C. S., Pharoah P. D. P., Teare M. D., Ponder B. A. J., Easton D. F. A systematic review of genetic polymorphisms and breast cancer risk. Cancer Epidemiol. Biomarkers Prev. 1999; 8: 843–854
  • Erickson R. P., Cao W., Acuña D. K., Strnatka D. W., Hunter R. J., Chau B. T., Wakefield L. V., Sim E., McQueen C. A. Confirmation of the role of N-acetyltransferase 2 in teratogen-induced cleft palate using transgenics and knockouts. Mol. Reprod. Dev 2008, in press.
  • Estrada-Rodgers L., Levy G. N., Weber W. W. Characterisation of a hormone response element in the mouse N-acetyltransferase 2 (Nat2*) promoter. Gene Expression 1998a; 7: 13–24
  • Estrada-Rodgers L., Levy G. N., Weber W. W. Substrate selectivity of mouse N-acetyltransferase 1, 2, and 3 expressed in COS-1 cells. Drug Metab.Dispos. 1998b; 26: 502–505
  • Evans D. A., White T. A. Human acetylation polymorphism. J. Lab. Clin. Med. 1964; 63: 394–403
  • Fakis G., Boukouvala S., Buckle V., Payton M., Denning C., Sim E. Chromosomal localisation and mapping of the genes for murine arylamine N-acetyltransferases (NATs), enzymes involved in the metabolism of carcinogens: Identification of a novel upstream non-coding exon for murine Nat2. Cytogenet. Cell Genet. 2000; 90: 134–138
  • Fakis G., Boukouvala S., Kawamura A., Kennedy S. Description of a novel polymorphic gene encoding for arylamine N-acetyltransferase in the rhesus macaque (Macaca mulatta), a model animal for endometriosis. Pharmacogenet. Genomics 2007; 17: 181–188
  • Ferguson R. J., Doll M. A., Rustan T. D., Hein D. W. Cloning, expression and functional characterisation of rapid and slow acetylator polymorphic N-acetyltransferase encoding genes of the Syrian hamster. Pharmacogenetics 1996; 6: 55–66
  • Filiadis I. F., Georgiou I., Alamanos Y., Kranas V., Giannakopoulos X., Lolis D. Genotypes of N-acetyltransferase-2 and risk of bladder cancer: a case-control study. J. Urol. 1999; 161: 1672–1675
  • Finley D., Ciechanover A., Varshavsky A. Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 1984; 37: 43–55
  • Frymoyer J. W., Jacox R. F. Studies of genetically controlled sulfadiazine acetylation in rabbit livers: Possible identification of the heterozygous trait. J. Lab. Clin. Med. 1963; 62: 905–909
  • Fullam E., Westwood I. M., Anderton M. C., Lowe E. D., Sim E., Noble M. E. M. Divergence of cofactor recognition across evolution: Coenzyme A binding in a prokaryotic arylamine N-acetyltransferase. J. Mol. Biol. 2008; 375: 178–191
  • Glowinski I. B., Weber W. W. Biochemical characterisation of genetically variant aromatic amine N-acetyltransferases in A/J and C57BL/6J mice. J. Biol. Chem. 1982; 257: 1431–1437
  • Goodfellow G. H., Dupret J.-M., Grant D. M. Identification of amino acids imparting acceptor substrate selectivity to human arylamine acetyltransferases NAT1 and NAT2. Biochem. J. 2000; 348: 159–166
  • Hein D. W. Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis. Mutat. Res. 2002; 506:507: 65–77
  • Hein D. W., Boukouvala S., Grant D. M., Minchin R. F., Sim E. Changes in consensus arylamine N-acetyltransferase (NAT) gene nomenclature. Pharmacogenet. 2008, in press.
