2,348
Views
354
CrossRef citations to date
0
Altmetric
Research Article

The Aldo-Keto Reductase Superfamily and its Role in Drug Metabolism and Detoxification

, &
Pages 553-624 | Published online: 06 Nov 2008

REFERENCES

  • F. Aimond, S. P. Kwak, K. J. Rhodes, and J. M. Nerbonne. (2005). Accessory kv beta 1 subunits differentially modulate the functional expression of voltage-gated K+ channels in mouse ventricular myocytes. Circ. Res. 96:451–458.
  • R. Amaro, E. Tajkhorshid, and Z. Luthey-Schulten. (2003). Developing an energy landscape for the novel function of a (beta/alpha)8 barrel: ammonia conduction through HisF. Proc Natl Acad Sci U S A 100:7599–7604.
  • A. Atalla, U. Breyer-Pfaff, and E. Maser. (2000). Purification and characterization of oxidoreductases-catalyzing carbonyl reduction of the tobacco-specific nitrosamine 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) in human liver cytosol. Xenobiotica 30:755–769.
  • A. Atalla, and E. Maser. (2001). Characterization of enzymes participating in carbonyl reduction of 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) in human placenta. Chemico Biol Interact 130:737–748.
  • V. Avdonin, J. Kasuya, M. A. Ciorba, B. Kaplan, T. Hoshi, and L. Iverson. (1998). Apoptotic proteins Reaper and Grim induce stable inactivation in voltage-gated K+ channels. Proc Natl Acad Sci U S A 95:11703–11708.
  • Y. Azuma, T. Nishinaka, S. Ushijima, J. Soh, M. Katsuyama, H. P. Lu, and et al (2004). Characterization of htAKR, a novel gene product in the aldo-keto reductase family specifically expressed in human testis. Mol Hum Reprod 10:527–533.
  • N. R. Bachur. (1976). Cytoplasmic aldo-keto reductases: a class of drug metabolizing enzymes. Science 193:595–597.
  • O. A. Barski, K. H. Gabbay, and K. M. Bohren. (1996). The C-terminal loop of aldehyde reductase determines the substrate and inhibitor specificity. Biochemistry 35:14276–14280.
  • O. A. Barski, K. H. Gabbay, and K. M. Bohren. (1999). Characterization of the human aldehyde reductase gene and promoter. Genomics 60:188–198.
  • O. A. Barski, K. H. Gabbay, C. E. Grimshaw, and K. M. Bohren. (1995). Mechanism of human aldehyde reductase: characterization of the active site pocket. Biochemistry 34:11264–11275.
  • O. A. Barski, V. Z. Papusha, M. M. Ivanova, D. M. Rudman, and M. J. Finegold. (2005). Developmental expression and function of aldehyde reductase in proximal tubules of the kidney. Am J Physiol Renal Physiol 289:F200–F207.
  • O. A. Barski, V. Z. Papusha, G. R. Kunkel, and K. H. Gabbay. (2004). Regulation of aldehyde reductase expression by STAF and CHOP. Genomics 83:119–129.
  • D. R. Bauman, S. I. Rudnick, L. M. Szewczuk, Y. Jin, S. Gopishetty, and T. M. Penning. (2005). Development of nonsteroidal anti-inflammatory drug analogs and steroid carboxylates selective for human aldo-keto reductase isoforms: potential antineoplastic agents that work independently of cyclo-oxygenase isozymes. Mol Pharmacol 67:60–68.
  • J. W. Baynes, and S. R. Thorpe. (1999). Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48:1–9.
  • M. J. Bennett, R. H. Albert, J. M. Jez, H. Ma, T. M. Penning, and M. Lewis. (1997). Steroid recognition and regulation of hormone action: crystal structure of testosterone and NADP+ bound to 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase. Structure 5:799–812.
  • M. J. Bennett, B. P. Schlegel, J. M. Jez, T. M. Penning, and M. Lewis. (1996). Structure of 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase complexed with NADP+. Biochemistry 35:10702–10711.
  • J. A. Berliner, M. C. Territo, A. Sevanian, S. Ramin, J. A. Kim, B. Bamshad, and et al (1990). Minimally modified low-density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest 85:1260–1266.
  • A. Bhatnagar, S. Liu, B. Das, N. H. Ansari, and S. K. Srivastava. (1990). Inhibition-kinetics of human kidney aldose and aldehyde reductases by aldose reductase inhibitors. Biochem Pharmacol 39:1115–1124.
  • A. Bhatnagar, S. Q. Liu, S. Srivastava, K. V. Ramana, and S. K. Srivastava. (2004). Aldose reductase and the stress response. Aldo-Keto Reductases Toxicant Metab 865:199–211.
  • A. Bhatnagar, S. Q. Liu, N. Ueno, B. Chakrabarti, and S. K. Srivastava. (1994). Human placental aldose reductase: role of Cys-298 in substrate and inhibitor binding. Biochim Biophys Acta 1205:207–214.
  • A. Bhatnagar, and S. K. Srivastava. (1992). Aldose reductase: congenial and injurious profiles of an enigmatic enzyme. Biochem Med Metab Biol 48:91–121.
  • K. M. Bohren, O. A. Barski, and K. G. Gabbay. Characterization of a novel murine aldo-keto reductaseEnzymology and Molecular Biology of Carbonyl Metabolism 6 Weiner, and et al, and Plenum Press, New York, (1996) 455–464.
  • K. M. Bohren, C. E. Grimshaw, C. J. Lai, D. H. Harrison, D. Ringe, G. A. Petsko, and et al (1994). Tyrosine-48 is the proton donor and histidine-110 directs substrate stereochemical selectivity in the reduction reaction of human aldose reductase: enzyme kinetics and crystal structure of the Y48H mutant enzyme. Biochemistry 33:2021–2032.
  • K. M. Bohren, J. L. Page, R. Shankar, S. P. Henry, and K. H. Gabbay. (1991). Expression of human aldose and aldehyde reductases. Site-directed mutagenesis of a critical lysine 262. J Biol Chem 266:24031–24037.
  • W. F. Bosron, and R. L. Prairie. (1972). Triphosphopyridine nucleotide-linked aldehyde reductase. I. Purification and properties of the enzyme from pig kidney cortex. J Biol Chem 247:4480–4485.
  • G. Branlant. (1982). Properties of an aldose reductase from pig lens. Comparative studies of an aldehyde reductase from pig lens. Eur J Biochem 129:99–104.
  • G. Branlant, and J. F. Biellmann. (1980). Purification and some properties of aldehyde reductases from pig liver. Eur J Biochem 105:611–621.
  • U. Breyer-Pfaff, H. J. Martin, M. Ernst, and E. Maser. (2004). Enantioselectivity of carbonyl reduction of 4-methylnitrosamino-1(3-pyridyl)-1-butanone by tissue fractions from human and rat and by enzymes isolated from human liver. Drug Metab Dispos 32:915–922.
  • U. Breyer-Pfaff, and K. Nill. (2000). High-affinity stereoselective reduction of the enantiomers of ketotifen and of ketonic nortriptyline metabolites by aldo-keto reductases from human liver. Biochem Pharmacol 59:249–260.
  • U. Breyer-Pfaff, and K. Nill. (2004). Carbonyl reduction of naltrexone and dolasetron by oxidoreductases isolated from human liver cytosol. J Pharm Pharmacol 56:1601–1606.
  • V. Bril, and R. A. Buchanan. (2006). Long-term effects of ranirestat (AS-3201) on peripheral nerve function in patients with diabetic sensorimotor polyneuropathy. Diabetes Care 29:68–72.
  • M. Brownlee. (1992). Glycation products and the pathogenesis of diabetic complications. Diabetes Care 15:1835–1843.
  • M. Brownlee. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820.
  • M. E. Burczynski, H. K. Lin, and T. M. Penning. (1999). Isoform-specific induction of a human aldo-keto reductase by polycyclic aromatic hydrocarbons (PAHs), electrophiles, and oxidative stress: implications for the alternative pathway of PAH activation catalyzed by human dihydrodiol dehydrogenase. Cancer Res 59:607–614.
  • A. Buzzi, Y. Wu, M. V. Frantseva, J. L. P. Velazquez, M. A. Cortez, C. C. Liu, and et al (2006). Succinic semialdehyde dehydrogenase deficiency: GABA(B) receptor-mediated function. Brain Res 1090:15–22.
  • M. C. Byrns, S. Steckelbroeck, and T. M. Penning. (2008). An indomethacin analogue, N-(4-chlorobenzoyl)-melatonin, is a selective inhibitor of aldo-keto reductase 1C3 (type 2 3alpha-HSD, type 5 17beta-HSD, and prostaglandin F synthase), a potential target for the treatment of hormone dependent and hormone independent malignancies. Biochem Pharmacol 75:484–493.
  • M. Campbell, and E. R. Trimble. (2005). Modification of PI3K and MAPK-dependent chemotaxis in aortic vascular smooth muscle cells by protein kinase C betaII. Circ Res 96:197–206.
  • C. R. Campomanes, K. I. Carroll, L. N. Manganas, M. E. Hershberger, B. Gong, D. E. Antonucci, and et al (2002). Kv beta subunit oxidoreductase activity and Kv1 potassium channel trafficking. J Biol.Chem 277:8298–8305.
  • F. Camu, C. Van Lersberghe, and M. H. Lauwers. (1992). Cardiovascular risks and benefits of perioperative nonsteroidal anti-inflammatory drug treatment. Drugs 44 (Suppl 5):42–51.
  • D. Cao, S. T. Fan, and S. M. Chung. (1998). Identification and characterization of a novel human aldose reductase-like gene. J Biol Chem 273:11429–11435.
  • W. H. Chang. (1992). Reduced haloperidol—a factor in determining the therapeutic benefit of haloperidol treatment. Psychopharmacology 106:289–296.
  • D. B. Chen, S. D. Westfall, H. W. Fong, M. S. Roberson, and J. S. Davis. (1998). Prostaglandin F2alpha stimulates the Raf/MEK1/mitogen-activated protein kinase signaling cascade in bovine luteal cells. Endocrinology 139:3876–3885.
  • S. S. M. Chung, and S. K. Chung. (2003). Genetic analysis of aldose reductase in diabetic complications. Curr Med Chem 10:1375–1387.
