1,725
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

The potential impact of CYP and UGT drug-metabolizing enzymes on brain target site drug exposure

, &
Pages 1-30 | Received 27 Oct 2023, Accepted 15 Dec 2023, Published online: 10 Jan 2024

References

  • Abdullah NH, Ismail S. 2018. Inhibition of UGT2B7 enzyme activity in human and rat liver microsomes by herbal constituents. Molecules. 23(10):2696. doi: 10.3390/molecules23102696.
  • Agarwal V, Kommaddi RP, Valli K, Ryder D, Hyde TM, Kleinman JE, Strobel HW, Ravindranath V. 2008. Drug metabolism in human brain: high levels of cytochrome P4503A43 in brain and metabolism of anti-anxiety drug alprazolam to its active metabolite. PLOS One. 3(6):e2337. doi: 10.1371/journal.pone.0002337.
  • Albertolle ME, Phan TT, Pozzi A, Guengerich FP. 2018. Sulfenylation of human liver and kidney microsomal cytochromes P450 and other drug-metabolizing enzymes as a response to redox alteration. Mol Cell Proteomics. 17(5):889–900. doi: 10.1074/mcp.RA117.000382.
  • Alkayed NJ, Narayanan J, Gebremedhin D, Medhora M, Roman RJ, Harder DR. 1996. Molecular characterization of an arachidonic acid epoxygenase in rat brain astrocytes. Stroke. 27(5):971–979. doi: 10.1161/01.str.27.5.971.
  • Almazroo OA, Miah MK, Venkataramanan R. 2017. Drug metabolism in the liver. Clin Liver Dis. 21(1):1–20. doi: 10.1016/j.cld.2016.08.001.
  • Alves G, Kurz M, Lie SA, Larsen JP. 2004. Cigarette smoking in Parkinson’s disease: influence on disease progression. Mov Disord. 19(9):1087–1092. doi: 10.1002/mds.20117.
  • Bebia Z, Buch SC, Wilson JW, Frye RF, Romkes M, Cecchetti A, Chaves-Gnecco D, Branch RA. 2004. Bioequivalence revisited: influence of age and sex on CYP enzymes. Clin Pharmacol Ther. 76(6):618–627. doi: 10.1016/j.clpt.2004.08.021.
  • Bertilsson L, Dahl M-L, Dalén P, Al-Shurbaji A. 2002. Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol. 53(2):111–122. doi: 10.1046/j.0306-5251.2001.01548.x.
  • Bhagwat SV, Boyd MR, Ravindranath V. 2000. Multiple forms of cytochrome P450 and associated monooxygenase activities in human brain mitochondria. Biochem Pharmacol. 59(5):573–582. doi: 10.1016/s0006-2952(99)00362-7.
  • Bhamre S, Anandatheerthavarada HK, Shankar SK, Ravindranath V. 1992. Microsomal cytochrome P450 in human brain regions. Biochem Pharmacol. 44(6):1223–1225. doi: 10.1016/0006-2952(92)90390-5.
  • Bibi Z. 2008. Role of cytochrome P450 in drug interactions. Nutr Metab. 5(1):27. doi: 10.1186/1743-7075-5-27.
  • Booth Depaz IM, Toselli F, Wilce PA, Gillam EM. 2015. Differential expression of cytochrome P450 enzymes from the CYP2C subfamily in the human brain. Drug Metab Dispos. 43(3):353–357. doi: 10.1124/dmd.114.061242.
  • Boussadia B, Ghosh C, Plaud C, Pascussi JM, de Bock F, Rousset MC, Janigro D, Marchi N. 2014. Effect of status epilepticus and antiepileptic drugs on CYP2E1 brain expression. Neuroscience. 281:124–134. doi: 10.1016/j.neuroscience.2014.09.055.
  • Britto MR, Wedlund PJ. 1992. Cytochrome P-450 in the brain. Potential evolutionary and therapeutic relevance of localization of drug-metabolizing enzymes. Drug Metab Dispos. 20(3):446–450.
  • Brodie MJ, Mintzer S, Pack AM, Gidal BE, Vecht CJ, Schmidt D. 2013. Enzyme induction with antiepileptic drugs: cause for concern? Epilepsia. 54(1):11–27. doi: 10.1111/j.1528-1167.2012.03671.x.