  • Hein D. W., Doll M. A., Fretland A. J., Leff M. A., Webb S. J., Xiao G. H., Devanaboyina U. S., Nangju N. A., Feng Y. Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol. Biomarkers Prev. 2000; 9: 29–42
  • Hein D. W., Doll M. A., Nerland D. E., Fretland A. J. Tissue distribution of N-acetyltransferase 1 and 2 catalyzing the N-acetylation of 4-aminobiphenyl and O-acetylation of N-hydroxy-4-aminobiphenyl in the congenic rapid and slow acetylator Syrian hamster. Mol. Carcinogen. 2006; 45: 230–238
  • Hein D. W., Doll M. A., Rustan T. D., Gray K., Ferguson R. J., Feng Y. Construction of Syrian hamster lines congenic at the polymorphic acetyltransferase locus (NAT2): Acetylator genotype-dependent N- and O-acetylation of arylamine carcinogens. Toxicol. Appl. Pharmacol. 1994; 124: 16–24
  • Hein D. W., Neale J. R., Bendaly J., Doll M. A. Construction and initial characterization of Nat2 congenic rat lines. Fourth International Workshop on the Arylamine N-acetyltransferases, AlexandroupolisGreece, 2007
  • Hein D. W., Omichinski J. G., Brewer J. A., Weber W. W. A unique pharmacogenetic expression of the N-acetylation polymorphism in the inbred hamster. J. Pharmacol. Exper. Ther. 1982; 220: 8–15
  • Hein D. W., Rustan T. D., Bucher K. D., Martin W. J., Furman E. J. Acetylator phenotype-dependent and –independent expression of arylamine N-acetyltransferase isoenzymes in rapid and slow acetylator inbred rat liver. Drug Metab. Dispos. 1991; 19: 933–937
  • Hershko A., Ciechanover A. The ubiquitin system. Ann. Rev. Biochem. 1998; 67: 425–479
  • Hess K. R., Anderson K., Symmans W. F., Valero V., Ibrahim N., Mejia J. A., Booser D., Theriault R. L., Buzdar A. U., Dempsey P. J., Rouzier R., Sneige N., Ross J. S., Vidaurre T., Gómez H. L., Hortobagyi G. N., Pusztai L. Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. J. Clin. Oncol. 2006; 24: 4236–4244
  • Hickman D., Pope J., Patil S. D., Fakis G., Smelt V., Stanley L. A., Payton M., Unadkat J. D., Sim E. Expression of arylamine N-acetyltransferase in human intestine. Gut 1998; 42: 402–409
  • Hickman D., Risch A., Buckle V., Spurr N. K., Jeremiah S. J., McCarthy A., Sim E. Chromosomal localisation of human genes for arylamine N-acetyltransferase. Biochem. J. 1994; 297: 441–445
  • Husain A., Barker D. F., States J. C., Doll M. A., Hein D. W. Identification of the major promoter and non-coding exons of the human arylamine N-acetyltransferase 1 gene (NAT1). Pharmacogenetics 2004; 14: 397–406
  • Husain A., Zhang X., Doll M. A., States J. C., Barker D. F., Hein D. W. Functional analysis of the human N-acetyltransferase 1 major promoter: Quantitation of tissue expression and identification of critical sequence elements. Drug Metab. Dispos. 2007a; 35: 1649–1656
  • Husain A., Zhang X., Doll M. A., States J. C., Barker D. F., Hein D. W. Identification of N-acetyltransferase 2 (NAT2) transcription start sites and quantitation of NAT2-specific mRNA in human tissues. Drug Metab. Dispos. 2007b; 35: 721–727
  • Ivshina A. V., George J., Senko O., Mow B., Putti T.C., Smeds J., Lindahl T., Pawitan Y., Hall P., Nordgren H., Wong J. E., Liu E. T., Bergh J., Kuznetsov V. A., Miller L. D. Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res. 2006; 66: 10292–10301
  • Jackson P. K., Eldridge A. G., Freed E., Furstenthal L., Hsu J. Y., Kaiser B. K., Reimann J. D. The lord of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell. Biol. 2000; 10: 429–439