  • J. X. Connor, K. McCormack, A. Pletsch, S. Gaeta, B. Ganetzky, S. Y. Chiu, and et al (2005). Genetic modifiers of the Kv beta 2-null phenotype in mice. Genes Brain Behav 4:77–88.
  • B. Crosas, D. J. Hyndman, O. Gallego, S. Martras, X. Pares, T. G. Flynn, and et al (2003). Human aldose reductase and human small intestine aldose reductase are efficient retinal reductases: consequences for retinoid metabolism. Biochem J 373:973–979.
  • S. T. Davidge. (2001). Prostaglandin H synthase and vascular function. Circ Res 89:650–660.
  • W. S. Davidson, D. J. Walton, and T. G. Flynn. (1978). A comparative study of the tissue and species distribution of NADPH-dependent aldehyde reductase. Comp Biochem Physiol B 60:309–315.
  • A. G. Demaine. (2003). Polymorphisms of the aldose reductase gene and susceptibility to diabetic microvascular complications. Curr Med Chem 10:1389–1398.
  • J. C. Desmond, J. C. Mountford, M. T. Drayson, E. A. Walker, M. Hewison, J. P. Ride, and et al (2003). The aldo-keto reductase AKR1C3 is a novel suppressor of cell differentiation that provides a plausible target for the non-cyclo-oxygenase-dependent antineoplastic actions of nonsteroidal anti-inflammatory drugs. Cancer Res 63:505–512.
  • Y. Deyashiki, K. Ohshima, M. Nakanishi, K. Sato, K. Matsuura, and A. Hara. (1995). Molecular cloning and characterization of mouse estradiol 17 beta- dehydrogenase (A-specific), a member of the aldoketoreductase family. J Biol Chem 270:10461–10467.
  • U. Dhagat, V. Carbone, R. P. T. Chung, C. Schulze-Briese, S. Endo, A. Hara, and et al (2007). Structure of 3(17)alpha-hydroxysteroid dehydrogenase (AKR1C21) holoenzyme from an orthorhombic crystal form: an insight into the bifunctionality of the enzyme. Acta Crystallograph Sect F Struct Biol Cryst Comm 63:825–830.
  • U. Dhagat, S. Endo, A. Hara, and O. El Kabbani. (2008a). Inhibition of 3(17)alpha-hydroxysteroid dehydrogenase (AKR1C21) by aldose reductase inhibitors. Bioorg Med Chem 16:3245–3254.
  • U. Dhagat, S. Endo, R. Sumii, A. Hara, and O. El Kabbani. (2008b). Selectivity determinants of inhibitor binding to human 20alpha-hydroxysteroid dehydrogenase: crystal structure of the enzyme in ternary complex with coenzyme and the potent inhibitor 3,5-dichlorosalicylic acid. J Med Chem 51:4844–4848.
  • B. Dozier, K. Watanabe, and D. Duffy. Two pathways for prostaglandin F2{alpha} (PGF2{alpha}) synthesis by the primate periovulatory follicleReproduction., (2008) 13653–63.
  • Y. Du, S. Tsai, J. R. Keller, and S. C. Williams. (2000). Identification of an interleukin-3-regulated aldoketo reductase gene in myeloid cells which may function in autocrine regulation of myelopoiesis. J Biol Chem 275:6724–6732.
  • E. Dvornik, N. Simard-Duquesne, M. Krami, K. Sestanj, K. H. Gabbay, J. H. Kinoshita, and et al (1973). Polyol accumulation in galactosemic and diabetic rats: control by an aldose reductase inhibitor. Science 182:1146–1148.
  • P. J. Dyck, B. R. Zimmerman, T. H. Vilen, S. R. Minnerath, J. L. Karnes, J. K. Yao, and et al (1988). Nerve glucose, fructose, sorbitol, myo-inositol, and fiber degeneration and regeneration in diabetic neuropathy. N Engl J Med 319:542–548.
  • R. P. Eaton, W. L. SibbittJr., and A Harsh. (1985). The effect of an aldose reductase inhibiting agent on limited joint mobility in diabetic patients. JAMA 253:1437–1440.
  • T. Ehrig, K. M. Bohren, F. G. Prendergast, and K. H. Gabbay. (1994). Mechanism of aldose reductase inhibition: binding of NADP+/NADPH and alrestatin-like inhibitors. Biochemistry 33:7157–7165.
  • O el-Kabbani, K. Judge, S. L. Ginell, D. A. Myles, L. J. DeLucas, and T. G. Flynn. (1995). Structure of porcine aldehyde reductase holoenzyme. Nat Struct Biol 2:687–692.
  • E. M. Ellis. (2002). Microbial aldo-keto reductases. FEMS Microbiol Lett 216:123–131.
  • E. M. Ellis, D. J. Judah, G. E. Neal, and J. D. Hayes. (1993). An ethoxyquin-inducible aldehyde reductase from rat liver that metabolizes aflatoxin B1 defines a subfamily of aldo-keto reductases. Proc Natl Acad Sci U S A 90:10350–10354.
  • S. Endo, K. Matsumoto, T. Matsunaga, S. Ishikura, K. Tajima, O. El Kabbani, and et al (2006). Substrate specificity of a mouse aldo-keto reductase (AKR1C12). Biol Pharmaceut Bull 29:2488–2492.
  • S. Endo, T. Matsunaga, K. Horie, K. Tajima, Y. Bunai, V. Carbone, and et al (2007). Enzymatic characteristics of an aldo-keto reductase family protein (AKR1C15) and its localization in rat tissues. Arch Biochem Biophys 465:136–147.
  • S. K. England, V. N. Uebele, J. Kodali, P. B. Bennett, and M. M. Tamkun. (1995). A Novel K+ channel beta-subunit (Hkv-beta-1.3) is produced via alternative messenger—RNA splicings. J Biol Chem 270:28531–28534.
  • H. Esterbauer, R. J. Schaur, and H. Zollner. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde, and related aldehydes. Free Radic Biol Med 11:81–128.
  • F. Faucher, L. Cantin, K. P. Jesus-Tran, M. Lemieux, V. Luu-The, F. Labrie, and et al (2007). Mouse 17-alpha-hydroxysteroid dehydrogenase (AKR1C21) binds steroids differently from other aldo-keto reductases: identification and characterization of amino acid residues critical for substrate binding. J Mol Biol 369:525–540.
  • M. S. Feather, T. G. Flynn, K. A. Munro, T. J. Kubiseski, and D. J. Walton. (1995). Catalysis of reduction of carbohydrate 2-oxoaldehydes (osones) by mammalian aldose reductase and aldehyde reductase. Biochim Biophys Acta 1244:10–16.
  • M. Fink, F. Duprat, F. Lesage, C. Heurteaux, G. Romey, J. Barhanin, and et al (1996). A new K+ channel beta subunit to specifically enhance Kv2.2 (CDRK) expression. J Biol Chem 271:26341–26348.
  • Y. Fujii, K. Watanabe, H. Hayashi, Y. Urade, S. Kuramitsu, H. Kagamiyama, and et al (1990). Purification and characterization of Rho-crystallin from Japanese common bullfrog lens. J Biol Chem 265:9914–9923.
  • S. Fukumoto, N. Yamauchi, H. Moriguchi, Y. Hippo, A. Watanabe, J. Shibahara, and et al (2005). Overexpression of the aldo-keto reductase family protein AKR1B10 is highly correlated with smokers' non-small-cell lung carcinomas. Clin Cancer Res 11:1776–1785.
  • K. H. Gabbay. (1975). Hyperglycemia, polyol metabolism, and complications of diabetes mellitus. Annu Rev Med 26:521–536.
  • K. H. Gabbay. (2004). Aldose reductase inhibition in the treatment of diabetic neuropathy: where are we in 2004?. Curr Diab Rep 4:405–408.
  • K. H. Gabbay, L. O. Merola, and R. A. Field. (1966). Sorbitol pathway: presence in nerve and cord with substrate accumulation in diabetes. Science 151:209–210.
  • O. Gallego, O. V. Belyaeva, S. Porte, F. X. Ruiz, A. V. Stetsenko, E. V. Shabrova, and et al, and Comparative functional analysis of human medium-chain dehydrogenases, short-chain dehydrogenases/reductases, and aldo-keto reductases with retinoidsBiochem J. (2006) 399101–109.
  • O. Gallego, F. X. Ruiz, A. Ardevol, M. Dominguez, R. Alvarez, A. R. de Lera, and et al (2007). Structural basis for the high all-trans-retinaldehyde reductase activity of the tumor marker AKR1B10. Proc Natl Acad Sci U S A 104:20764–20769.
  • R. Gardner, S. Kazi, and E. M. Ellis. (2004). Detoxication of the environmental pollutant acrolein by a rat liver aldo-keto reductase. Toxicol Lett 148:65–72.
  • V. Gersl, Y. Mazurova, J. Bajgar, M. Melka, R. Hrdina, and V. Palicka. (1996). Lack of cardiotoxicity of a new antineoplastic agent, a synthetic derivative of indenoisochinoline: comparison with daunorubicin in rabbits. Arch Toxicol 70:645–651.
  • K. M. Gibson, G. F. Hoffmann, A. K. Hodson, T. Bottiglieri, and C. Jakobs. (1998). 4-hydroxybutyric acid and the clinical phenotype of succinic semialdehyde dehydrogenase deficiency, an inborn error of GABA metabolism. Neuropediatrics 29:14–22.
  • K. P. Giese, J. F. Storm, D. Reuter, N. B. Fedorov, L. R. Shao, T. Leicher, and et al (1998). Reduced K+ channel inactivation, spike broadening, and after-hyperpolarization in Kv beta 1.1-deficient mice with impaired learning. Learn Mem 5:257–273.
  • C. K. Glass, and J. L. Witztum. (2001). Atherosclerosis: the road ahead. Cell 104:503–516.
  • J. P. Gonzalez, and R. N. Brogden. (1988). Naltrexone—a review of Its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy in the management of opioid dependence. Drugs 35:192–213.
  • C. E. Grimshaw. (1992). Aldose reductase: model for a new paradigm of enzymic perfection in detoxification catalysts. Biochemistry 31:10139–10145.