  • Buckley DB, Klaassen CD. 2007. Tissue- and gender-specific mRNA expression of UDP-glucuronosyltransferases (UGTs) in mice. Drug Metab Dispos. 35(1):121–127. doi: 10.1124/dmd.106.012070.
  • Burchell B, Hume R. 1999. Molecular genetic basis of Gilbert’s syndrome. J Gastroenterol Hepatol. 14(10):960–966. doi: 10.1046/j.1440-1746.1999.01984.x.
  • Carpenter C, Zestos AG, Altshuler R, Sorenson RJ, Guptaroy B, Showalter HD, Kennedy RT, Jutkiewicz E, Gnegy ME. 2017. Direct and systemic administration of a CNS-permeant tamoxifen analog reduces amphetamine-induced dopamine release and reinforcing effects. Neuropsychopharmacology. 42(10):1940–1949. doi: 10.1038/npp.2017.95.
  • Chattopadhyay M, Chowdhury AR, Feng T, Assenmacher CA, Radaelli E, Guengerich FP, Avadhani NG. 2019. Mitochondrially targeted cytochrome P450 2D6 is involved in monomethylamine-induced neuronal damage in mouse models. J Biol Chem. 294(26):10336–10348. doi: 10.1074/jbc.RA119.008848.
  • Chen J, Zheng H, Zeng S, Xie C, Li X, Yan T, Gong X, Lu L, Qi X, Wang Y, et al. 2017. Profiles and gender-specifics of UDP-glucuronosyltransferases and sulfotransferases expressions in the major metabolic organs of wild-type and ­efflux transporter knockout FVB mice. Mol Pharm. 14(9):2967–2976. doi: 10.1021/acs.molpharmaceut.7b00435.
  • Chen ZR, Irvine RJ, Bochner F, Somogyi AA. 1990. Morphine formation from codeine in rat brain: a possible mechanism of codeine analgesia. Life Sci. 46(15):1067–1074. doi: 10.1016/0024-3205(90)90415-n.
  • Chik MW, Hazalin N, Singh GKS. 2022. Regulation of phase I and phase II neurosteroid enzymes in the hippocampus of an Alzheimer’s disease rat model: a focus on sulphotransferases and UDP-glucuronosyltransferases. Steroids. 184:109035. doi: 10.1016/j.steroids.2022.109035.
  • Chinta SJ, Pai HV, Upadhya SC, Boyd MR, Ravindranath V. 2002. Constitutive expression and localization of the major drug metabolizing enzyme, cytochrome P4502D in human brain. Brain Res Mol Brain Res. 103 (1–2):49–61. doi: 10.1016/s0169-328x(02)00177-8.
  • Choudhary D, Jansson I, Stoilov I, Sarfarazi M, Schenkman JB. 2005. Expression patterns of mouse and human CYP orthologs (families 1–4) during development and in different adult tissues. Arch Biochem Biophys. 436(1):50–61. doi: 10.1016/j.abb.2005.02.001.
  • Christensen C, Þorsteinsson H, Maier VH, Karlsson KÆ. 2020. Multi-parameter behavioral phenotyping of the MPP + ­model of Parkinson’s disease in zebrafish. Front Behav Neurosci. 14:623924. doi: 10.3389/fnbeh.2020.623924.
  • Ciotti M, Marrone A, Potter C, Owens IS. 1997. Genetic polymorphism in the human UGT1A6 UDP-glucuronosyltransferase: pharmacological implications. Pharmacogenetics. 7(6):485–495.
  • Cordes H, Rapp H. 2023. Gene expression databases for physiologically based pharmacokinetic modeling of humans and animal species. CPT Pharmacometr Syst Pharmacol. 12(3):311–319. doi: 10.1002/psp4.12904.
  • Court MH, Zhang X, Ding X, Yee KK, Hesse LM, Finel M. 2012. Quantitative distribution of mRNAs encoding the 19 human UDP-glucuronosyltransferase enzymes in 26 adult and 3 fetal tissues. Xenobiotica. 42(3):266–277. doi: 10.3109/00498254.2011.618954.
  • Cresteil T, Célier C, Kremers P, Flinois JP, Beaune P, Leroux JP. 1983. Induction of drug-metabolizing enzymes by tricyclic antidepressants in human liver: characterization and partial resolution of cytochromes P-450. Br J Clin Pharmacol. 16(6):651–657. doi: 10.1111/j.1365-2125.1983.tb02236.x.