  • Jenne J. W. Partial purification and properties of the isoniazid trans-acetylase in human liver. Its relationship to the acetylation of p-aminosalicylic acid. J. Clin. Invest. 1965; 44: 1992–2002
  • Jensen L. E., Hoess K., Mitchell L. E., Whitehead A. S. Loss of function polymorphisms in NAT1 protect against spina bifida. Hum. Genet. 2006; 120: 52–57
  • Jensen L. E., Hoess K., Whitehead A. S., Mitchell L. E. The NAT1 C1095A polymorphism, maternal multivitamin use and smoking, and the risk of spina bifida. Birth Defects Res. 2005; 73: 512–516
  • Johnston J. A., Illing M. E., Kopito R. R. Cytoplasmic dynein/dynactin mediates the assembly of aggresomes. Cell Motil. Cytoskeleton 2002; 53: 26–38
  • Josephy P. D., Evans D. H., Parikh A., Guengerich F. P. Metabolic activation of aromatic amine by simultaneous expression of human cytochrome P450 1A2, NADPH-cytochrome reductase, and N-acetyltransferase in E. coli. Chem. Res. Toxicol. 1998; 11: 70–74
  • Karolyi J., Erickson R. P., Liu S., Killewald L. Major effects on teratogen-induced facial clefting in mice determined by a single genetic region. Genetics 1990; 126: 201–205
  • Kawamura A., Graham J., Mushtaq A., Tsiftsoglou S. A., Vath G. M., Hanna P. E., Wagner C. R., Sim E. Eukaryotic arylamine N-acetyltransferase: Investigation of substrate specificity by high-throughput screening. Biochem. Pharmacol. 2005; 69: 347–359
  • Kawamura A., Westwood I., Wakefield L., Long H., Zhang N., Walters K., Redfield C., Sim E. Mouse N-acetyltransferase type 2, the homologue of human N-acetyltransferase type 1. Biochem. Pharmacol. 2008; 75: 1550–1560
  • Kelly S. L., Sim E. Arylamine N-acetyltransferase in Balb/c mice: Identification of a novel mouse isoenzyme by cloning and expression in vitro. Biochem. J. 1994; 302: 347–353
  • Kopito R. R. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 2000; 10: 524–530
  • Lammer E. J., Shaw G. M., Iovannisci D. M., Finnell R. H. Periconceptional multivitamin intake during early pregnancy, genetic variation of acetyl-N-transferase 1 (NAT1), and risk for orofacial clefts. Birth Defects Res. 2004a; 70: 846–852
  • Lammer E. J., Shaw G. M., Iovannisci D. M., Van Waes J., Finnell R. H. Maternal smoking and the risk of orofacial clefts: Susceptibility with NAT1 and NAT2 polymorphisms. Epidemiology 2004b; 15: 150–156
  • Land S. J., Jones R. E., King C. M. Biochemical and genetic analysis of two acetyltransferases from hamster tissues that can metabolise aromatic amine derivatives. Carcinogenesis 1994; 15: 1585–1595
  • Lee J. H., Chung J. G., Lai J. M., Levy G. N., Weber W. W. Kinetics of arylamine N-acetyltransferase in tissues from human breast cancer. Cancer Lett. 1997; 111: 39–50
  • Levy G. N., Martell K. J., DeLeon J. H., Weber W. W. Metabolic, molecular genetic and toxicological aspects of the acetylation polymorphism in inbred mice. Pharmacogenetics 1992; 2: 197–206
  • Lissowska J., Brinton L. A., Zatonski W., Blair A., Bardin-Mikolajczak A., Peplonska B., Sherman M. E., Szeszenia-Dabrowska N., Chanock S., García-Closas M. Tobacco smoking, NAT2 acetylation genotype and breast cancer risk. Int. J. Cancer 2006; 119: 1961–1969
  • Liu F., Zhang N., Zhou X., Hanna P. E., Wagner C. R., Koepp D. M., Walters K. J. Arylamine N-acetyltransferase aggregation and constitutive ubiquitylation. J. Mol. Biol. 2006; 361: 482–492
  • Loehle J. A., Cornish V., Wakefield L., Doll M. A., Neale J. R., Zang Y., Sim E., Hein D. W. N-acetyltransferase (Nat) 1 and 2 expression in Nat2 knockout mice. J. Pharmacol. Exper. Ther. 2006; 319: 724–728