  • C. E. Grimshaw, K. M. Bohren, C. J. Lai, and K. H. Gabbay. (1995). Human aldose reductase—rate constants for a mechanism including interconversion of ternary complexes by recombinant wild-type enzyme. Biochemistry 34:14356–14365.
  • C. Gu, Y. N. Jan, and L. Y. Jan. (2003). A conserved domain in axonal targeting of Kv1 (Shaker) voltage-gated potassium channels. Science 301:646–649.
  • F. P. Guengerich, H. Cai, M. McMahon, J. D. Hayes, T. R. Sutter, J. D. Groopman, and et al (2001). Reduction of aflatoxin B1 dialdehyde by rat and human aldo-keto reductases. Chem Res Toxicol 14:727–737.
  • T. Gui, T. Tanimoto, Y. Kokai, and C. Nishimura. (1995). Presence of a closely related subgroup in the aldo-ketoreductase family of the mouse. Eur J Biochem 227:448–453.
  • J. M. Gulbis, S. Mann, and R. MacKinnon. (1999). Structure of a voltage-dependent K+ channel beta subunit. Cell 97:943–952.
  • J. M. Gulbis, M. Zhou, S. Mann, and R. MacKinnon. (2000). Structure of the cytoplasmic beta subunit-T1 assembly of voltage-dependent K+ channels. Science 289:123–127.
  • A. Hara, K. Hasebe, M. Hayashibara, K. Matsuura, T. Nakayama, and H. Sawada. (1986). Dihydrodiol dehydrogenases in guinea pig liver. Biochem Pharmacol 35:4005–4012.
  • D. H. Harrison, K. M. Bohren, D. Ringe, G. A. Petsko, and K. H. Gabbay. (1994). An anion binding site in human aldose reductase: mechanistic implications for the binding of citrate, cacodylate, and glucose 6-phosphate. Biochemistry 33:2011–2020.
  • H. Hayashi, Y. Fujii, K. Watanabe, and O. Hayaishi. (1990). Enzymatic formation of prostaglandin-F2-alpha in human brain. Neurochem Res 15:385–392.
  • J. D. Hayes, D. J. Judah, L. I. McLellan, and G. E. Neal. (1991). Contribution of the glutathione S-transferases to the mechanisms of resistance to aflatoxin B1. Pharmacol Ther 50:443–472.
  • J. D. Hayes, D. J. Judah, and G. E. Neal. (1993). Resistance to aflatoxin B1 is associated with the expression of a novel aldo-keto reductase which has catalytic activity towards a cytotoxic aldehyde-containing metabolite of the toxin. Cancer Res 53:3887–3894.
  • H. Hegyi, and M. Gerstein. (1999). The relationship between protein structure and function: a comprehensive survey with application to the yeast genome. J Mol Biol 288:147–164.
  • V. V. Heredia, and T. M. Penning. (2004). Dissection of the physiological interconversion of 5 alpha-DHT and 3 alpha-diol by rat 3 alpha-HSD via transient kinetics shows that the chemical step is rate-determining: effect of mutating cofactor and substrate-binding pocket residues on catalysis. Biochemistry 43:12028–12037.
  • H. G. Hers. (1960). [Aldose reductase.]. Biochim Biophys Acta 37:120–126.
  • Y. Higaki, N. Usami, S. Shintani, S. Ishikura, O. El Kabbani, and A. Hara. (2003). Selective and potent inhibitors of human 20 alpha-hydroxysteroid dehydrogenase (AKR1C1) that metabolizes neurosteroids derived from progesterone. Chemico Biol Interact 143:503–513.
  • A. Hinshelwood, G. McGarvie, and E. Ellis. (2002a). Characterisation of a novel mouse liver aldo-keto reductase AKR7A5. FEBS Lett 523:213–218.
  • A. Hinshelwood, G. McGarvie, and E. Ellis. (2002b). Characterisation of a novel mouse liver aldo-keto reductase AKR7A5. FEBS Lett 523:213–218.
  • A. Hinshelwood, G. McGarvie, and E. M. Ellis. (2003). Substrate specificity of mouse aldo-keto reductase AKR7A5. Chemico Biol Interact 143:263–269.
  • H. T. Ho, S. K. Chung, J. W. Law, B. C. Ko, S. C. Tam, H. L. Brooks, and et al (2000). Aldose reductase-deficient mice develop nephrogenic diabetes insipidus. Mol Cell Biol 20:5840–5846.
  • B. Hocker, J. Claren, and R. Sterner. (2004). Mimicking enzyme evolution by generating new (beta-alpha)8-barrels from (beta-alpha)4-half-barrels. Proc Natl Acad Sci U S A 101:16448–16453.
  • P. L. Hoffman, B. Wermuth, and J. P. von Wartburg. (1980). Human brain aldehyde reductases: relationship to succinic semialdehyde reductase and aldose reductase. J Neurochem 35:354–366.
  • S. Horiuchi. (2002). The liver is the main site for metabolism of circulating advanced glycation end products. J Hepatol 36:123–125.
  • S. Horkko, D. A. Bird, E. Miller, H. Itabe, N. Leitinger, G. Subbanagounder, and et al (1999). Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J Clin Invest 103:117–128.
  • Z. L. Huang, Y. Urade, and O. Hayaishi. (2007). Prostaglandins and adenosine in the regulation of sleep and wakefulness. Curr Opin Pharmacol 7:33–38.
  • J. B. Hutchison, and T. Steimer. (1981). Brain 5beta-reductase: a correlate of behavioral sensitivity to androgen. Science 213:244–246.
  • D. J. Hyndman, and T. G. Flynn. (1998). Sequence and expression levels in human tissues of a new member of the aldo-keto reductase family. Biochim Biophys Acta Gene Struct Expr 1399:198–202.
  • S. Ikeda, E. Okuda-Ashitaka, Y. Masu, T. Suzuki, K. Watanabe, M. Nakao, and et al (1999). Cloning and characterization of two novel aldo-keto reductases (AKR1C12 and AKR1C13) from mouse stomach. FEBS Lett 459:433–437.
  • Y. Imamura, K. Sanai, K. Seri, and H. Akita. (2001). Hypoglycemic effect of S(-)-hydroxyhexamide, a major metabolite of acetohexamide, and its enantiomer R(+)-hydroxyhexamide. Life Sci 69:1947–1955.
  • Y. Imamura, and H. Shimada. (2005). Differential pharmacokinetics of acetohexamide in male Wistar-Imamichi and Sprague-Dawley rats: role of microsomal carbonyl reductase. Biol Pharm Bull 28:185–187.
  • L. S. Ireland, D. J. Harrison, G. E. Neal, and J. D. Hayes. (1998). Molecular cloning, expression, and catalytic activity of a human AKR7 member of the aldo-keto reductase superfamily: evidence that the major 2-carboxybenzaldehyde reductase from human liver is a homologue of rat aflatoxin B1-aldehyde reductase. Biochem J 332:21–34.
  • M. Ishida, J. H. Choi, K. Hirabayashi, T. Matsuwaki, M. Suzuki, K. Yamanouchi, and et al (2007). Reproductive phenotypes in mice with targeted disruption of the 20 alpha-hydroxysteroid dehydrogenase gene. J Reprod Dev 53:499–508.
  • M. Ishida, K. Hirabayashi, M. Suzuki, K. Yamanouchi, and M. Nishihara. (2003). Cloning and chromosomal localization of mouse 20 alpha-hydroxysteroid dehydrogenase gene. J Reprod Dev 49:79–85.
  • S. Ishikura, N. Usami, S. Nakajima, A. Kameyama, H. Shiraishi, V. Carbone, and et al (2004). Characterization of two isoforms of mouse 3(17)alpha-hydroxysteroid dehydrogenases of the aldo-keto reductase family. Biol Pharm Bull 27:1939–1945.
  • J. Jaspan, R. Maselli, K. Herold, and C. Bartkus. (1983). Treatment of severely painful diabetic neuropathy with an aldose reductase inhibitor: relief of pain and improved somatic and autonomic nerve function. Lancet 2:758–762.
  • J. M. Jez, M. J. Bennett, B. P. Schlegel, M. Lewis, and T. M. Penning. (1997a). Comparative anatomy of the aldo-keto reductase superfamily. Biochem J 326:625–636.
  • J. M. Jez, T. G. Flynn, and T. M. Penning. (1997b). A new nomenclature for the aldo-keto reductase superfamily. Biochem Pharmacol 54:639–647.
  • J. M. Jez, B. P. Schlegel, and T. M. Penning. (1996). Characterization of the substrate binding site in rat liver 3alpha- hydroxysteroid/dihydrodiol dehydrogenase. The roles of tryptophans in ligand binding and protein fluorescence. J Biol Chem 271:30190–30198.
  • Q. Ji, C. Aoyama, P. K. Chen, A. Stolz, and P. Liu. (2005). Localization and altered expression of AKR1C family members in human ovarian tissues. Mol Cell Probes 19:261–266.
  • Q. Ji, L. Chang, D. VanDenBerg, F. Z. Stanczyk, and A. Stolz. (2003). Selective reduction of AKR1C2 in prostate cancer and its role in DHT metabolism. Prostate 54:275–289.
  • Y. Jin, and T. M. Penning. (2006). Multiple steps determine the overall rate of the reduction of 5 alpha-dihydrotestosterone catalyzed by human type 3 3 alpha-hydroxysteroid dehydrogenase: implications for the elimination of androgens. Biochemistry 45:13054–13063.
  • Y. Jin, and T. M. Penning. (2007). Aldo-keto reductases and bioactivation/detoxication. Annu Rev Pharmacol Toxicol 47:263–292.
  • D. N. Johnson, P. A. Egner, G. Obrian, N. Glassbrook, B. D. Roebuck, T. R. Sutter, and et al (2008). Quantification of urinary aflatoxin b1 dialdehyde metabolites formed by aflatoxin aldehyde reductase using isotope dilution tandem mass spectrometry. Chem Res Toxicol 21:752–760.
  • H. Jornvall, B. Persson, M. Krook, S. Atrian, R. Gonzalezduarte, J. Jeffery, and et al (1995). Short-chain dehydrogenases reductases (Sdr). Biochemistry 34:6003–6013.
  • C. Jurgens, A. Strom, D. Wegener, S. Hettwer, M. Wilmanns, and R. Sterner. (2000). Directed evolution of a (beta alpha)8-barrel enzyme to catalyze related reactions in two different metabolic pathways. Proc Natl Acad Sci U S A 97:9925–9930.