  • Dauchy S, Dutheil F, Weaver RJ, Chassoux F, Daumas-Duport C, Couraud PO, Scherrmann JM, De Waziers I, Decleves X. 2008. ABC transporters, cytochromes P450 and their main transcription factors: expression at the human blood–brain barrier. J Neurochem. 107(6):1518–1528. doi: 10.1111/j.1471-4159.2008.05720.x.
  • De Gregori S, De Gregori M, Ranzani GN, Allegri M, Minella C, Regazzi M. 2012. Morphine metabolism, transport and brain disposition. Metab Brain Dis. 27(1):1–5. doi: 10.1007/s11011-011-9274-6.
  • Deardorff OG, Jenne V, Leonard L, Ellingrod VL. 2018. Making sense of CYP2D6 and CYP1A2 genotype vs phenotype. Curr Psychiatry. 17:41–45.
  • Decleves X, Jacob A, Yousif S, Shawahna R, Potin S, Scherrmann JM. 2011. Interplay of drug metabolizing CYP450 enzymes and ABC transporters in the blood–brain barrier. Curr Drug Metab. 12(8):732–741. doi: 10.2174/138920011798357024.
  • Dey A, Jones JE, Nebert DW. 1999. Tissue- and cell type-specific expression of cytochrome P450 1A1 and cytochrome P450 1A2 mRNA in the mouse localized in situ hybridization. Biochem Pharmacol. 58(3):525–537. doi: 10.1016/s0006-2952(99)00110-0.
  • Ding X, Kaminsky LS. 2003. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol. 43(1):149–173. doi: 10.1146/annurev.pharmtox.43.100901.140251.
  • Dona AC, Kyriakides M, Scott F, Shephard EA, Varshavi D, Veselkov K, Everett JR. 2016. A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments. Comput Struct Biotechnol J. 14:135–153. doi: 10.1016/j.csbj.2016.02.005.
  • Dutheil F, Beaune P, Loriot MA. 2008. Xenobiotic metabolizing enzymes in the central nervous system: contribution of cytochrome P450 enzymes in normal and pathological human brain. Biochimie. 90(3):426–436. doi: 10.1016/j.biochi.2007.10.007.
  • Dutheil F, Dauchy S, Diry M, Sazdovitch V, Cloarec O, Mellottée L, Bièche I, Ingelman-Sundberg M, Flinois J-P, de Waziers I, et al. 2009. Xenobiotic-metabolizing enzymes and transporters in the normal human brain: regional and cellular mapping as a basis for putative roles in cerebral function. Drug Metab Dispos. 37(7):1528–1538. doi: 10.1124/dmd.109.027011.
  • Eichelbaum M, Ingelman-Sundberg M, Evans WE. 2006. Pharmacogenomics and individualized drug therapy. Annu Rev Med. 57(1):119–137. doi: 10.1146/annurev.med.56.082103.104724.
  • Elbaz A, Levecque C, Clavel J, Vidal JS, Richard F, Amouyel P, Alpérovitch A, Chartier-Harlin MC, Tzourio C. 2004. CYP2D6 polymorphism, pesticide exposure, and Parkinson’s disease. Ann Neurol. 55(3):430–434. doi: 10.1002/ana.20051.
  • Engelhardt B, Sorokin L. 2009. The blood–brain and the blood–cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol. 31(4):497–511. doi: 10.1007/s00281-009-0177-0.
  • Eyal S, Hsiao P, Unadkat JD. 2009. Drug interactions at the blood–brain barrier: fact or fantasy? Pharmacol Ther. 123(1):80–104. doi: 10.1016/j.pharmthera.2009.03.017.
  • Fanni D, Ambu R, Gerosa C, Nemolato S, Castagnola M, Van Eyken P, Faa G, Fanos V. 2014. Cytochrome P450 genetic polymorphism in neonatal drug metabolism: role and practical consequences towards a new drug culture in neonatology. Int J Immunopathol Pharmacol. 27(1):5–13. doi: 10.1177/039463201402700102.
  • Fanni D, Pinna F, Gerosa C, Paribello P, Carpiniello B, Faa G, Manchia M. 2021. Anatomical distribution and expression of CYP in humans: neuropharmacological implications. Drug Dev Res. 82(5):628–667. doi: 10.1002/ddr.21778.