  • Lower G. M., Jr., Nilsson T., Nelson C. E., Wolf H., Gamsky T. E., Bryan G. T. N-acetyltransferase phenotype and risk in urinary bladder cancer: approaches in molecular epidemiology. Preliminary results in Sweden and Denmark. Environ. Health Perspect. 1979; 29: 71–79
  • Magalon H., Patin E., Austerlitz F., Hegay T., Aldashev A., Quintana-Murci L., Heyer E. Population genetic diversity of the NAT2 gene supports a role of acetylation in human adaptation to farming in Central Asia. Eur. J. Hum. Genet. 2008; 16: 243–251
  • Major G. N., Brady M., Notarianni G. B., Collier J. D., Douglas M. S. Evidence for ubiquitin-mediated degradation of the DNA repair enzyme for O6-methylguanine in non-tumour derived human cell and tissue extracts. Biochem. Soc. Trans. 1997; 25: 359S
  • Martell K. J., Vatsis K. P., Weber W. W. Molecular genetic basis of rapid and slow acetylation in mice. Mol. Pharmacol. 1991; 40: 218–227
  • Mattano S. S., Erickson R. P., Nesbitt M. N., Weber W. W. Linkage of Nat and Es-1 in the mouse and development of strains congenic for N-acetyltransferase. J. Hered. 1988; 79: 430–433
  • McClellan A. J., Scott M. D., Frydman J. Folding and quality control of the VHL tumor suppressor proceed through distinct chaperone pathways. Cell 2005; 121: 739–748
  • Miller L. D., Smeds J., George J., Vega V. B., Vergara L., Ploner A., Pawitan Y., Hall P., Klaar S., Liu E. T., Bergh J. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc. Natl. Acad. Sci. USA 2005; 102: 13550–13555
  • Minchin R. F. Acetylation of p-amino benzoylglutamate, a folic acid catabolite, by recombinant arylamine N-acetyltransferase and U937 cells. Biochem. J. 1995; 307: 1–3
  • Minchin R. F., Hanna P. E., Dupret J. M., Wagner C. R., Rodrigues-Lima F., Butcher N. J. Molecules in focus: Arylamine N-acetyltransferase I. Int. J. Biochem. Cell Biol. 2007a; 39: 1999–2005
  • Minchin R. F., Tiang J., Butcher N. J. The effect of down-regulation and up-regulation of arylamine N-acetyltransferase-1 on cell growth and survival. Fourth International Workshop on the Arylamine N-acetyltransferases, AlexandroupolisGreece, 2007b
  • Mitchell M. K., Futscher B. W., McQueen C. A. Developmental expression of N-acetyltransferases in C57Bl/6 mice. Drug Metab. Dispos. 1999; 27: 26–264
  • Muller S., Hoege C., Pyrowolakis G., Jentsch S. SUMO, ubiquitin's mysterious cousin. Nat. Rev. Mol. Cell Biol. 2001; 2: 202–210
  • Muratani M., Tansey W. P. How the ubiquitin-proteasome system controls transcription. Nat. Rev. Mol. Cell Biol. 2003; 4: 192–201
  • Mushtaq A., Payton M., Sim E. The COOH terminus of arylamine N-acetyltransferase for Salmonella typhimurium controls enzymic activity. J. Biol. Chem. 2002; 277: 12175–12181
  • Nakura H., Itoh S., Kusano H., Ishizone H., Deguchi T., Kamataki T. Evidence for the lack of hepatic N-acetyltransferases in suncus (Suncus marinus). Biochem. Pharm. 1995; 50: 1165–1170
  • Ochs-Balcom H. M., Wiesner G., Elston R. C. A meta-analysis of the association of N-acetyltransferase 2 gene (NAT2) variants with breast cancer. Am. J. Epidemiol. 2007; 166: 246–254
  • Okkels H., Sigsgaard T., Wolf H., Autrup H. Arylamine N-acetyltransferase 1 (NAT1) and 2 (NAT2) polymorphisms in susceptibility to bladder cancer: the influence of smoking. Cancer Epidemiol. Biomarkers Prev. 1997; 6: 225–231
