585
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Current trends in chemical modifications of magnetic nanoparticles for targeted drug delivery in cancer chemotherapy

ORCID Icon, ORCID Icon, , , &
Pages 205-224 | Received 06 Nov 2019, Accepted 03 Feb 2020, Published online: 21 Feb 2020

References

  • Acharya S, Sahoo SK. 2011. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev. 63(3):170–183.
  • Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, Erhardt W, Wagenpfeil S, Luebbe AS. 2000. Locoregional cancer treatment with magnetic drug targeting. Cancer Res. 60(23):6641–6648.
  • Alexiou C, Jurgons R, Schmid RJ, Bergemann C, Henke J, Erhard W, Huenges E, Parak F. 2003. Magnetic drug targeting—biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancer treatment. J Drug Target. 11(3):139–149.
  • Alexiou C, Schmid RJ, Jurgons R, Kremer M, Wanner G, Bergemann C, Huenges E, Nawroth T, Arnold W, Parak FG. 2006. Targeting cancer cells: magnetic nanoparticles as drug carriers. Eur Biophys J. 35(5):446–450
  • Alirezaie Alavijeh A, Barati M, Barati M, Abbasi Dehkordi H. 2019. The potential of magnetic nanoparticles for diagnosis and treatment of cancer based on body magnetic field and organ-on-the-chip. Adv Pharm Bull. 9(3):360–373.
  • Andrä W. 1998. Magnetic hyperthermia. In: Andrä W, Novak H, editors. Magnetism in medicine. Berlin: Wiley-VCH; p. 455–470.
  • Arias JL, López-Viota M, López-Viota J, Delgado ÁV. 2009. Development of iron/ethylcellulose (core/shell) nanoparticles loaded with diclofenac sodium for arthritis treatment. Int J Pharm. 382(1–2):270–276.
  • Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J. 2007. Magnetic nanoparticles for drug delivery. Nano Today. 2(3):22–32.
  • Avval ZM, Malekpour L, Raeisi F, Babapoor A, Mousavi SM, Hashemi SA, Salari M. 2019. Introduction of magnetic and supermagnetic nanoparticles in new approach of targeting drug delivery and cancer therapy application. Drug Metab Rev. DOI:10.1080/03602532.2019.1697282
  • Bahrani S, Hashemi SA, Mousavi SM, Azhdari R. 2019. Zinc-based metal organic frameworks as nontoxic and biodegradable platforms for biomedical applications: review study. Drug Metab Rev. 51(3):1–39.
  • Baldi G, Ravagli C, Mazzantini F, Loudos G, Adan J, Masa M, Psimadas D, Fragogeorgi EA, Locatelli E, Innocenti C, et al. 2014. In vivo anticancer evaluation of the hyperthermic efficacy of anti-human epidermal growth factor receptor-targeted PEG-based nanocarrier containing magnetic nanoparticles. Int J Nanomedicine. 9:3037–3056.
  • Banerjee SS, Chen D-H. 2008. Cyclodextrin conjugated magnetic colloidal nanoparticles as a nanocarrier for targeted anticancer drug delivery. Nanotechnology. 19(26):265602.
  • Basel M, Balivada S, Wang H, Shrestha TB, Seo GM, Pyle M, Ayabaweera G, Dani R, Koper OB, Tamura M, et al. 2012. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model. Int J Nanomedicine. 7:297.
  • Carrey J, Mehdaoui B, Respaud M. 2011. Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J Appl Phys. 109(8):83921.
  • Chen Z, Wu C, Zhang Z, Wu W, Wang X, Yu Z. 2018. Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. Chin Chem Lett. 29(11):1601–1608.
  • Chicheł A, Skowronek J, Kubaszewska M, Kanikowski M. 2007. Hyperthermia – description of a method and a review of clinical applications. Rep Pract Oncol Radiother. 12(5):267–275.
  • Cho H-Y, Lee T, Yoon J, Han Z, Rabie H, Lee K-B, Su WW, Choi J-W. 2018. Magnetic oleosome as a functional lipophilic drug carrier for cancer therapy. ACS Appl Mater Interfaces. 10(11):9301–9309.