  • G. Jurgens, Q. Chen, H. Esterbauer, S. Mair, G. Ledinski, and H. P. Dinges. (1993). Immunostaining of human autopsy aortas with antibodies to modified apolipoprotein B and apoprotein(a). Arterioscler Thromb 13:1689–1699.
  • P. F. Kador, and N. E. Sharpless. (1983). Pharmacophor requirements of the aldose reductase inhibitor site. Mol Pharmacol 24:521–531.
  • H. Kaiserova, and E. Kvasnickova. (2005). Inhibition study of rabbit liver cytosolic reductases involved in daunorubicin toxication. J Enz Inhib Med Chem 20:477–483.
  • K. Kaiserova, S. Srivastava, J. D. Hoetker, S. O. Awe, X. L. Tang, J. Cai, and et al (2006). Redox activation of aldose reductase in the ischemic heart. J Biol Chem 281:15110–15120.
  • K. Kaiserova, X. L. Tang, S. Srivastava, and A. Bhatnagar. (2008). Role of nitric oxide in regulating aldose reductase activation in the ischemic heart. J Biol Chem 283:9101–9112.
  • Y. Kallberg, U. Oppermann, H. Jornvall, and B. Persson. (2002a). Short-chain dehydrogenase/reductase (SDR) relationships: a large family with eight clusters common to human, animal, and plant genomes. Prot Sci 11:636–641.
  • Y. Kallberg, U. Oppermann, H. Jornvall, and B. Persson. (2002b). Short-chain dehydrogenases/reductases (SDRs)—coenzyme-based functional assignments in completed genomes. Eur J Biochem 269:4409–4417.
  • C. Keenan, S. Ghaffar, A. W. Grant, A. Hinshelwood, D. Li, G. McGarvie, and et al, and Succinic semialdehyde reductases: contribution to gamma-hydroxybutyrate catabolism and subcellular localizationEnzymology and Molecular Biology of Carbonyl MetabolismH. Weiner, B. Plapp, R. Lindahl, and E. Maser. Purdue University Press, West Lafayette, IndianaUSA, (2006) 12388–395.
  • V. P. Kelly, L. S. Ireland, E. M. Ellis, and J. D. Hayes. (2000). Purification from rat liver of a novel constitutively expressed member of the aldo-keto reductase 7 family that is widely distributed in extrahepatic tissues. Biochem J 348:t–400.
  • V. P. Kelly, P. J. Sherratt, D. H. Crouch, and J. D. Hayes. (2002). Novel homodimeric and heterodimeric rat gamma-hydroxybutyrate synthases that associate with the Golgi apparatus define a distinct subclass of aldo-keto reductase 7 family proteins. Biochem J 366:847–861.
  • T. W. Kensler, T. J. Curphey, Y. Maxiutenko, and B. D. Roebuck. (2000). Chemoprotection by organosulfur inducers of phase 2 enzymes: dithiolethiones and dithiins. Drug Metabol Drug Interact 17:3–22.
  • K. B. Kilunga, T. Inoue, Y. Okano, Z. Kabututu, S. K. Martin, M. Lazarus, and et al (2005). Structural and mutational analysis of Trypanosoma brucei prostaglandin H-2 reductase provides insight into the catalytic mechanism of aldo-ketoreductases. J Biol Chem 280:26371–26382.
  • J. H. Kinoshita. (1990). A thirty-year journey in the polyol pathway. Exp Eye Res 50:567–573.
  • M. Kishimoto, R. Kawamori, T. Kamada, and T. Inaba. (1994). Carbonyl reductase activity for acetohexamide in human erythrocytes. Drug Metab Dispos 22:367–370.
  • T. Kita, N. Kume, M. Yokode, K. Ishii, H. Arai, H. Horiuchi, and et al (2000). Oxidized-LDL and atherosclerosis. Role of LOX-1. Ann N Y Acad Sci 902:95–100.
  • L. P. Knight, T. Primiano, J. D. Groopman, T. W. Kensler, and T. R. Sutter. (1999). cDNA cloning, expression, and activity of a second human aflatoxin B1-metabolizing member of the aldo-keto reductase superfamily, AKR7A3. Carcinogenesis 20:1215–1223.
  • P. Kotokorpi, C. Gardmo, C. S. Nystrom, and A. Mode. (2004). Activation of the glucocorticoid receptor or liver X receptors interferes with growth hormone-induced akr1b7 gene expression in rat hepatocytes. Endocrinology 145:5704–5713.
  • E. Kozma, E. Brown, E. M. Ellis, and A. J. Lapthorn. (2002). The crystal structure of rat liver AKR7A1—a dimeric member of the aldo-keto reductase superfamily. J Biol Chem 277:16285–16293.
  • R. Kratzer, S. Egger, and B. Nidetzky. Integration of enzyme, strain, and reaction engineering to overcome limitations of baker's yeast in the asymmetric reduction of alpha-keto estersBiotechnol Bioeng. (2008) (in press) Pubmed ID: 18623228.
  • S. Kudo, and T. Ishizaki. (1999). Pharmacokinetics of haloperidol—an update. Clin Pharmacokinet 37:435–456.
  • E. T. Lau, D. Cao, C. Lin, S. K. Chung, and S. S. Chung. (1995). Tissue-specific expression of two aldose reductase-like genes in mice: abundant expression of mouse vas deferens protein and fibroblast growth factor-regulated protein in the adrenal gland. Biochem J 312:609–615.
  • E. N. Lavrentyev, A. M. Estes, and K. U. Malik. (2007). Mechanism of high glucose–induced angiotensin II production in rat vascular smooth muscle cells. Circ Res 101:455–464.
  • A. Y. Lee, S. K. Chung, and S. S. Chung. (1995). Demonstration that polyol accumulation is responsible for diabetic cataract by the use of transgenic mice expressing the aldose reductase gene in the lens. Proc Natl Acad Sci U S A 92:2780–2784.
  • Y. S. Lee, M. Hodoscek, B. R. Brooks, and P. F. Kador. (1998). Catalytic mechanism of aldose reductase studied by the combined potentials of quantum mechanics and molecular mechanics. Biophys Chem 70:203–216.
  • A. M. Lefrancois-Martinez, C. Tournaire, A. Martinez, M. Berger, S. Daoudal, P. Tritsch, and et al (1999). Product of side-chain cleavage of cholesterol, isocaproaldehyde, is an endogenous specific substrate of mouse vas deferens protein, an aldose reductase-like protein in adrenocortical cells. J Biol Chem 274:32875–32880.
  • T. Leicher, R. Bahring, D. Isbrandt, and O. Pongs. (1998). Coexpression of the KCNA3B gene product with Kv1.5 leads to a novel A-type potassium. J Biol Chem 273:35095–35101.
  • N. Leitinger, T. R. Tyner, L. Oslund, C. Rizza, G. Subbanagounder, H. Lee, and et al (1999). Structurally similar oxidized phospholipids differentially regulate endothelial binding of monocytes and neutrophils. Proc Natl Acad Sci U S A 96:12010–12015.
  • H. A. Lemonde, E. J. Custard, J. Bouquet, M. Duran, H. Overmars, P. J. Scambler, and et al (2003). Mutations in SRD5B1 (AKR1D1), the gene encoding delta(4)-3-oxosteroid 5beta-reductase, in hepatitis and liver failure in infancy. Gut 52:1494–1499.
  • S. Li, E. Hanna, R. Breau, V. Ratanatharathorn, X. Xia, and J. Suen. (2004). Preferential expression of hPGFS in primary SCCHN and tumour cell lines derived from respiratory and digestive organs. Br J Cancer 90:1093–1099.
  • C. L. Linster, and E. Van Schaftingen. (2003). Rapid stimulation of free glucuronate formation by nonglucuronidable xenobiotics in isolated rat hepatocytes. J Biol Chem 278:36328–36333.
  • C. L. Linster, and E. Schaftingen. (2007). Vitamin C. Biosynthesis, recycling, and degradation in mammals. FEBS J 274:1–22.
  • T. E. Liston, and L. J. Roberts. (1985). Transformation of prostaglandin-D2 to 9-alpha,11B-(15S)-trihydroxyprosta-(5Z,13E)-dien-1-oic acid (9-alpha,11-beta-prostaglandin-F2)—a unique biologically active prostaglandin produced enzymatically in vivo in humans. Proc Natl Acad Sci U S A 82:6030–6034.
  • S. Q. Liu, A. Bhatnagar, and S. K. Srivastava. (1992). Does sorbinil bind to the substrate binding site of aldose reductase?. Biochem Pharmacol 44:2427–2429.
  • S. Q. Liu, A. Bhatnagar, and S. K. Srivastava. (1993). Bovine lens aldose reductase. pH-dependence of steady-state kinetic parameters, and nucleotide binding. J Biol Chem 268:25494–25499.
  • S. Q. Liu, H. Jin, A. Zacarias, S. Srivastava, and A. Bhatnagar. (2001). Binding of pyridine nucleotide coenzymes to the beta-subunit of the voltage-sensitive K+ channel. J Biol Chem 276:11812–11820.
  • H. Lou, L. Hammond, V. Sharma, R. S. Sparkes, A. J. Lusis, and A. Stolz. (1994). Genomic organization and chromosomal localization of a novel human hepatic dihydrodiol dehydrogenase with high-affinity bile-acid binding. J Biol Chem 269:8416–8422.
  • R. C. Lyon, S. M. Johnston, D. G. Watson, G. McGarvie, and E. M. Ellis. (2007). Synthesis and catabolism of gamma-hydroxybutyrate in SH-SY5Y human neuroblastoma cells—role of the aldo-keto reductase AKR7A2. J Biol Chem 282:25986–25992.
  • H. C. Ma, K. Ratnam, and T. M. Penning. (2000). Mutation of nicotinamide pocket residues in rat liver 3 alpha-hydroxysteroid dehydrogenase reveals different modes of cofactor binding. Biochemistry 39:102–109.
  • J. Ma, R. Yan, X. Zu, J. M. Cheng, K. Rao, D. F. Liao, and et al (2008). Aldo-keto reductase family 1 B10 affects fatty-acid synthesis by regulating the stability of acetyl-CoA carboxylase-{alpha} in breast cancer cells. J Biol Chem. 283:3418–3423.