  • Farin FM, Omiecinski CJ. 1993. Regiospecific expression of ­cytochrome P-450s and microsomal epoxide hydrolase in human brain tissue. J Toxicol Environ Health. 40(2–3):317–335. doi: 10.1080/15287399309531797.
  • Ferguson CS, Tyndale RF. 2011. Cytochrome P450 enzymes in the brain: emerging evidence of biological significance. Trends Pharmacol Sci. 32(12):708–714. doi: 10.1016/j.tips.2011.08.005.
  • Fernandes TB, Damião MCF, Polli M, Parise-Filho R. 2016. Analysis of the applicability and use of Lipinski’s rule for central nervous system drugs. Lett Drug Des Discov. 13(10):999–1006. doi: 10.2174/1570180813666160622092839.
  • Frommer WB, Davidson MW, Campbell RE. 2009. Genetically encoded biosensors based on engineered fluorescent proteins. Chem Soc Rev. 38(10):2833–2841. doi: 10.1039/b907749a.
  • Funae Y, Kishimoto W, Cho T, Niwa T, Hiroi T. 2003. CYP2D in the brain. Drug Metab Pharmacokinet. 18(6):337–349. doi: 10.2133/dmpk.18.337.
  • Galis ZS, Sukhova GK, Lark MW, Libby P. 1994. Increased ­expression of matrix metalloproteinases and matrix ­degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest. 94(6):2493–2503. doi: 10.1172/JCI117619.
  • Gambaro SE, Robert MC, Tiribelli C, Gazzin S. 2016. Role of brain cytochrome P450 mono-oxygenases in bilirubin oxidation-specific induction and activity. Arch Toxicol. 90(2):279–290. doi: 10.1007/s00204-014-1394-4.
  • Ghersi-Egea JF, Leninger-Muller B, Suleman G, Siest G, Minn A. 1994. Localization of drug-metabolizing enzyme activities to blood–brain interfaces and circumventricular ­organs. J Neurochem. 62(3):1089–1096. doi: 10.1046/j.1471-4159.1994.62031089.x.
  • Ghosh C, Hossain M, Puvenna V, Martinez-Gonzalez J, Alexopolous A, Janigro D, Marchi N. 2013. Expression and functional relevance of UGT1A4 in a cohort of human drug-resistant epileptic brains. Epilepsia. 54(9):1562–1570. doi: 10.1111/epi.12318.
  • Ghosh C, Hossain M, Solanki J, Dadas A, Marchi N, Janigro D. 2016. Pathophysiological implications of neurovascular P450 in brain disorders. Drug Discov Today. 21(10):1609–1619. doi: 10.1016/j.drudis.2016.06.004.
  • Gilbert EA, Edwards RJ, Boobis AR, Rose S, Jenner P. 2003. Differential expression of cytochrome P450 enzymes in cultured and intact foetal rat ventral mesencephalon. J Neural Transm. 110(10):1091–1101. doi: 10.1007/s00702-003-0029-3.
  • Gonzalez FJ, Matsunaga T, Nagata K, Meyer UA, Nebert DW, Pastewka J, Kozak CA, Gillette J, Gelboin HV, Hardwick JP. 1987. Debrisoquine 4-hydroxylase: characterization of a new P450 gene subfamily, regulation, chromosomal mapping, and molecular analysis of the DA rat polymorphism. DNA. 6(2):149–161. doi: 10.1089/dna.1987.6.149.
  • Gradinaru D, Minn AL, Artur Y, Minn A, Heydel JM. 2009. Drug metabolizing enzyme expression in rat choroid plexus: effects of in vivo xenobiotics treatment. Arch Toxicol. 83(6):581–586. doi: 10.1007/s00204-008-0386-7.
  • Granberg L, Ostergren A, Brandt I, Brittebo EB. 2003. CYP1A1 and CYP1B1 in blood–brain interfaces: CYP1A1-dependent bioactivation of 7,12-dimethylbenz(a)anthracene in endothelial cells. Drug Metab Dispos. 31(3):259–265. doi: 10.1124/dmd.31.3.259.
  • Greenblatt DJ, Wright CE. 1993. Clinical pharmacokinetics of alprazolam: therapeutic implications. Clin Pharmacokinet. 24(6):453–471. doi: 10.2165/00003088-199324060-00003.
  • Greis KD. 2007. Mass spectrometry for enzyme assays and inhibitor screening: an emerging application in pharmaceutical research. Mass Spectrom Rev. 26(3):324–339. doi: 10.1002/mas.20127.