  • Oldenburg R. A., Meijers-Heijboer H., Cornelisse C. J., Devilee P. Genetic susceptibility for breast cancer: How many more genes to be found?. Crit. Rev. Oncol. Hematol. 2007; 63: 125–149
  • Pacifici G. M., Bencini C., Rane A. Acetyltransferase in humans: Development and tissue distribution. Pharmacol. 1986; 32: 283–291
  • Patin E., Barreiro L. B., Sabeti P. C., Austerlitz A., Luca F., Sajantila A., Behar D. M., Semino O., Sakuntabhai A., Guiso N., Gicquel B., McElreavey K., Harding R. M., Heyer E., Quintana-Murci L. Deciphering the ancient and complex evolutionary history of human arylamine n-acetyltransferase genes. Am. J. Hum. Genet. 2006; 78: 423–436
  • Payton M., Auty R., Delgoda R., Everett M., Sim E. Cloning and characterization of arylamine N-acetyltransferase genes from Mycobacterium smegmatis and M. tuberculosis: increased expression results in isoniazid resistance. J. Bacteriol. 1999a; 181: 1343–1347
  • Payton M., Gifford C., Schartau P., Hagemeier C., Mushtaq A., Lucas S., Pinter K., Sim E. Evidence towards the role of arylamine N-acetyltransferase in Mycobacterium smegmatis and development of a specific antiserum against the homologous enzyme of. Mycobacterium tuberculosis. Microbiol. 2001a; 147: 3295–3302
  • Payton M., Mushtaq A., Yu T., Wu L., Sinclair J., Sim E. Eubacterial arylamine N-acetyltransferases-identification and comparison of 18 members of the protein family with conserved active site cysteine, histidine and aspartate residues. Microbiol. 2001b; 147: 1137–1147
  • Payton M., Smelt V., Upton A., Sim E. A method for genotyping murine arylamine N-acetyltransferase type 2 (NAT2): A gene expressed in preimplantation embryonic stem cells encoding an enzyme acetylating the folate catabolite p-aminobenzoylglutamate. Biochem. Pharmacol. 1999b; 58: 779–785
  • Pegg A. E. Repair of O(6)-alkylguanine by alkyltransferases. Mutat. Res. 2000; 462: 83–100
  • Pfau W., Stone E. M., Brockstedt U., Carmichael P.L., Marquardt H., Phillips D. H. DNA adducts in human breast tissue: Association with N-acetyltransferase-2 (NAT2) and NAT1 genotypes. Cancer Epidemiol. Biomarkers Prev. 1998; 7: 1019–1025
  • Pompeo F., Brooke E. W., Kawamura A., Mushtaq A., Sim E. The pharmacogenetics of NAT: structural aspects. Pharmacogenomics 2002; 3: 19–30
  • Rasimas J. J., Dalessio P. A., Ropson I. J., Pegg A. E., Fried M. G. Active-site alkylation destabilizes human O6-alkylguanine DNA alkyltransferase. Protein Sci. 2004; 13: 301–305
  • Rhodes D. R., Yu J., Shanker K., Deshpande N., Varambally R., Ghosh D., Barrette T., Pandey A., Chinnaiyan A. M. ONCOMINE: A cancer microarray database and integrated data-mining platform. Neoplasia 2004; 6: 1–6
  • Riddle B., Jencks W. P. Acetyl-coenzyme A: arylamine N-acetyltransferase. Role of the acetyl-enzyme intermediate and the effects of substituents on the rate. J. Biol. Chem. 1971; 246: 3250–3258
  • Risch A., Wallace D. M. A., Bathers S., Sim E. Slow N-acetylation genotype is a susceptibility factor in occupational and smoking related bladder cancer. Hum. Mol. Genet. 1995; 4: 231–236
  • Rock K. L., Goldberg A. L. Degradation of cell proteins and the generation of MHC class I-presented peptides. Ann. Rev. Immunol. 1999; 17: 739–779
  • Sakahira H., Breuer P., Hayer-Hartl M. K., Hartl F. U. Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity. Proc. Natl. Acad. Sci. USA 2002; 99(Suppl 4)16412–16418