  • S. Makino, D. B. Zaragoza, B. F. Mitchell, S. Robertson, and D. M. Olson. (2007). Prostaglandin F2alpha and its receptor as activators of human decidua. Semin Reprod Med 25:60–68.
  • L. N. Manganas, and J. S. Trimmer. (2000). Subunit composition determines Kv1 potassium channel surface expression. J Biol Chem 275:29685–29693.
  • Y. Mano, K. Suzuki, K. Yamada, and N. Shimazono. (1961). Enzymatic studies on TPN-L-hexonate dehydrogenase from rat liver. J Biochem 49:618–634.
  • H. J. O. Martin, U. Breyer-Pfaff, V. Wsol, S. Venz, S. Block, and E. Maser. (2006). Purification and characterization of AKR1B10 from human liver: role in carbonyl reduction of xenobiotics. Drug Metab Dispos 34:464–470.
  • E. Maser. (2004). Significance of reductases in the detoxification of the tobacco-specific carcinogen NNK. Trends Pharmacol Sci 25:235–237.
  • E. Maser, J. Friebertshauser, and B. Volker. (2003). Purification, characterization, and NNK carbonyl reductase activities of 11beta-hydroxysteroid dehydrogenase type 1 from human liver: enzyme cooperativity and significance in the detoxification of a tobacco-derived carcinogen. Chem Biol Interact, 143–144 435–448.
  • E. Maser, B. Stinner, and A. Atalla. (2000). Carbonyl reduction of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) by cytosolic enzymes in human liver and lung. Cancer Lett 148:135–144.
  • R. M. Mason, and N. A. Wahab. (2003). Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol 14:1358–1373.
  • K. Matsumoto, S. Endo, S. Ishikura, T. Matsunaga, K. Tajima, O. El Kabbani, and et al (2006). Enzymatic properties of a member (AKR1C20) of the aldo-keto reductase family. Biol Pharmaceut Bull 29:539–542.
  • T. Matsumoto, Y. Ono, M. Kurono, A. Kuromiya, K. Nakamura, and V. Bril. (2008). Ranirestat (AS-3201), a potent aldose reductase inhibitor, reduces sorbitol levels and improves motor nerve conduction velocity in streptozotocin-diabetic rats. J Pharmacol Sci 107:231–237.
  • K. Matsuura, H. Shiraishi, A. Hara, K. Sato, Y. Deyashiki, M. Ninomiya, and et al (1998). Identification of a principal mRNA species for human 3 alpha-hydroxysteroid dehydrogenase isoform (AKR1C3) that exhibits high prostaglandin D-2 11-ketoreductase activity. J Biochem 124:940–946.
  • K. McCormack, J. X. Connor, L. Zhou, L. L. Ho, B. Ganetzky, S. Y. Chiu, and et al (2002). Genetic analysis of the mammalian K+ channel beta subunit Kv beta 2 (Kcnab2). J Biol Chem 277:13219–13228.
  • L. I. McLellan, D. J. Judah, G. E. Neal, and J. D. Hayes. (1994). Regulation of aflatoxin B1-metabolizing aldehyde reductase and glutathione S-transferase by chemoprotectors. Biochem J 00:117–124.
  • G. Minotti, S. Licata, A. Saponiero, P. Menna, A. M. Calafiore, G. Di Giammarco, and et al (2000). Anthracycline metabolism and toxicity in human myocardium: Comparisons between doxorubicin, epirubicin, and a novel disaccharide analogue with a reduced level of formation and [4Fe-4S] reactivity of its secondary alcohol metabolite. Chem Res Toxicol 13:1336–1341.
  • T. Miyata, Y. Ueda, Y. Yamada, Y. Izuhara, T. Wada, M. Jadoul, and et al (1998). Accumulation of carbonyls accelerates the formation of pentosidine, an advanced glycation end product: carbonyl stress in uremia. J Am Soc Nephrol 9:2349–2356.
  • T. Miyata, D. S. van Ypersele, K. Kurokawa, and J. W. Baynes. (1999). Alterations in nonenzymatic biochemistry in uremia: origin and significance of “carbonyl stress” in long-term uremic complications. Kidney Int 55:389–399.
  • A. Mode, and I. Rafter. (1985). The sexually differentiated delta 4-3-ketosteroid 5 beta-reductase of rat liver. Purification, characterization, and quantitation. J Biol Chem 260:7137–7141.
  • A. Mordente, E. Meucci, G. E. Martorana, B. Giardina, and G. Minotti. (2001). Human heart cytosolic reductases and anthracycline cardiotoxicity. IUBMB Life 52:83–88.
  • A. Mordente, G. Minotti, G. E. Martorana, A. Silvestrini, B. Giardina, and E. Meucci. (2003). Anthracycline secondary alcohol metabolite formation in human or rabbit heart: biochemical aspects and pharmacologic implications. Biochem Pharmacol 66:989–998.
  • B. L. Mylari, E. R. Larson, T. A. Beyer, W. J. Zembrowski, C. E. Aldinger, M. F. Dee, and et al (1991). Novel, potent aldose reductase inhibitors: 3,4-dihydro-4-oxo-3-[[5-(trifluoromethyl)-2-benzothiazolyl] methyl]-1-phthalazineacetic acid (zopolrestat) and congeners. J Med Chem 34:108–122.
  • N. S. Nagaraj, S. Beckers, J. K. Mensah, S. Waigel, N. Vigneswaran, and W. Zacharias. (2006). Cigarette smoke condensate induces cytochromes P450 and aldo-keto reductases in oral cancer cells. Toxicol Lett 165:182–194.
  • R. H. Nagaraj, I. N. Shipanova, and F. M. Faust. (1996). Protein cross-linking by the Maillard reaction. isolation, characterization, and in vivo detection of a lysine-lysine cross-link derived from methylglyoxal. J Biol Chem 271:19338–19345.
  • N. Nagaya, and D. M. Papazian. (1997). Potassium channel alpha and beta subunits assemble in the endoplasmic reticulum. J Biol Chem 272:3022–3027.
  • A. C. Need, E. E. Irvine, and K. P. Giese. (2003). Learning and memory impairments in K-v beta 1.1-null mutants are rescued by environmental enrichment or ageing. Eur J Neurosci 18:1640–1644.
  • A. Negre-Salvayre, C. Coatrieux, C. Ingueneau, and R. Salvayre. (2008). Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br J Pharmacol 153:6–20.
  • A. Nicolucci, F. Carinci, D. Cavaliere, N. Scorpiglione, M. Belfiglio, D. Labbrozzi, and et al (1996). A meta-analysis of trials on aldose reductase inhibitors in diabetic peripheral neuropathy. The Italian Study Group. The St. Vincent Declaration [see comments]. Diabet Med 13:1017–1026.
  • B. Nidetzky, W. Neuhauser, D. Haltrich, and K. D. Kulbe. (1996). Continuous enzymatic production of xylitol with simultaneous coenzyme regeneration in a charged membrane reactor. Biotechnol Bioeng 52:387–396.
  • M. Nishizawa, T. Nakajima, K. Yasuda, H. Kanzaki, Y. Sasaguri, K. Watanabe, and et al (2000). Close kinship of human 20 alpha-hydroxysteroid dehydrogenase gene with three aldo-keto reductase genes. Genes Cells 5:111–125.
  • T. Niwa, T. Miyazaki, T. Katsuzaki, N. Tatemichi, and Y. Takei. (1996). Serum levels of 3-deoxyglucosone and tissue contents of advanced glycation end products are increased in streptozotocin-induced diabetic rats with nephropathy. Nephron 74:580–585.
  • T. Niwa, and S. Tsukushi. (2001). 3-deoxyglucosone and AGEs in uremic complications: inactivation of glutathione peroxidase by 3-deoxyglucosone. Kidney Int Suppl 78:S37–S41.
  • T O'Connor, L. S. Ireland, D. J. Harrison, and J. D. Hayes. (1999). Major differences exist in the function and tissue-specific expression of human aflatoxin B1 aldehyde reductase and the principal human aldo-keto reductase AKR1 family members. Biochem J 343:t–504.
  • P. J. Oates. (2002). Polyol pathway and diabetic peripheral neuropathy. Int Rev Neurobiol 50:325–392.
  • H. Ohara, Y. Miyabe, Y. Deyashiki, K. Matsuura, and A. Hara. (1995). Reduction of drug ketones by dihydrodiol dehydrogenases, carbonyl reductase, and aldehyde reductase of human liver. Biochem Pharmacol 50:221–227.
  • T. Oka. (2004). Prostaglandin E2 as a mediator of fever: the role of prostaglandin E (EP) receptors. Front Biosci 9:3046–3057.
  • A. Okuda, and K. Okuda. (1984). Purification and characterization of delta 4-3-ketosteroid 5 beta-reductase. J Biol Chem 259:7519–7524.
  • S. E. Old, S. Sato, P. F. Kador, and D. A. Carper. (1990). In vitro expression of rat lens aldose reductase in Escherichia coli. Proc Natl Acad Sci U S A 87:4942–4945.
  • U. Oppermann, C. Filling, M. Hult, N. Shafqat, X. Q. Wu, M. Lindh, and et al (2003). Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chemico Biol Interact 143:247–253.
  • N. T. Palackal, M. E. Burczynski, R. G. Harvey, and T. M. Penning. (2001). The ubiquitous aldehyde reductase (AKR1A1) oxidizes proximate carcinogen trans-dihydrodiols to o-quinones: potential role in polycyclic aromatic hydrocarbon activation. Biochemistry 40:10901–10910.
  • M. Palermo, M. G. Marazzi, B. A. Hughes, P. M. Stewart, P. T. Clayton, and C. H. Shackleton. (2008). Human delta(4)-3-oxosteroid 5beta-reductase (AKR1D1) deficiency and steroid metabolism. Steroids 73:417–423.
  • M. Papari-Zareei, A. Brandmaier, and R. J. Auchus. (2006). Arginine 276 controls the directional preference of AKR1C9 (rat liver 3 alpha-hydroxysteroid dehydrogenase) in human embryonic kidney 293 cells. Endocrinology 147:1591–1597.