  • Cho M, Cervadoro A, Ramirez M, Stigliano C, Brazdeikis A, Colvin V, Civera P, Key J, Decuzzi P. 2017. Assembly of iron oxide nanocubes for enhanced cancer hyperthermia and magnetic resonance imaging. Nanomaterials. 7(4):72.
  • Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek J. 2010. Magnetic nanoparticles and targeted drug delivering. Pharmacol Res. 62(2):144–149.
  • Ciofani G, Riggio C, Raffa V, Menciassi A, Cuschieri A. 2009. A bi-modal approach against cancer: magnetic alginate nanoparticles for combined chemotherapy and hyperthermia. Med Hypotheses. 73(1):80–82.
  • Corchero JL, Villaverde A. 2009. Biomedical applications of distally controlled magnetic nanoparticles. Trends Biotechnol. 27(8):468–476.
  • Das P, Colombo M, Prosperi D. 2019. Recent advances in magnetic fluid hyperthermia for cancer therapy. Colloids Surf B. 174:42–55.
  • Deng L, Ren J, Li J, Leng J, Qu Y, Lin C, Shi D. 2015. Magnetothermally responsive star-block copolymeric micelles for controlled drug delivery and enhanced thermo-chemotherapy. Nanoscale. 7(21):9655–9663.
  • Dewhirst MW, Tso C, Oliver R, Gustafson CS, Secomb TW, Gross JF. 1989. Morphologic and hemodynamic comparison of tumor and healing normal tissue microvasculature. Int J Radiat Oncol Biol Phys. 17(1):91–99.
  • Dilnawaz F, Singh A, Mohanty C, Sahoo SK. 2010. Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials. 31(13):3694–3706.
  • Drbohlavova J, Hrdy R, Adam V, Kizek R, Schneeweiss O, Hubalek J. 2009. Preparation and properties of various magnetic nanoparticles. Sensors. 9(4):2352–2362.
  • Du Y, Liu X, Liang Q, Liang X-J, Tian J. 2019. Optimization and design of magnetic ferrite nanoparticles with uniform tumor distribution for highly sensitive MRI/MPI performance and improved magnetic hyperthermia therapy. Nano Lett. 19(6):3618–3626.
  • Ebrahimi N, Rasoul-Amini S, Ebrahiminezhad A, Ghasemi Y, Gholami A, Seradj H. 2016. Comparative study on characteristics and cytotoxicity of bifunctional magnetic-silver nanostructures: synthesized using three different reducing agents. Acta Metall Sin (Engl Lett). 29(4):326–334.
  • Fang K, Song L, Gu Z, Yang F, Zhang Y, Gu N. 2015. Magnetic field activated drug release system based on magnetic PLGA microspheres for chemo-thermal therapy. Colloids Surf B. 136:712–720.
  • Farazi Z, Oromiehie A, Mousavi SM, Hashemi SA. 2018. Preparation of LDPE/EVA/PE-MA, nano clay blend composite in the stage potassium sorbate (KS) and garlic oil (GO) as an antimicrobial substance. Polym Sci. 4:1–12.
  • Gaihre B, Khil MS, Lee DR, Kim HY. 2009. Gelatin-coated magnetic iron oxide nanoparticles as carrier system: drug loading and in vitro drug release study. Int J Pharm. 365(1–2):180–189.
  • Gaur U, Sahoo SK, De TK, Ghosh PC, Maitra A, Ghosh P. 2000. Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system. Int J Pharm. 202(1–2):1–10.
  • Gerweck LE, Nygaard TG, Burlett M. 1979. Response of cells to hyperthermia under acute and chronic hypoxic conditions. Cancer Res. 39(3):966–972.
  • Gholami A, Ebrahiminezhad A, Abootalebi N, Ghasemi Y. 2018. Synergistic evaluation of functionalized magnetic nanoparticles and antibiotics against Staphylococcus aureus and Escherichia coli. Pharm Nanotechnol. 6(4):276–286.
  • Gholami A, Rasoul-Amini S, Ebrahiminezhad A, Abootalebi N-K, Niroumand U, Ebrahimi N, Ghasemi Y. 2016. Magnetic properties and antimicrobial effect of amino and lipoamino acid coated iron oxide nanoparticles. Minerva Biotechnol. 28(4):177–186.