  • Guillemette C, Ritter JK, Auyeung DJ, Kessler FK, Housman DE. 2000. Structural heterogeneity at the UDP-glucuronosyltransferase 1 locus: functional consequences of three novel missense mutations in the human UGT1A7 gene. Pharmacogenet Genomics. 10(7):629–644. doi: 10.1097/00008571-200010000-00006.
  • Gundert-Remy U, Bernauer U, Blömeke B, Döring B, Fabian E, Goebel C, Hessel S, Jäckh C, Lampen A, Oesch F, et al. 2014. Extrahepatic metabolism at the body’s internal–external interfaces. Drug Metab Rev. 46(3):291–324. doi: 10.3109/03602532.2014.900565.
  • Haduch A, Bromek E, Daniel WA. 2011. The effect of psychotropic drugs on cytochrome P450 2D (CYP2D) in rat brain. Eur J Pharmacol. 651(1–3):51–58. doi: 10.1016/j.ejphar.2010.10.077.
  • Haduch A, Danek PJ, Kuban W, Pukło R, Alenina N, Gołębiowska J, Popik P, Bader M, Daniel WA. 2022. Cytochrome P450 2D (CYP2D) enzyme dysfunction associated with aging and serotonin deficiency in the brain and liver of female Dark Agouti rats. Neurochem Int. 152:105223. doi: 10.1016/j.neuint.2021.105223.
  • Haduch A, Rysz M, Papp M, Daniel WA. 2018. The activity of brain and liver cytochrome P450 2D (CYP2D) is differently affected by antidepressants in the chronic mild stress (CMS) model of depression in the rat. Biochem Pharmacol. 156:398–405. doi: 10.1016/j.bcp.2018.09.005.
  • Hagemeyer CE, Rosenbrock H, Ditter M, Knoth R, Volk B. 2003. Predominantly neuronal expression of cytochrome P450 isoforms CYP3A11 and CYP3A13 in mouse brain. Neuroscience. 117(3):521–529. doi: 10.1016/s0306-4522(02)00955-7.
  • Heydel JM, Holsztynska EJ, Legendre A, Thiebaud N, Artur Y, Le Bon AM. 2010. UDP-glucuronosyltransferases (UGTs) in neuro-olfactory tissues: expression, regulation, and function. Drug Metab Rev. 42(1):74–97. doi: 10.3109/03602530903208363.
  • Huang P, Rannug A, Ahlbom E, Håkansson H, Ceccatelli S. 2000. Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the expression of cytochrome P450 1A1, the aryl hydrocarbon receptor, and the aryl hydrocarbon receptor nuclear translocator in rat brain and pituitary. Toxicol Appl Pharmacol. 169(2):159–167. doi: 10.1006/taap.2000.9064.
  • Iba MM, Storch A, Ghosal A, Bennett S, Reuhl KR, Lowndes HE. 2003. Constitutive and inducible levels of CYP1A1 and CYP1A2 in rat cerebral cortex and cerebellum. Arch Toxicol. 77(10):547–554. doi: 10.1007/s00204-003-0488-1.
  • Imaoka S, Hashizume T, Funae Y. 2005. Localization of rat ­cytochrome P450 in various tissues and comparison of ­arachidonic acid metabolism by rat P450 with that by ­human P450 orthologs. Drug Metab Pharmacokinet. 20(6):478–484. doi: 10.2133/dmpk.20.478.
  • Ingelman-Sundberg M. 2004a. Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. Naunyn Schmiedebergs Arch Pharmacol. 369(1):89–104. doi: 10.1007/s00210-003-0819-z.
  • Ingelman-Sundberg M. 2004b. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol Sci. 25(4):193–200. doi: 10.1016/j.tips.2004.02.007.
  • Ingelman-Sundberg M. 2005. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J. 5(1):6–13. doi: 10.1038/sj.tpj.6500285.
  • Isin EM, Guengerich FP. 2007. Complex reactions catalyzed by cytochrome P450 enzymes. Biochim Biophys Acta. 1770(3):314–329. doi: 10.1016/j.bbagen.2006.07.003.
  • Issa NT, Wathieu H, Ojo A, Byers SW, Dakshanamurthy S. 2017. Drug metabolism in preclinical drug development: a survey of the discovery process, toxicology, and computational tools. Curr Drug Metab. 18(6):556–565.