  • J. E. Pawlowski, and T. M. Penning. (1994). Overexpression and mutagenesis of the cDNA for rat-liver 3-alpha-hydroxysteroid dihydrodiol dehydrogenase—role of cysteines and tyrosines in catalysis. J Biol Chem 269:13502–13510.
  • T. M. Penning. (1997). Molecular endocrinology of hydroxysteroid dehydrogenases. Endocr Rev 18:281–305.
  • T. M. Penning, M. E. Burczynski, J. M. Jez, C. F. Hung, H. K. Lin, H. C. Ma, and et al (2000). Human 3 alpha-hydroxysteroid dehydrogenase isoforms (AKR1C1–AKR1C4) of the aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. Biochem J 351:67–77.
  • T. M. Penning, and J. E. Drury. (2007). Human aldo-keto reductases: function, gene regulation, and single nucleotide polymorphisms. Arch Biochem Biophys 464:241–250.
  • T. M. Penning, Y. Jin, V. V. Heredia, and M. Lewis. (2003). Structure-function relationships in 3alpha-hydroxysteroid dehydrogenases: a comparison of the rat and human isoforms. J Steroid Biochem Mol Biol 85:247–255.
  • T. M. Penning, Y. Jin, S. Steckelbroeck, T. L. Rizner, and M. Lewis. (2004). Structure-function of human 3 alpha-hydroxysteroid dehydrogenases: genes and proteins. Mol Cell Endocrinol 215:63–72.
  • T. M. Penning, and P. Talalay. (1983). Inhibition of a major NAD(P)-linked oxidoreductase from rat liver cytosol by steroidal and nonsteroidal anti-inflammatory agents and by prostaglandins. Proc Natl Acad Sci U S A 80:4504–4508.
  • J. M. Petrash, T. M. Harter, C. S. Devine, P. O. Olins, A. Bhatnagar, S. Liu, and et al (1992). Involvement of cysteine residues in catalysis and inhibition of human aldose reductase. Site-directed mutagenesis of Cys-80, -298, and -303. J Biol Chem 267:24833–24840.
  • M. A. Pfeifer, M. P. Schumer, and D. A. Gelber. (1997). Aldose reductase inhibitors: the end of an era or the need for different trial designs?. Diabetes 46 (Suppl 2):S82–S89.
  • R. P. Piekorz, B. Gingras, A. Hoffmeyer, J. N. Ihle, and Y. Weinstein. (2005). Regulation of progesterone levels during pregnancy and parturition by signal transducer and activator of transcription 5- and 20-alpha-hydroxysteroid dehydrogenase. Mol Endocrinol 19:431–440.
  • A. Podjarny, R. E. Cachau, T. Schneider, M. Van Zandt, and A. Joachimiak. (2004). Subatomic and atomic crystallographic studies of aldose reductase: implications for inhibitor binding. Cell Mol Life Sci 61:763–773.
  • N. Pollak, C. Dolle, and M. Ziegler. (2007). The power to reduce: pyridine nucleotides—small molecules with a multitude of functions. Biochem J 402:205–218.
  • O. Pongs, T. Leicher, M. Berger, J. Roeper, R. Bahring, D. Wray, and et al (1999). Functional and molecular aspects of voltage-gated K+ channel beta subunits. Mol Funct Divers Ion Chan Recept 868:344–355.
  • D. Propper, and E. Maser. (1997). Carbonyl reduction of daunorubicin in rabbit liver and heart. Pharmacol Toxicol 80:240–245.
  • K. V. Ramana, A. Bhatnagar, S. Srivastava, U. C. Yadav, S. Awasthi, Y. C. Awasthi, and et al (2006a). Mitogenic responses of vascular smooth muscle cells to lipid peroxidation-derived aldehyde 4-hydroxy-trans-2-nonenal (HNE): role of aldose reductase-catalyzed reduction of the HNE-glutathione conjugates in regulating cell growth. J Biol Chem 281:17652–17660.
  • K. V. Ramana, D. Chandra, S. Srivastava, A. Bhatnagar, B. B. Aggarwal, and S. K. Srivastava. (2002). Aldose reductase mediates mitogenic signaling in vascular smooth muscle cells. Jf Biol Chem 277:32063–32070.
  • K. V. Ramana, D. Chandra, S. Srivastava, A. Bhatnagar, and S. K. Srivastava. (2003a). Aldose reductase mediates the mitogenic signals of cytokines. Chem Biol Interact 143–144 587–596.
  • K. V. Ramana, D. Chandra, S. Srivastava, A. Bhatnagar, and S. K. Srivastava. (2003b). Nitric oxide regulates the polyol pathway of glucose metabolism in vascular smooth muscle cells. FASEB J 17:417–425.
  • K. V. Ramana, A. A. Fadl, R. Tammali, A. B. Reddy, A. K. Chopra, and S. K. Srivastava. (2006b). Aldose reductase mediates the lipopolysaccharide-induced release of inflammatory mediators in RAW264.7 murine macrophages. J Biol Chem 281:33019–33029.
  • K. V. Ramana, B. Friedrich, S. Srivastava, A. Bhatnagar, and S. K. Srivastava. (2004). Activation of nuclear factor-kappaB by hyperglycemia in vascular smooth muscle cells is regulated by aldose reductase. Diabetes 53:2910–2920.
  • K. V. Ramana, B. Friedrich, R. Tammali, M. B. West, A. Bhatnagar, and S. K. Srivastava. (2005). Requirement of aldose reductase for the hyperglycemic activation of protein kinase C and formation of diacylglycerol in vascular smooth muscle cells. Diabetes 54:818–829.
  • K. V. Ramana, R. Tammali, A. B. Reddy, A. Bhatnagar, and S. K. Srivastava. (2007). Aldose reductase–regulated tumor necrosis factor-alpha production is essential for high glucose–induced vascular smooth muscle cell growth. Endocrinology 148:4371–4384.
  • K. V. Ramana, M. S. Willis, M. D. White, J. W. Horton, J. M. DiMaio, D. Srivastava, and et al (2006c). Endotoxin-induced cardiomyopathy and systemic inflammation in mice is prevented by aldose reductase inhibition. Circulation 114:1838–1846.
  • K. Ratnam, H. Ma, and T. M. Penning. (1999). The arginine 276 anchor for NADP(H) dictates fluorescence kinetic transients in 3 alpha-hydroxysteroid dehydrogenase, a representative aldo-keto reductase. Biochemistry 38:7856–7864.
  • C. C. Reddy, J. S. Swan, and G. A. Hamilton. (1981). myo-Inositol oxygenase from hog kidney. I. Purification and characterization of the oxygenase and of an enzyme complex containing the oxygenase and D-glucuronate reductase. J Biol Chem 256:8510–8518.
  • J. Rettig, S. H. Heinemann, F. Wunder, C. Lorra, D. N. Parcej, J. O. Dolly, and et al (1994). Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit. Nature 369:289–294.
  • M. J. C. Rosemond, L. John-Williams, T. Yamaguchi, T. Fujishita, and J. S. Walsh. (2004). Enzymology of a carbonyl reduction clearance pathway for the HIV integrase inhibitor, S-1360: role of human liver cytosolic aldo-keto reductases. Chemico Biol Interact 147:129–139.
  • M. J. C. Rosemond, and J. S. Walsh. (2004). Human carbonyl reduction pathways and a strategy for their study in vitro. Drug Metab Rev 36:335–361.
  • J. Ruef, S. Q. Liu, C. Bode, M. Tocchi, S. Srivastava, M. S. Runge, and et al (2000). Involvement of aldose reductase in vascular smooth muscle cell growth and lesion formation after arterial injury. Arterioscler Thromb Vasc Biol 20:1745–1752.
  • F. Ruiz, I. Hazemann, A. Mitschler, A. Joachimiak, T. Schneider, M. Karplus, and et al (2004). The crystallographic structure of the aldose reductase-IDD552 complex shows direct proton donation from tyrosine 48. Acta Crystallogr D Biol Crystallogr 60:1347–1354.
  • W. R. Rush, O. F. Alexander, D. J. Hall, R. J. Dow, L. Tokes, L. Kurz, and et al (1990). The metabolism of nafimidone hydrochloride in the dog, primates, and man. Xenobiotica 20:123–132.
  • K. J. Sales, S. A. Milne, A. R. Williams, R. A. Anderson, and H. N. Jabbour. (2004). Expression, localization, and signaling of prostaglandin F2 alpha receptor in human endometrial adenocarcinoma: regulation of proliferation by activation of the epidermal growth factor receptor and mitogen-activated protein kinase signaling pathways. J Clin Endocrinol Metab 89:986–993.
  • M. Sanai, S. Endo, T. Matsunaga, S. Ishikura, K. Tajima, O. El Kabbani, and et al (2007). Rat NAD(+)-dependent 3 alpha-hydroxysteroid dehydrogenase (AKR1C17): a member of the aldo-keto reductase family highly expressed in kidney cytosol. Arch Biochem Biophys 464:122–129.
  • K. Sato, A. Inazu, S. Yamaguchi, T. Nakayama, Y. Deyashiki, H. Sawada, and et al (1993). Monkey 3-deoxyglucosone reductase: tissue distribution and purification of three multiple forms of the kidney enzyme that are identical with dihydrodiol dehydrogenase, aldehyde reductase, and aldose reductase. Arch Biochem Biophys 307:286–294.
  • S. Sato, and P. F. Kador. (1990). Inhibition of aldehyde reductase by aldose-reductase inhibitors. Biochem Pharmacol 40:1033–1042.
  • B. P. Schlegel, J. M. Jez, and T. M. Penning. (1998a). Mutagenesis of 3 alpha-hydroxysteroid dehydrogenase reveals a “push-pull” mechanism for proton transfer in aldo-keto reductases. Biochemistry 37:3538–3548.
  • B. P. Schlegel, K. Ratnam, and T. M. Penning. (1998b). Retention of NADPH-linked quinone reductase activity in an aldo-keto reductase following mutation of the catalytic tyrosine. Biochemistry 37:11003–11011.
  • K. Sestanj, F. Bellini, S. Fung, N. Abraham, A. Treasurywala, L. Humber, and et al (1984). N-[5-(trifluoromethyl)-6-methoxy-1-naphthalenyl]thioxomethyl]-N-methylglycine (Tolrestat), a potent, orally active aldose reductase inhibitor. J Med Chem 27:255–256.