  • Gholami A, Rasoul-Amini S, Ebrahiminezhad A, Seradj SH, Ghasemi Y. 2015. Lipoamino acid coated superparamagnetic iron oxide nanoparticles concentration and time dependently enhanced growth of human hepatocarcinoma cell line (Hep-G2). J Nanomater. 16(1):451405–451414.
  • Guisasola E, Asín L, Beola L, de la Fuente JM, Baeza A, Vallet-Regí M. 2018. Beyond traditional hyperthermia: in vivo cancer treatment with magnetic-responsive mesoporous silica nanocarriers. ACS Appl Mater Interfaces. 10(15):12518–12525.
  • Häfeli UO, Riffle JS, Harris-Shekhawat L, Carmichael-Baranauskas A, Mark F, Dailey JP, Bardenstein D. 2009. Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharm. 6(5):1417–1428.
  • Hashemi SA, Mousavi SM, Ramakrishna S. 2019. Effective removal of mercury, arsenic and lead from aqueous media using polyaniline–Fe3O4–silver diethyldithiocarbamate nanostructures. J Clean Prod. 239:118023.
  • Hayashi K, Nakamura M, Miki H, Ozaki S, Abe M, Matsumoto T, Sakamoto W, Yogo T, Ishimura K. 2014. Magnetically responsive smart nanoparticles for cancer treatment with a combination of magnetic hyperthermia and remote-control drug release. Theranostics. 4(8):834–844.
  • Hayashi K, Nakamura M, Sakamoto W, Yogo T, Miki H, Ozaki S, Abe M, Matsumoto T, Ishimura K. 2013. Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics. 3(6):366–376.
  • Hedayatnasab Z, Abnisa F, Daud W. 2017. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater Des. 123:174–196.
  • Hemery G, Genevois C, Couillaud F, Lacomme S, Gontier E, Ibarboure E, Lecommandoux S, Garanger E, Sandre O. 2017. Monocore vs. multicore magnetic iron oxide nanoparticles: uptake by glioblastoma cells and efficiency for magnetic hyperthermia. Mol Syst Des Eng. 2(5):629–639.
  • Hervault A, Thanh N. 2014. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale. 6(20):11553–11573.
  • Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, Riess H. 2002. The cellular and molecular basis of hyperthermia. Crit Rev Oncol/Hematol. 43(1):33–56.
  • Hu F, Neoh K, Kang E. 2006. Synthesis and in vitro anti-cancer evaluation of tamoxifen-loaded magnetite/PLLA composite nanoparticles. Biomaterials. 27(33):5725–5733.
  • Huang HS, Hainfeld JF. 2013. Intravenous magnetic nanoparticle cancer hyperthermia. Int J Nanomedicine. 8:2521–2532.
  • Huang W-C, Hu S-H, Liu K-H, Chen S-Y, Liu D-M. 2009. A flexible drug delivery chip for the magnetically-controlled release of anti-epileptic drugs. J Control Release. 139(3):221–228.
  • Issels RD. 2008. Hyperthermia adds to chemotherapy. Eur J Cancer. 44(17):2546–2554.
  • Ito A, Tanaka K, Honda H, Abe S, Yamaguchi H, Kobayashi T. 2003. Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles. J Biosci Bioeng. 96(4):364–369.
  • Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V. 2008. Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials. 29(29):4012–4021.
  • Jang J-t, Lee J, Seon J, Ju E, Kim M, Kim YI, Kim MG, Takemura Y, Arbab AS, Kang KW, et al. 2018. Giant magnetic heat induction of magnesium-doped γ-Fe2O3 superparamagnetic nanoparticles for completely killing tumors. Adv Mater. 30(6):1704362.
  • Jose J, Kumar R, Harilal S, Mathew GE, Prabhu A, Uddin MS, Aleya L, Kim H, Mathew B. 2019. Magnetic nanoparticles for hyperthermia in cancer treatment: an emerging tool. Environ Sci Pollut Res. DOI:10.1007/s11356-019-07231-2
  • Jurek PM, Zabłocki K, Waśko U, Mazurek MP, Otlewski J, Jeleń F. 2017. Anti-FGFR1 aptamer-tagged superparamagnetic conjugates for anticancer hyperthermia therapy. Int J Nanomedicine. 12:2941–2950.