  • Sandy J., Mushtaq A., Holton S. J., Schartau P., Noble M. E. M., Sim E. Investigation of the catalytic triad of arylamine N-acetyltransferases: essential residues required for acetyltransfer to arylamines. Biochem. J. 2005; 390: 115–123
  • Sandy J., Mushtaq A., Kawamura A., Sinclair J., Sim E., Noble M. The structure of arylamine N-acetyltransferase from Mycobacterium smegmatis – an enzyme which inactivates the anti-tubercular drug, isoniazid. J. Mol. Biol. 2002; 318: 1071–1083
  • Sasaki Y., Ohsako S., Deguchi T. Molecular and genetic analysis of arylamine N-acetyltransferase of rabbit liver. J. Biol. Chem. 1991; 266: 13243–13250
  • Scheffner M., Staub O. HECT E3s and human disease. BMC Biochem. 2007; 8(Suppl 1)S6
  • Schubert U., Anton L. C., Gibbs J., Norbury C. C., Yewdell J. W., Bennink J. R. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 2000; 404: 770–774
  • Sheaff R. J., Groudine M., Gordon M., Roberts J. M., Clurman B. E. Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev. 1997; 11: 1464–1478
  • Shi M., Christensen K., Weinberg C. R., Romitti P., Bathum L., Lozada A., Morris R. W., Lovett M., Murray J. C. Orofacial cleft risk is increased with maternal smoking and specific detoxification-specific variants. Am. J. Hum. Genet. 2007; 80: 76–90
  • Sholto-Douglas-Vernon C., Sandy J., Victor T. C., Sim E., van Helden P. D. Mutational and expression analysis of tbnat and its response to isoniazid. J. Med. Microbiol. 2005; 54: 1189–1197
  • Sim E., Westwood I., Fullam E. Arylamine N-acetyltransferases. Expert Opin. Drug. Metab. Toxicol. 2007; 3: 169–184
  • Sinclair J., Sim E. A fragment consisting of the first 204 amino terminal residues of arylamine N-acetyltransferase is active in the first acetylation step of catalysis. Biochem. Pharm. 1997; 53: 11–16
  • Sinclair J. C., Sandy J., Delgoda R., Sim E., Noble M. E. Structure of arylamine N-acetyltransferase reveals a catalytic triad. Nat. Struct. Biol. 2000; 7: 560–564
  • Smelt V. A., Mardon H. J., Sim E. Placental expression of arylamine N-acetyltransferases: Evidence for linkage disequilibrium between NAT1*10 and NAT2*4 alleles of the two human arylamine N-acetyltransferase loci NAT1 and NAT2. Pharmacol. Toxicol. 1998; 83: 149–157
  • Smelt V. A., Upton A., Adjaye J., Payton M. A., Boukouvala S., Johnson N., Mardon H. J., Sim E. Expression of arylamine N-acetyltransferases in pre-term placentas and in human pre-implantation embryos. Hum. Mol. Genet. 2000; 9: 1101–1107
  • Smolen T. N., Brewer J. A., Weber W. W. Testosterone modulation of N-acetylation in mouse kidney. J. Pharmacol. Exper. Ther. 1993; 264: 854–858
  • Sørlie T., Perou C. M., Tibshirani R., Aas T., Geisler S., Johnsen H., Hastie T., Eisen M. B., van de Rijn M., Jeffrey S. S., Thorsen T., Quist H., Matese J.C., Brown P. O., Botstein D., Eystein Lønning P., Børresen-Dale A. L. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 2001; 98: 10869–10874
  • Sotiriou C., Wirapati P., Loi S., Harris A., Fox S., Smeds J., Nordgren H., Farmer P., Praz V., Haibe-Kains B., Desmedt C., Larsimont D., Cardoso F., Peterse H., Nuyten D., Buyse M., Van de Vijver M. J., Bergh J., Piccart M., Delorenzi M. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J. Natl. Cancer Inst. 2006; 98: 262–272
  • Srivenugopal K. S., Yuan X. H., Friedman H. S., Ali-Osman F. Ubiquitination-dependent proteolysis of O6-methylguanine-DNA methyltransferase in human and murine tumor cells following inactivation with O6-benzylguanine or 1,3-bis(2-chloroethyl)-1-nitrosourea. Bio-chemistry 1996; 35: 1328–1334