  • K. D. Setchell, F. J. Suchy, M. B. Welsh, L. Zimmer-Nechemias, J. Heubi, and W. F. Balistreri. (1988). Delta 4-3-oxosteroid 5 beta-reductase deficiency described in identical twins with neonatal hepatitis. A new inborn error in bile-acid synthesis. J Clin Invest 82:2148–2157.
  • S. Sewing, J. Roeper, and O. Pongs. (1996). Kv beta 1 subunit binding specific for shaker-related potassium channel alpha subunits. Neuron 16:455–463.
  • S. Shaw, X. Wang, H. Redd, G. D. Alexander, C. M. Isales, and M. B. Marrero. (2003). High glucose augments the angiotensin II-induced activation of JAK2 in vascular smooth muscle cells via the polyol pathway. J Biol Chem 278:30634–30641.
  • D. P. Sherbet, M. Papari-Zareei, N. Khan, K. K. Sharma, A. Brandmaier, S. Rambally, and et al (2007). Cofactors, redox state, and directional preferences of hydroxysteroid dehydrogenases. Mol Cell Endocrinol 265:83–88.
  • G. Shi, K. Nakahira, S. Hammond, K. J. Rhodes, L. E. Schechter, and J. S. Trimmer. (1996). Beta subunits promote K+ channel surface expression through effects early in biosynthesis. Neuron 16:843–852.
  • K. Shimoda, M. Shibasaki, T. Inaba, S. W. Cheung, T. Someya, and S. Takahashi. (1998a). Carbonyl reduction of timiperone in human liver cytosol. Pharmacol Toxicol 83:164–168.
  • K. Shimoda, T. Someya, S. Morita, G. Hirokane, A. Yokono, M. Shibasaki, and et al (1998b). Plasma concentrations of timiperone and its reduced metabolite in the patients on timiperone. Psychiatry Clin Neurosci 52:535–540.
  • K. Shinmura, R. Bolli, S. Q. Liu, X. L. Tang, E. Kodani, Y. T. Xuan, and et al (2002). Aldose reductase is an obligatory mediator of the late phase of ischemic preconditioning. Circ Res 91:240–246.
  • M. Shinohara, P. J. Thornalley, I. Giardino, P. Beisswenger, S. R. Thorpe, J. Onorato, and et al (1998). Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation end-product formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J Clin Invest 101:1142–1147.
  • A. A. Sima, V. Bril, V. Nathaniel, T. A. McEwen, M. B. Brown, S. A. Lattimer, and et al (1988). Regeneration and repair of myelinated fibers in sural-nerve biopsy specimens from patients with diabetic neuropathy treated with sorbinil. N Engl J Med 319:548–555.
  • R. Singh, M. A. White, K. V. Ramana, J. M. Petrash, S. J. Watowich, A. Bhatnagar, and et al (2006). Structure of a glutathione conjugate bound to the active site of aldose reductase. Proteins 64:101–110.
  • T. E. Smithgall, and T. M. Penning. (1986). Inhibition of trans-dihydrodiol oxidation by the nonsteroidal anti-inflammatory drugs. Carcinogenesis 7:583–588.
  • Z. T. Song, D. T. W. Fu, Y. S. Chan, S. Leung, S. S. M. Chung, and S. K. Chung. (2003). Transgenic mice overexpressing aldose reductase in Schwann cells show more severe nerve conduction velocity deficit and oxidative stress under hyperglycemic stress. Mol Cell Neurosci 23:638–647.
  • M. Spite, S. P. Baba, Y. Ahmed, O. A. Barski, K. Nijhawan, J. M. Petrash, and et al (2007). Substrate specificity and catalytic efficiency of aldo-keto reductases with phospholipid aldehydes. Biochem J 405:95–105.
  • S. Srivastava, A. Chandra, N. H. Ansari, S. K. Srivastava, and A. Bhatnagar. (1998a). Identification of cardiac oxidoreductase(s) involved in the metabolism of the lipid peroxidation-derived aldehyde-4-hydroxynonenal. Biochem J 329:469–475.
  • S. Srivastava, A. Chandra, A. Bhatnagar, S. K. Srivastava, and N. H. Ansari. (1995). Lipid peroxidation product, 4-hydroxynonenal, and its conjugate with GSH are excellent substrates of bovine lens aldose reductase. Biochem Biophys Res Commun 217:741–746.
  • S. Srivastava, B. Chandrasekar, A. Bhatnagar, and S. D. Prabhu. (2002). Lipid peroxidation–derived aldehydes and oxidative stress in the failing heart: role of aldose reductase. Am.J Physiol Heart Circ.Physiol 283:H2612–H2619.
  • S. Srivastava, D. J. Conklin, S. Q. Liu, N. Prakash, P. J. Boor, S. K. Srivastava, and et al (2001a). Identification of biochemical pathways for the metabolism of oxidized low-density lipoprotein derived aldehyde-4-hydroxy trans-2-nonenal in vascular smooth muscle cells. Atherosclerosis 158:339–350.
  • S. Srivastava, B. L. Dixit, K. V. Ramana, A. Chandra, D. Chandra, A. Zacarias, and et al (2001b). Structural and kinetic modifications of aldose reductase by S-nitrosothiols. Biochem J 358:111–118.
  • S. Srivastava, T. M. Harter, A. Chandra, P. Bhatnagar, S. K. Srivastava, and J. M. Petrash. (1998b). Kinetic studies of FR-1, a growth factor–inducible aldo-keto reductase. Biochemistry 37:12909–12917.
  • S. Srivastava, M. Spite, J. O. Trent, M. B. West, Y. Ahmed, and A. Bhatnagar. (2004b). Aldose reductase–catalyzed reduction of aldehyde phospholipids. J Biol Chem 279:53395–53406.
  • S. Srivastava, M. Spite, J. O. Trent, M. B. West, Y. Ahmed, and A. Bhatnagar. (2004a). Aldose reductase–catalyzed reduction of aldehyde phospholipids. J Biol Chem 279:53395–53406.
  • S. Srivastava, R. Tammali, D. Chandra, D. A. Greer, K. V. Ramana, A. Bhatnagar, and et al (2005a). Regulation of lens aldose reductase activity by nitric oxide. Exp Eye Res 81:664–672.
  • S. Srivastava, S. J. Watowich, J. M. Petrash, S. K. Srivastava, and A. Bhatnagar. (1999). Structural and kinetic determinants of aldehyde reduction by aldose reductase. Biochemistry 38:42–54.
  • S. K. Srivastava, K. V. Ramana, and A. Bhatnagar. (2005b). Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocr Rev 26:380–392.
  • S. K. Srivastava, K. V. Ramana, S. Srivastava, and A. Bhatnagar. (2004c). Aldose reductase detoxifies lipid aldehydes and their glutathione conjugates. Aldo-Keto Reductases Toxicant Metab 865:37–48.
  • M. Stanbrough, G. J. Bubley, K. Ross, T. R. Golub, M. A. Rubin, T. M. Penning, and et al (2006). Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 66:2815–2825.
  • S. Steckelbroeck, B. Oyesanmi, Y. Jin, S. H. Lee, H. J. Kloosterboer, and T. M. Penning. (2006). Tibolone metabolism in human liver is catalyzed by 3 alpha/3 beta-hydroxysteroid dehydrogenase activities of the four isoforms of the aldo-keto reductase (AKR)1C subfamily. J Pharmacol Exp Ther 316:1300–1309.
  • H. Steuber, A. Heine, A. Podjarny, and G. Klebe. (2008). Merging the binding sites of aldose and aldehyde reductase for detection of inhibitor selectivity-determining features. J Mol Biol 379:991–1016.
  • A. Stolz, L. Hammond, H. Lou, H. Takikawa, M. Ronk, and J. E. Shively. (1993). cDNA cloning and expression of the human hepatic bile acid-binding protein. A member of the monomeric reductase gene family. J Biol Chem 268:10448–10457.
  • G. Subbanagounder, N. Leitinger, D. C. Schwenke, J. W. Wong, H. Lee, C. Rizza, and et al (2000). Determinants of bioactivity of oxidized phospholipids. Specific oxidized fatty acyl groups at the sn-2 position. Arterioscler Thromb Vasc Biol 20:2248–2254.
  • D. Suzuki, and T. Miyata. (1999). Carbonyl stress in the pathogenesis of diabetic nephropathy. Intern Med 38:309–314.
  • K. Suzuki, Y. H. Koh, H. Mizuno, R. Hamaoka, and N. Taniguchi. (1998). Overexpression of aldehyde reductase protects PC12 cells from the cytotoxicity of methylglyoxal or 3-deoxyglucosone. J Biochem (Tokyo) 123:353–357.
  • T. Suzuki-Yamamoto, M. Nishizawa, M. Fukui, E. Okuda-Ashitaka, T. Nakajima, S. Ito, and et al (1999). cDNA cloning, expression, and characterization of human prostaglandin F synthase. FEBS Lett 462:335–340.
  • T. Thomas, G. Thomas, C. McLendon, T. Sutton, and M. Mullan. (1996). beta-amyloid-mediated vasoactivity and vascular endothelial damage. Nature 380:168–171.
  • P. J. Thornalley. (2003). Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Arch Biochem Biophys 419:31–40.
  • P. J. Thornalley, A. Langborg, and H. S. Minhas. (1999). Formation of glyoxal, methylglyoxal, and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J 344:t–16.
  • S. M. Tipparaju, O. A. Barski, S. Srivastava, and A. Bhatnagar. (2008). Catalytic mechanism and substrate specificity of the beta-subunit of the voltage-gated potassium channel. Biochemistry 47:8840–8854.
  • S. M. Tipparaju, S. Q. Liu, O. A. Barski, and A. Bhatnagar. (2007). NADPH binding to beta-subunit regulates inactivation of voltage-gated K+ channels. Biochem Biophys Res Commun 359:269–276.
  • S. M. Tipparaju, N. Saxena, S. Q. Liu, R. Kumar, and A. Bhatnagar. (2005). Differential regulation of voltage-gated K+ channels by oxidized and reduced pyridine nucleotide coenzymes. Am J Physiol Cell Physiol 288:C366–C376.