  • Jurgons R, Seliger C, Hilpert A, Trahms L, Odenbach S, Alexiou C. 2006. Drug loaded magnetic nanoparticles for cancer therapy. J Phys Condens Matter. 18(38):S2893.
  • Kerr JF, Winterford CM, Harmon BV. 1994. Apoptosis. Its significance in cancer and cancer therapy. Cancer. 73(8):2013–2026.
  • Kim H-C, Kim E, Jeong SW, Ha T-L, Park S-I, Lee SG, Lee SJ, Lee SW. 2015. Magnetic nanoparticle-conjugated polymeric micelles for combined hyperthermia and chemotherapy. Nanoscale. 7(39):16470–16480.
  • Kim YJ, Ebara M, Aoyagi T. 2013. A smart hyperthermia nanofiber with switchable drug release for inducing cancer apoptosis. Adv Funct Mater. 23(46):5753–5761.
  • Kobayashi H, Watanabe R, Choyke PL. 2014. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics. 4(1):81–89.
  • Kolhatkar AG, Jamison AC, Litvinov D, Willson RC, Lee TR. 2013. Tuning the magnetic properties of nanoparticles. Int J Mol Sci. 14(8):15977–16009.
  • Kumar S, Daverey A, Khalilzad-Sharghi V, Sahu NK, Kidambi S, Othman SF, Bahadur D. 2015. Theranostic fluorescent silica encapsulated magnetic nanoassemblies for in vitro MRI imaging and hyperthermia. RSC Adv. 5(66):53180–53188.
  • Lemine O. 2019. Magnetic hyperthermia therapy using hybrid magnetic nanostructures. In: Hybrid nanostructures for cancer theranostics. Amsterdam: Elsevier; p. 125–138.
  • Lepock JR. 2003. Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage. Int J Hyperthermia. 19(3):252–266.
  • Liao S-H, Liu C-H, Bastakoti BP, Suzuki N, Chang Y, Yamauchi Y, Lin F-H, Wu KC. 2015. Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia. Int J Nanomedicine. 10:3315–3327.
  • Lin M, Zhang D, Huang J, Zhang J, Xiao W, Yu H, Zhang L, Ye J. 2013. The anti-hepatoma effect of nanosized Mn–Zn ferrite magnetic fluid hyperthermia associated with radiation in vitro and in vivo. Nanotechnology. 24(25):255101.
  • Ling Y, Tang X, Wang F, Zhou X, Wang R, Deng L, Shang T, Liang B, Li P, Ran H, et al. 2017. Highly efficient magnetic hyperthermia ablation of tumors using injectable polymethylmethacrylate–Fe3O4. RSC Adv. 7(5):2913–2918.
  • Liu XL, Ng CT, Chandrasekharan P, Yang HT, Zhao LY, Peng E, Lv YB, Xiao W, Fang J, Yi JB, et al. 2016. Synthesis of ferromagnetic Fe0.6Mn0.4O nanoflowers as a new class of magnetic theranostic platform for in vivo T1-T2 dual-mode magnetic resonance imaging and magnetic hyperthermia therapy. Adv Healthcare Mater. 5(16):2092–2104.
  • Liu XL, Yang Y, Ng CT, Zhao LY, Zhang Y, Bay BH, Fan HM, Ding J. 2015. Magnetic vortex nanorings: a new class of hyperthermia agent for highly efficient in vivo regression of tumors. Adv Mater. 27(11):1939–1944.
  • Maeda H, Nakamura H, Fang J. 2013. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 65(1):71–79.
  • Mahmoudi M, Simchi A, Imani M, Shokrgozar MA, Milani AS, Häfeli UO, Stroeve P. 2010. A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf B. 75(1):300–309.
  • Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Feussner A, von Deimling A, Waldoefner N, Felix R, et al. 2007. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol. 81(1):53–60.