  • Jacob A, Hartz AM, Potin S, Coumoul X, Yousif S, Scherrmann J-M, Bauer B, Declèves X. 2011. Aryl hydrocarbon receptor-dependent upregulation of Cyp1b1 by TCDD and diesel exhaust particles in rat brain microvessels. Fluids Barriers CNS. 8(1):23. doi: 10.1186/2045-8118-8-23.
  • Jancova P, Anzenbacher P, Anzenbacherova E. 2010. Phase II drug metabolizing enzymes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 154(2):103–116. doi: 10.5507/bp.2010.017.
  • Johansson MK, Cook RM. 2003. Intramolecular dimers: a new design strategy for fluorescence-quenched probes. Chemistry. 9(15):3466–3471. doi: 10.1002/chem.200304941.
  • Kanamori K, Ross BD. 2005. Suppression of glial glutamine release to the extracellular fluid studied in vivo by NMR and microdialysis in hyperammonemic rat brain. J Neurochem. 94(1):74–85. doi: 10.1111/j.1471-4159.2005.03170.x.
  • Kanamori K. 2017. In vivo N-15 MRS study of glutamate metabolism in the rat brain. Anal Biochem. 529:179–192. doi: 10.1016/j.ab.2016.08.025.
  • Kaur G, Gupta SK, Singh P, Ali V, Kumar V, Verma M. 2020. Drug-metabolizing enzymes: role in drug resistance in ­cancer. Clin Transl Oncol. 22(10):1667–1680. doi: 10.1007/s12094-020-02325-7.
  • Kawashima H, Sequeira DJ, Nelson DR, Strobel HW. 1996. Genomic cloning and protein expression of a novel rat brain cytochrome P-450 CYP2D18* catalyzing imipramine N-demethylation. J Biol Chem. 271(45):28176–28180. doi: 10.1074/jbc.271.45.28176.
  • Khokhar JY, Tyndale RF. 2011. Drug metabolism within the brain changes drug response: selective manipulation of brain CYP2B alters propofol effects. Neuropsychopharmacology. 36(3):692–700. doi: 10.1038/npp.2010.202.
  • Kiang TK, Ensom MH, Chang TK. 2005. UDP-glucuronosyltransferases and clinical drug–drug interactions. Pharmacol Ther. 106(1):97–132. doi: 10.1016/j.pharmthera.2004.10.013.
  • Kiiski I, Ollikainen E, Artes S, Järvinen P, Jokinen V, Sikanen T. 2021. Drug glucuronidation assays on human liver microsomes immobilized on microfluidic flow-through reactors. Eur J Pharm Sci. 158:105677. doi: 10.1016/j.ejps.2020.105677.
  • Kimura H, Yoshioka H, Sogawa K, Sakai Y, Fujii-Kuriyama Y. 1988. Complementary DNA cloning of cytochrome P-450s related to P-450(M-1) from the complementary DNA library of female rat livers. Predicted primary structures for P-450f, PB-1, and PB-1-related protein with a bizarre replacement block and their mode of transcriptional expression. J Biol Chem. 263(2):701–707. doi: 10.1016/S0021-9258(19)35409-2.
  • King CD, Rios GR, Assouline JA, Tephly TR. 1999. Expression of UDP-glucuronosyltransferases (UGTs) 2B7 and 1A6 in the human brain and identification of 5-hydroxytryptamine as a substrate. Arch Biochem Biophys. 365(1):156–162. English. doi: 10.1006/abbi.1999.1155.
  • Kirchheiner J, Brockmöller J. 2005. Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin Pharmacol Ther. 77(1):1–16. doi: 10.1016/j.clpt.2004.08.009.
  • Kirchheiner J, Nickchen K, Bauer M, Wong M-L, Licinio J, Roots I, Brockmöller J. 2004. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry. 9(5):442–473. doi: 10.1038/sj.mp.4001494.
  • Knights KM, Rowland A, Miners JO. 2013. Renal drug metabolism in humans: the potential for drug–endobiotic interactions involving cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT). Br J Clin Pharmacol. 76(4):587–602. doi: 10.1111/bcp.12086.
  • Koehbach J, Gruber CW, Becker C, Kreil DP, Jilek A. 2016. MALDI TOF/TOF-based approach for the identification of d-amino acids in biologically active peptides and proteins. J Proteome Res. 15(5):1487–1496. doi: 10.1021/acs.jproteome.5b01067.