  • Stanley L. A., Copp A. J., Pope J., Rolls S., Smelt V., Perry V. H., Sim E. Immunochemical detection of arylamine N-acetyltransferase during mouse embryonic development and in adult mouse brain. Teratology 1998; 58: 174–182
  • Stanley L. A., Mills I. G., Sim E. Localisation of polymorphic N-acetyltransferase (NAT2) in tissues of inbred mice. Pharmacogenetics 1997; 7: 121–130
  • Sugamori K. S., Brenneman D., Grant D. M. In vivo and in vitro metabolism of arylamine procarcinogens in acetyltransferase-deficient mice. Drug Metab. Dispos. 2006; 34: 1697–1702
  • Sugamori K. S., Wong S., Gaedigk A., Yu V., Abramovici H., Rozmahel R., Grant D. M. Generation and functional characterization of arylamine N-acetyltransferase Nat1/Nat2 double-knockout mice. Mol. Pharmacol. 2003; 64: 170–179
  • Terry P. D., Goodman M. Is the association between cigarette smoking and breast cancer modified by genotype? A review of epidemiologic studies and meta-analysis. Cancer Epidemiol. Biomarkers Prev. 2006; 15: 602–611
  • Trepanier L. A., Cribb A., Spielberg S. P., Ray K. Deficiency of cytosolic arylamine N-acetylation in the domestic cat and wild felids caused by the presence of a single NAT1-like gene. Pharmacogenetics 1998; 8: 169–179
  • Trepanier L. A., Ray K., Winand N. J., Spielberg S. P., Cribb A. E. Cytosolic arylamine N-acetyltransferase (NAT) deficiency in the dog and other canids due to an absence of NAT genes. Biochem. Pharmacol. 1997; 54: 73–80
  • Upton A., Everett M., Mushtaq A., van Helden P., Victor T., Wagner R., Sim E. Arylamine N-acetyltransferase of Mycobacterium tuberculosis is a polymorphic enzyme and a site of metabolism of isoniazid. Mol. Microbiol. 2001; 42: 309–319
  • Upton A., Smelt V., Mushtaq A., Aplin R., Johnson N., Mardon H., Sim E. Placental arylamine N-acetyltransferase type 1: potential contributory source of urinary folate catabolite p-acetamidobenzoylglutamate during pregnancy. Biochim. Biophys. Acta 2000; 1524: 143–148
  • Van der Geize R., Heuser T., Yam K., Wilbrink M. H., Hara H., Anderton M.C., Sim E., Dijkuizen L., Davies J. E., Mohn W. W., Eltis L. D. A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc. Natl. Acad. Sci. USA 2007; 104: 1947–1952
  • van't Veer L. J., Dai H., van de Vijver M. J., He Y. D., Hart A. A., Mao M., Peterse H. L., van der Kooy K., Marton M. J., Witteveen A. T., Schreiber G. J., Kerkhoven R. M., Roberts C., Linsley P. S., Bernards R., Friend S. H. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415: 530–536
  • Vlach J., Hennecke S., Amati B. Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27. EMBO J. 1997; 16: 5334–5344
  • Wakefield L., Cornish V., Broackes-Carter F., Sim E. Arylamine N-acetyltransferase 2 expression in the developing heart. J. Histochem. Cytochem. 2005; 53: 583–592
  • Wakefield L., Cornish V., Long H., Griffiths W. J., Sim E. Deletion of a xenobiotic metabolizing gene in mice affects folate metabolism. Biochem. Biophys. Res. Commun. 2007a; 364: 556–560
  • Wakefield L., Cornish V., Long H., Kawamura A., Zhang X., Hein D. W., Sim E. Mouse arylamine N-acetyltransferase 2 (Nat2) expression during embryogenesis: A potential marker for the developing neuroendocrine system. Biomarkers 2008a; 13: 106–118
  • Wakefield L., Long H., Lack N., Sim E. Ocular defects associated with a null mutation in the mouse arylamine N-acetyltransferase 2 gene. Mamm. Genome 2007b; 18(4)270–276