  • Majeed J, Pradhan L, Ningthoujam RS, Vatsa RK, Bahadur D, Tyagi AK. 2014. Enhanced specific absorption rate in silanol functionalized Fe3O4 core–shell nanoparticles: study of Fe leaching in Fe3O4 and hyperthermia in L929 and HeLa cells. Colloids Surf B. 122:396–403.
  • Makridis A, Topouridou K, Tziomaki M, Sakellari D, Simeonidis K, Angelakeris M, Yavropoulou MP, Yovos JG, Kalogirou O. 2014. In vitro application of Mn-ferrite nanoparticles as novel magnetic hyperthermia agents. J Mater Chem B. 2(47):8390–8398.
  • Matsumura Y, Maeda H. 1986. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46(12 Pt 1):6387–6392.
  • McBain SC, Yiu HH, Dobson J. 2008. Magnetic nanoparticles for gene and drug delivery. Int J Nanomedicine. 3(2):169–180.
  • Mondal S, Manivasagan P, Bharathiraja S, Santha Moorthy M, Nguyen V, Kim H, Nam S, Lee K, Oh J. 2017. Hydroxyapatite coated iron oxide nanoparticles: a promising nanomaterial for magnetic hyperthermia cancer treatment. Nanomaterials. 7(12):426.
  • Monfared M, Taghizadeh S, Zare-Hoseinabadi A, Mousavi SM, Hashemi SA, Ranjbar S, Amani AM. 2019. Emerging frontiers in drug release control by core–shell nanofibers: a review. Drug Metab Rev. 51(4):589–611.
  • Mornet S, Vasseur S, Grasset F, Duguet E. 2004. Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem. 14(14):2161–2175.
  • Mousavi S, Hashemi S, Zarei M, Amani A, Babapoor A. 2018. Nanosensors for chemical and biological and medical applications. Med Chem. 8(8):205.
  • Mousavi SM, Hashemi SA, Ramakrishna S, Esmaeili H, Bahrani S, Koosha M, Babapoor A. 2019. Green synthesis of supermagnetic Fe3O4–MgO nanoparticles via Nutmeg essential oil toward superior anti-bacterial and anti-fungal performance. J Drug Deliv Sci Technol. 54:101352.
  • Mousavi SM, Hashemi SA, Zarei M, Bahrani S, Savardashtaki A, Esmaeili H, Lai CW, Mazraedoost S, Abassi M, Ramavandi B. 2020. Data on cytotoxic and antibacterial activity of synthesized Fe3O4 nanoparticles using Malva sylvestris. Data Brief. 28:104929.
  • Mousavi SM, Soroshnia S, Hashemi SA, Babapoor A, Ghasemi Y, Savardashtaki A, Amani AM. 2019. Graphene nano-ribbon based high potential and efficiency for DNA, cancer therapy and drug delivery applications. Drug Metab Rev. 51(1):91–104.
  • Nedelcu G. 2008. Magnetic nanoparticles impact on tumoral cells in the treatment by magnetic fluid hyperthermia. Dig J Nanomater Biostruct. 3(3):103–107.
  • Pala K, Serwotka A, Jeleń F, Jakimowicz P, Otlewski J. 2014. Tumor-specific hyperthermia with aptamer-tagged superparamagnetic nanoparticles. Int J Nanomedicine. 9:67–76.
  • Pankhurst QA, Connolly J, Jones S, Dobson J. 2003. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 36(13):R167–R181.
  • Parhi P, Mohanty C, Sahoo SK. 2012. Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov Today. 17(17–18):1044–1052.
  • Parvin S, Matsui J, Sato E, Miyashita T. 2007. Side-chain effect on Langmuir and Langmuir–Blodgett film properties of poly(N-alkylmethacrylamide)-coated magnetic nanoparticle. J Colloid Interface Sci. 313(1):128–134.
  • Pouponneau P, Leroux J-C, Martel S. 2009. Magnetic nanoparticles encapsulated into biodegradable microparticles steered with an upgraded magnetic resonance imaging system for tumor chemoembolization. Biomaterials. 30(31):6327–6332.