  • Konstandi M, Johnson EO, Lang MA. 2022. Stress as a potential regulatory factor in the outcome of pharmacotherapy. Front Neurosci. 16:737716. doi: 10.3389/fnins.2022.737716.
  • Kumar S. 2010. Engineering cytochrome P450 biocatalysts for biotechnology, medicine and bioremediation. Expert Opin Drug Metab Toxicol. 6(2):115–131. doi: 10.1517/17425250903431040.
  • Kutsuno Y, Hirashima R, Sakamoto M, Ushikubo H, Michimae H, Itoh T, Tukey RH, Fujiwara R. 2015. Expression of UDP-glucuronosyltransferase 1 (UGT1) and glucuronidation activity toward endogenous substances in humanized UGT1 mouse brain. Drug Metab Dispos. 43(7):1071–1076. doi: 10.1124/dmd.115.063719.
  • Kwan DH, Chen HM, Ratananikom K, Hancock SM, Watanabe Y, Kongsaeree PT, Samuels AL, Withers SG. 2011. Self-immobilizing fluorogenic imaging agents of enzyme activity. Angew Chem Int Ed Engl. 50(1):300–303. doi: 10.1002/anie.201005705.
  • Lee AM, Jepson C, Hoffmann E, Epstein L, Hawk LW, Lerman C, Tyndale RF. 2007. CYP2B6 genotype alters abstinence rates in a bupropion smoking cessation trial. Biol Psychiatry. 62(6):635–641. doi: 10.1016/j.biopsych.2006.10.005.
  • Lerman C, Shields PG, Wileyto EP, Audrain J, Pinto A, Hawk L, Krishnan S, Niaura R, Epstein L. 2002. Pharmacogenetic investigation of smoking cessation treatment. Pharmacogenet Genomics. 12(8):627–634. doi: 10.1097/00008571-200211000-00007.
  • Liu M, Zhu Q, Wu J, Yu X, Hu M, Xie X, Yang Z, Yang J, Feng YQ, Yue J. 2017. Glutamate affects the production of epoxyeicosanoids within the brain: the up-regulation of brain CYP2J through the MAPK–CREB signaling pathway. Toxicology. 381:31–38. doi: 10.1016/j.tox.2017.02.008.
  • Liu Y, Coughtrie MWH. 2017. Revisiting the latency of uridine diphosphate-glucuronosyltransferases (UGTs)—how does the endoplasmic reticulum membrane influence their function? Pharmaceutics. 9(3):32. doi: 10.3390/pharmaceutics9030032.
  • Lu Y, Peng Q, Zeng Z, Wang J, Deng Y, Xie L, Mo C, Zeng J, Qin X, Li S. 2014. CYP2D6 phenotypes and Parkinson’s disease risk: a meta-analysis. J Neurol Sci. 336(1–2):161–168. doi: 10.1016/j.jns.2013.10.030.
  • Mackenzie PI, Bock KW, Burchell B, Guillemette C, Ikushiro S, Iyanagi T, Miners JO, Owens IS, Nebert DW. 2005. Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genomics. 15(10):677–685. doi: 10.1097/01.fpc.0000173483.13689.56.
  • Magistretti PJ, Allaman I. 2015. A cellular perspective on brain energy metabolism and functional imaging. Neuron. 86(4):883–901. doi: 10.1016/j.neuron.2015.03.035.
  • Mann A, Miksys SL, Gaedigk A, Kish SJ, Mash DC, Tyndale RF. 2012. The neuroprotective enzyme CYP2D6 increases in the brain with age and is lower in Parkinson’s disease patients. Neurobiol Aging. 33(9):2160–2171. doi: 10.1016/j.neurobiolaging.2011.08.014.
  • Martignoni M, Groothuis GM, de Kanter R. 2006. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol. 2(6):875–894. doi: 10.1517/17425255.2.6.875.
  • Matsunaga E, Umeno M, Gonzalez FJ. 1990. The rat P450 IID subfamily: complete sequences of four closely linked genes and evidence that gene conversions maintained sequence homogeneity at the heme-binding region of the cytochrome P450 active site. J Mol Evol. 30(2):155–169. doi: 10.1007/BF02099942.
  • McCann S, Pond S, James K, Le Couteur D. 1997. The association between polymorphisms in the cytochrome P-450 2D6 gene and Parkinson’s disease: a case-control study and meta-analysis. J Neurol Sci. 153(1):50–53. doi: 10.1016/s0022-510x(97)00179-2.