  • Wakefield L., Robinson J., Long H., Ibbit J. C., Cooke S., Hurst H. C., Sim E. Arylamine N-acetyltransferase I expression in breast cancer cell lines: A potential marker in estrogen receptor-positive tumors. Genes Chromosomes Cancer 2008b; 47: 118–126
  • Walraven J. M., Barker D. F., Doll M. A., Hein D. W. Tissue expression and genomic sequences of rat N-acetyltransferases rNat1, rNat2, rNat3, and functional characterization of a novel rNat3*2 genetic variant. Toxicol. Sci. 2007a; 99: 413–421
  • Walraven J. M., Doll M. A., Hein D. W. Identification and characterization of functional rat arylamine N-acetyltransferase 3: Comparisons with rat arylamine N-acetyltransferases 1 and 2. J. Pharmacol. Exp. Ther. 2006; 319: 369–375
  • Walraven J. M., Trent J. O., Hein D. W. Computational and experimental analyses of mammalian arylamine N-acetyltransferase structure and function. Drug Metab. Dispos. 2007b; 35: 1001–1007
  • Wang L., Nguyen T. V., McLaughlin R. W., Sikkink L. A., Ramirez-Alvarado M., Weinshilboum R. M. Human thiopurine S-methyltransferase pharmacogenetics: variant allozyme misfolding and aggresome formation. Proc. Natl. Acad. Sci. USA 2005; 102: 9394–9399
  • Ward A., Summers M. J., Sim E. Purification of recombinant human N-acetyltransferase type 1 (NAT1) expressed in E. coli and characterisation of its potential role in folate metabolism. Biochem. Pharmacol. 1995; 49: 1759–1767
  • Watanabe M., Sofuni T., Nohmi T. Involvement of Cys69 residue in the catalytic mechanism of N-hydroxylamine O-acetyltransferase of Salmonella typhimurium. Sequence similarity at the amino acid level suggests a common catalytic mechanism of acetyltransferases for S. typhimurium and higher organisms. J. Biol. Chem. 1992; 267: 8429–8436
  • Weber W. W., Hein D. W. N-acetylation pharmacogenetics. Pharmacol. Rev. 1985; 37: 25–79
  • Westwood I. M., Kawamura A., Fullam E., Russell A. J., Davies S. G., Sim E. Structure and Mechanism of Arylamine N-acetyltransferases. Curr. Top. Med. Chem. 2006; 6: 1641–1654
  • Williams J. A., Stone A. M., Fakis G., Johnson N., Cordell J. A., Meinl W., Glatt H., Sim E., Phillips D. H. N-acetyltransferases, sulfotransferases and heterocyclic amine activation in the breast. Pharmacogenetics 2001; 11: 371–388
  • Wu H., Dombrovsky L., Tempel W., Martin F., Loppnau P., Goodfellow G. H., Grant D. M., Plotnikov A. N. Structural basis of substrate-binding specificity of human arylamine N-acetyltransferases. J. Biol. Chem. 2007; 282: 30189–30197
  • Xu-Welliver M., Pegg A. E. Degradation of the alkylated form of the DNA repair protein, O(6)-alkylguanine-DNA alkyltransferase. Carcinogenesis 2002; 23: 823–830
  • Yuliwulandari R., Sachrowardi Q., Nishida N., Takasu M., Batubara L., Susmiarsih T. P., Rochani J. T., Wikaningrum R., Miyashita R., Miyagawa T., Sofro A. S., Tokunaga K. Polymorphisms of promoter and coding regions of the arylamine N-acetyltransferase 2 (NAT2) gene in the Indonesian population: proposal for a new nomenclature. J. Hum. Genet. 2008, in press.
  • Zang Y., Zhao S., Doll M. A., States J. C., Hein D. W. The T341C (Ile114Thr) polymorphism of N-acetyltransferase 2 yields slow acetylator phenotype by enhanced protein degradation. Pharmacogenetics 2004; 14: 717–723
  • Zhang N., Liu L., Liu F., Wagner C. R., Hanna P. E., Walters K. J. NMR-based model reveals the structural determinants of mammalian arylamine N-acetyltransferase substrate specificity. J. Mol. Biol. 2006; 363: 188–200

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.