  • Qu Y, Li J, Ren J, Leng J, Lin C, Shi D. 2014a. Enhanced magnetic fluid hyperthermia by micellar magnetic nanoclusters composed of MnxZn1–xFe2O4 nanoparticles for induced tumor cell apoptosis. ACS Appl Mater Interfaces. 6(19):16867–16879.
  • Qu Y, Li J, Ren J, Leng J, Lin C, Shi D. 2014b. Enhanced synergism of thermo-chemotherapy by combining highly efficient magnetic hyperthermia with magnetothermally-facilitated drug release. Nanoscale. 6(21):12408–12413.
  • Raee MJ, Ebrahiminezhad A, Gholami A, Ghoshoon MB, Ghasemi Y. 2018. Magnetic immobilization of recombinant E. coli producing extracellular asparaginase: an effective way to intensify downstream process. Sep Sci Technol. 53(9):1397–1404.
  • Rana S, Jadhav NV, Barick K, Pandey B, Hassan P. 2014. Polyaniline shell cross-linked Fe3O4 magnetic nanoparticles for heat activated killing of cancer cells. Dalton Trans. 43(32):12263–12271.
  • Reshmi G, Kumar PM, Malathi M. 2009. Preparation, characterization and dielectric studies on carbonyl iron/cellulose acetate hydrogen phthalate core/shell nanoparticles for drug delivery applications. Int J Pharm. 365(1–2):131–135.
  • Roque AC, Bicho A, Batalha IL, Cardoso AS, Hussain A. 2009. Biocompatible and bioactive gum Arabic coated iron oxide magnetic nanoparticles. J Biotechnol. 144(4):313–320.
  • Sadhukha T, Wiedmann TS, Panyam J. 2013. Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials. 34(21):5163–5171.
  • Sahoo SK, Misra R, Parveen S. 2017. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine. 8:147–166.
  • Shevtsov M, Multhoff G. 2016. Recent developments of magnetic nanoparticles for theranostics of brain tumor. Curr Drug Metab. 17(8):737–744.
  • Shinkai M. 2002. Functional magnetic particles for medical application. J Biosci Bioeng. 94(6):606–613.
  • Shubayev VI, Pisanic IIT, Jin S. 2009. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev. 61(6):467–477.
  • Siddiqui M, Nizamuddin S, Baloch HA, Mubarak N, Al-Ali M, Mazari SA, Bhutto A, Abro R, Srinivasan M, Griffin G. 2019. Fabrication of advance magnetic carbon nano-materials and their potential applications: a review. J Environ Chem Eng. 7(1):102812.
  • Siemann DW. 2011. The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents. Cancer Treatment Rev. 37(1):63–74.
  • Singh A, Dilnawaz F, Mewar S, Sharma U, Jagannathan N, Sahoo SK. 2011. Composite polymeric magnetic nanoparticles for co-delivery of hydrophobic and hydrophilic anticancer drugs and MRI imaging for cancer therapy. ACS Appl Mater Interfaces. 3(3):842–856.
  • Song CW. 1984. Effect of local hyperthermia on blood flow and microenvironment: a review. Cancer Res. 44(10 Suppl.):4721s–4730s.
  • Song CW, Rhee JG, Levitt SH. 1980. Blood flow in normal tissues and tumors during hyperthermia. J Natl Cancer Inst. 64(1):119–124.
  • Song M, Zhang Y, Hu S, Song L, Dong J, Chen Z, Gu N. 2012. Influence of morphology and surface exchange reaction on magnetic properties of monodisperse magnetite nanoparticles. Colloids Surf A. 408:114–121
  • Storm FK, Harrison WH, Elliott RS, Morton DL. 1979. Normal tissue and solid tumor effects of hyperthermia in animal models and clinical trials. Cancer Res. 39(6 Pt 2):2245–2251.
  • Sun C, Lee JS, Zhang M. 2008. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 60(11):1252–1265.
  • Wang F, Yang Y, Ling Y, Liu J, Cai X, Zhou X, Tang X, Liang B, Chen Y, Chen H, et al. 2017. Injectable and thermally contractible hydroxypropyl methyl cellulose/Fe3O4 for magnetic hyperthermia ablation of tumors. Biomaterials. 128:84–93.