  • A. D. Tselepis, and C. M. John. (2002). Inflammation, bioactive lipids, and atherosclerosis: potential roles of a lipoprotein-associated phospholipase A2, platelet-activating factor-acetylhydrolase. Atheroscler Suppl 3:57–68.
  • P. Upadhyaya, P. M. J. Kenney, J. B. Hochalter, M. Y. Wang, and S. S. Hecht. (1999). Tumorigenicity and metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol enantiomers and metabolites in the A/J mouse. Carcinogenesis 20:1577–1582.
  • Y. Urade, K. Watanabe, N. Eguchi, Y. Fujii, and O. Hayaishi. (1990). 9-alpha,11-beta-prostaglandin-F2 formation in various bovine-tissues—different Isozymes of prostaglandin-D2 11-ketoreductase, contribution of prostaglandin-F synthetase and its cellular-localization. J Biol Chem 265:12029–12035.
  • A. Urzhumtsev, F. Tete-Favier, A. Mitschler, J. Barbanton, P. Barth, L. Urzhumtseva, and et al (1997). A “specificity” pocket inferred from the crystal structures of the complexes of aldose reductase with the pharmaceutically important inhibitors tolrestat and sorbinil. Structure 5:601–612.
  • P. Val, A. Martinez, I. Sahut-Barnola, C. Jean, G. Veyssiere, and A. M. Lefrancois-Martinez. (2002). A 77-base-pair LINE-like sequence elicits androgen-dependent mvdp/akr1-b7 expression in mouse vas deferens, but is dispensable for adrenal expression in rats. Endocrinology 143:3435–3448.
  • M. A. van Boekel, D. M. van Aalten, G. J. Caspers, B. Roll, and W. W. de Jong. (2001). Evolution of the aldose reductase-related gecko eye lens protein rhoB-crystallin: a sheep in wolf's clothing. J Mol Evol 52:239–248.
  • J. D. Vander, N. S. Kolb, J. T. Vander, J. Chino, F. J. Martinez, L. A. Hunsaker, and et al (1995). Substrate specificity of human aldose reductase: identification of 4- hydroxynonenal as an endogenous substrate. Biochim Biophys Acta 1249:117–126.
  • J. D. Vander, B. Robinson, K. K. Taylor, and L. A. Hunsaker. (1992). Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complications. J Biol Chem 267:4364–4369.
  • T. Varma, S. Q. Liu, M. West, V. Thongboonkerd, P. P. Ruvolo, W. S. May, and et al (2003). Protein kinase C–dependent phosphorylation and mitochondrial translocation of aldose reductase. FEBS Lett 534:175–179.
  • M. C. Vega, E. Lorentzen, A. Linden, and M. Wilmanns. (2003). Evolutionary markers in the (beta/alpha)8-barrel fold. Curr Opin Chem Biol 7:694–701.
  • L. Vergnes, J. Phan, A. Stolz, and K. Reue. (2003). A cluster of eight hydroxysteroid dehydrogenase genes belonging to the aldo-keto reductase supergene family on mouse chromosome 13. J Lipid Res 44:503–511.
  • M. Verma, H. J. Martin, W. Haq, T. R O'Connor, E. Maser, and G. K. Balendiran. (2008). Inhibiting wild-type and C299S mutant AKR1B10; a homologue of aldose reductase upregulated in cancers. Eur J Pharmacol 584:213–221.
  • N. Verzijl, J. DeGroot, R. A. Bank, M. T. Bayliss, J. W. J. Bijlsma, F. P. J. G. Lafeber, and et al (2001). Age-related accumulation of the advanced glycation end-product pentosidine in human articular cartilage aggrecan: the use of pentosidine levels as a quantitative measure of protein turnover. Matrix Biol 20:409–417.
  • N. Verzijl, J. DeGroot, C. Ben Zaken, O. Braun-Benjamin, A. Maroudas, R. A. Bank, and et al (2002). Cross-linking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage—a possible mechanism through which age is a risk factor for osteoarthritis. Arthr Rheum 46:114–123.
  • H. Vlassara, and M. R. Palace. (2002). Diabetes and advanced glycation endproducts. J Intern Med 251:87–101.
  • K. Watanabe, Y. Iguchi, S. Iguchi, Y. Arai, O. Hayaishi, and L. J. Roberts. (1986). Stereospecific conversion of prostaglandin-D2 to (5Z,13E)-(15S)-9-alpha,-11-beta,15-trihydroxyprosta-5,13-dien-1-oic acid (9-alpha,11-beta-prostaglandin-F2) and of prostaglandin-H2 to prostaglandin-F2-alpha by bovine lung prostaglandin-F synthase. Proc Natl Acad Sci U S Am 83:1583–1587.
  • K. Watanabe, R. Yoshida, T. Shimizu, and O. Hayaishi. (1985). Enzymatic Formation of prostaglandin-F2-alpha from prostaglandin-H2 and prostaglandin-D2 - purification and properties of prostaglandin-F synthetase from bovine lung. J Biol Chem 260:7035–7041.
  • A. D. Watson, N. Leitinger, M. Navab, K. F. Faull, S. Horkko, J. L. Witztum, and et al (1997). Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low-density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J Biol Chem 272:13597–13607.
  • R. B. Weiss. (1992). The anthracyclines—will we ever find a better doxorubicin. Sem Oncol 19:670–686.
  • T. Wendt, N. Tanji, J. Guo, B. I. Hudson, A. Bierhaus, R. Ramasamy, and et al (2003). Glucose, glycation, and RAGE: implications for amplification of cellular dysfunction in diabetic nephropathy. J Am Soc Nephrol 14:1383–1395.
  • J. Weng, Y. Cao, N. Moss, and M. Zhou. (2006). Modulation of voltage-dependent Shaker family potassium channels by an aldo-keto reductase. J Biol Chem 281:15194–15200.
  • B. Wermuth. (1981). Purification and properties of an NADPH-dependent carbonyl reductase from human brain—relationship to prostaglandin 9-ketoreductase and xenobiotic ketone reductase. J Biol Chem 256:1206–1213.
  • B. Wermuth. (1985). Aldo-keto reductases. Prog Clin Biol Res 174:209–230.
  • B. Wermuth. (1991). Inhibition of aldehyde reductase by carboxylic acids. Adv Exp Med Biol 284:197–204.
  • B. Wermuth, and C. Monder. (1983). Aldose and aldehyde reductase exhibit isocorticosteroid reductase activity. Eur J Biochem 131:423–426.
  • B. Wermuth, J. D. Munch, and J. P. von Wartburg. (1977). Purification and properties of NADPH-dependent aldehyde reductase from human liver. J Biol Chem 252:3821–3828.
  • S. R. Whittle, and A. J. Turner. (1981). Biogenic aldehyde metabolism in rat brain. Differential sensitivity of aldehyde-reductase isoenzymes to sodium valproate. Biochim Biophys Acta 657:94–105.
  • D. K. Wilson, K. M. Bohren, K. H. Gabbay, and F. A. Quiocho. (1992). An unlikely sugar substrate site in the 1.65 A structure of the human aldose reductase holoenzyme implicated in diabetic complications. Science 257:81–84.
  • D. K. Wilson, T. Nakano, J. M. Petrash, and F. A. Quiocho. (1995). 1.7 A structure of FR-1, a fibroblast growth factor–induced member of the aldo-keto reductase family, complexed with coenzyme and inhibitor. Biochemistry 34:14323–14330.
  • D. K. Wilson, I. Tarle, J. M. Petrash, and F. A. Quiocho. (1993). Refined 1.8 A structure of human aldose reductase complexed with the potent inhibitor zopolrestat. Proc Natl Acad Sci U S A 90:9847–9851.
  • E. Wise, W. S. Yew, P. C. Babbitt, J. A. Gerlt, and I. Rayment. (2002). Homologous (beta/alpha)8-barrel enzymes that catalyze unrelated reactions: orotidine 5′-monophosphate decarboxylase and 3-keto-L-gulonate 6-phosphate decarboxylase. Biochemistry 41:3861–3869.
  • V. Wsol, B. Szotakova, H. J. Martin, and E. Maser. (2007). Aldo-keto reductases (AKR) from the AKR1C subfamily catalyze the carbonyl reduction of the novel anticancer drug oracin in man. Toxicology 238:111–118.
  • V. Wsol, B. Szotakova, L. Skalova, and E. Maser. (2004). The novel anticancer drug oracin: different stereo specificity and cooperativity for carbonyl reduction by purified human liver 11 beta-hydroxysteroid dehydrogenase type 1. Toxicology 197:253–261.
  • C. Yabe-Nishimura. (1998). Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications [in process citation]. Pharmacol Rev 50:21–33.
  • S. Yamano, F. Ichinose, T. Todaka, and S. Toki. (1999). Purification and characterization of two major forms of naloxone reductase from rabbit liver cytosol, new members of aldo-keto reductase superfamily. Biol Pharm Bull 22:1038–1046.
  • R. L. Yan, X. Y. Zu, J. Ma, Z. W. Liu, M. Adeyanju, and D. L. Cao. (2007). Aldo-keto reductase family 1 B10 gene silencing results in growth inhibition of colorectal cancer cells: implication for cancer intervention. Int J Cancer 121:2301–2306.
  • Q. Ye, D. Hyndman, N. Green, X. Li, B. Korithoski, Z. Jia, and et al (2001). Crystal structure of an aldehyde reductase Y50F mutant-NADP complex and its implications for substrate binding. Proteins 44:12–19.
  • D. J. Yee, V. Balsanek, D. R. Bauman, T. M. Penning, and D. Sames. (2006). Fluorogenic metabolic probes for direct activity readout of redox enzymes: selective measurement of human AKR1C2 in living cells. Proc Natl Acad Sci U S A 103:13304–13309.
  • H. Yoshitake, M. Takahashi, H. Ishikawa, M. Nojima, H. Iwanari, A. Watanabe, and et al (2007). Aldo-keto reductase family 1, member B10 in uterine carcinomas: a potential risk factor of recurrence after surgical therapy in cervical cancer. Int J Gynecol Cancer 17:1300–1306.
  • E. Zeindl-Eberhart, S. Klugbauer, N. Dimitrijevic, P. R. Jungblut, S. Lamer, and H. M. Rabes. (2001). Proteome analysis of rat hepatomas: carcinogen-dependent tumor-associated protein variants. Electrophoresis 22:3009–3018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.