  • Wang S, Zhou Y, Sun W. 2009. Preparation and characterization of antifouling thermosensitive magnetic nanoparticles for applications in biomedicine. Mater Sci Eng C. 29(4):1196–1200.
  • Wang X, Wang L, He X, Zhang Y, Chen L. 2009. A molecularly imprinted polymer-coated nanocomposite of magnetic nanoparticles for estrone recognition. Talanta. 78(2):327–332.
  • Wiekhorst F, Jurgons R, Eberbeck D, Sander T, Steinhoff U, Hartwig S, Alexiou C, Trahms L. 2005. SQUID system with integrated superconducting shield for monitoring of drug targeting with magnetic nanoparticles in animals. Biomed Tech. 50(2):609–610.
  • Wu H, Song L, Chen L, Huang Y, Wu Y, Zang F, An Y, Lyu H, Ma M, Chen J, et al. 2017. Injectable thermosensitive magnetic nanoemulsion hydrogel for multimodal-imaging-guided accurate thermoablative cancer therapy. Nanoscale. 9(42):16175–16182.
  • Wydra RJ, Rychahou PG, Evers BM, Anderson KW, Dziubla TD, Hilt JZ. 2015. The role of ROS generation from magnetic nanoparticles in an alternating magnetic field on cytotoxicity. Acta Biomater. 25:284–290.
  • Xie L, Jin W, Chen H, Zhang Q. 2019. Superparamagnetic iron oxide nanoparticles for cancer diagnosis and therapy. J Biomed Nanotechnol. 15(2):215–416.
  • Xie J, Zhang Y, Yan C, Song L, Wen S, Zang F, Chen G, Ding Q, Yan C, Gu N. 2014. High-performance PEGylated Mn–Zn ferrite nanocrystals as a passive-targeted agent for magnetically induced cancer theranostics. Biomaterials. 35(33):9126–9136.
  • Xing W, Zhuo S-P, Gao X-l. 2009. α-Fe-incorporated nanoporous carbon with magnetic properties. Mater Lett. 63(13–14):1177–1179.
  • Xu C, Zheng Y, Gao W, Xu J, Zuo G, Chen Y, Zhao M, Li J, Song J, Zhang N. 2015. Magnetic hyperthermia ablation of tumors using injectable Fe3O4/calcium phosphate cement. ACS Appl Mater Interfaces. 7(25):13866–13875.
  • Xu Y, Zhu Y, Kaskel S. 2015. A smart magnetic nanosystem with controllable drug release and hyperthermia for potential cancer therapy. RSC Adv. 5(121):99875–99883.
  • Zakeri A, Amin Jadidi Kouhbanani M, Beheshtkhoo N, Beigi V, Mousavi SM, Hashemi SA, Karimi Zade A, Amani A, Savardashtaki A, Mirzaei E. 2018. Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon. Nano Rev Exp. 9:1488497.
  • Zboril R, Mashlan M, Petridis D. 2002. Iron (III) oxides from thermal processes synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications. Chem Mater. 14(3):969–982.
  • Zhai Y, Xie H, Gu H. 2009. Effects of hyperthermia with dextran magnetic fluid on the growth of grafted H22 tumor in mice. Int J Hyperthermia. 25(1):65–71.
  • Zhou L, Yuan J, Yuan W, Sui X, Wu S, Li Z, Shen D. 2009. Synthesis, characterization, and controllable drug release of pH-sensitive hybrid magnetic nanoparticles. J Magn Magn Mater. 321(18):2799–2804.
  • Zhou L, Yuan J, Yuan W, Zhou M, Wu S, Li Z, Xing X, Shen D. 2009. Synthesis and characterization of multi-functional hybrid magnetite nanoparticles with biodegradability, superparamagnetism, and fluorescence. Mater Lett. 63(18–19):1567–1570.
  • Zhu X, Zhang H, Huang H, Zhang Y, Hou L, Zhang Z. 2015. Functionalized graphene oxide-based thermosensitive hydrogel for magnetic hyperthermia therapy on tumors. Nanotechnology. 26(36):365103.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.