  • McFadyen MCE, Melvin WT, Murray GI. 1998. Regional distribution of individual forms of cytochrome P450 mRNA in normal adult human brain. Biochem Pharmacol. 55(6):825–830. doi: 10.1016/s0006-2952(97)00516-9.
  • McMillan D. 2018. Brain CYP2D metabolism of opioids impacts brain levels, analgesia, and tolerance [Doctoral dissertation]. University of Toronto, TSpace Repository. https://hdl.handle.net/1807/89858
  • McMillan DM, Tyndale RF. 2018. CYP-mediated drug metabolism in the brain impacts drug response. Pharmacol Ther. 184:189–200. doi: 10.1016/j.pharmthera.2017.10.008.
  • Meech R, Hu DG, McKinnon RA, Mubarokah SN, Haines AZ, Nair PC, Rowland A, Mackenzie PI. 2019. The UDP-glycosyltransferase (UGT) superfamily: new members, new functions, and novel paradigms. Physiol Rev. 99(2):1153–1222. doi: 10.1152/physrev.00058.2017.
  • Meltzer HY. 1985. Long-term effects of neuroleptic drugs on the neuroendocrine system. Adv Biochem Psychopharmacol. 40:59–68.
  • Meyer RP, Knoth R, Schiltz E, Volk B. 2001. Possible function of astrocyte cytochrome P450 in control of xenobiotic phenytoin in the brain: in vitro studies on murine astrocyte primary cultures. Exp Neurol. 167(2):376–384. doi: 10.1006/exnr.2000.7553.
  • Meyer RP, Podvinec M, Meyer UA. 2002. Cytochrome P450 CYP1A1 accumulates in the cytosol of kidney and brain and is activated by heme. Mol Pharmacol. 62(5):1061–1067. doi: 10.1124/mol.62.5.1061.
  • Miksys S, Hoffmann E, Tyndale RF. 2000. Regional and cellular induction of nicotine-metabolizing CYP2B1 in rat brain by chronic nicotine treatment. Biochem Pharmacol. 59(12):1501–1511. doi: 10.1016/s0006-2952(00)00281-1.
  • Miksys S, Lerman C, Shields PG, Mash DC, Tyndale RF. 2003. Smoking, alcoholism and genetic polymorphisms alter CYP2B6 levels in human brain. Neuropharmacology. 45(1):122–132. doi: 10.1016/s0028-3908(03)00136-9.
  • Miksys S, Rao Y, Hoffmann E, Mash DC, Tyndale RF. 2002. Regional and cellular expression of CYP2D6 in human brain: higher levels in alcoholics. J Neurochem. 82(6):1376–1387. doi: 10.1046/j.1471-4159.2002.01069.x.
  • Miksys S, Rao Y, Sellers EM, Kwan M, Mendis D, Tyndale RF. 2000. Regional and cellular distribution of CYP2D subfamily members in rat brain. Xenobiotica. 30(6):547–564. doi: 10.1080/004982500406390.
  • Miksys S, Tyndale RF. 2013. Cytochrome P450-mediated drug metabolism in the brain. J Psychiatry Neurosci. 38(3):152–163. doi: 10.1503/jpn.120133.
  • Miksys S, Wadji FB, Tolledo EC, Remington G, Nobrega JN, Tyndale RF. 2017. Rat brain CYP2D enzymatic metabolism alters acute and chronic haloperidol side-effects by different mechanisms. Prog Neuropsychopharmacol Biol Psychiatry. 78:140–148. doi: 10.1016/j.pnpbp.2017.04.030.
  • Miksys SL, Cheung C, Gonzalez FJ, Tyndale RF. 2005. Human CYP2D6 and mouse CYP2Ds: organ distribution in a humanized mouse model. Drug Metab Dispos. 33(10):1495–1502. doi: 10.1124/dmd.105.005488.
  • Miksys SL, Tyndale RF. 2002. Drug-metabolizing cytochrome P450s in the brain. J Psychiatry Neurosci. 27(6):406–415.
  • Miners JO, McKinnon RA, Mackenzie PI. 2002. Genetic polymorphisms of UDP-glucuronosyltransferases and their functional significance. Toxicology. 181–182:453–456. doi: 10.1016/s0300-483x(02)00449-3.
  • Minn A, Ghersi-Egea JF, Perrin R, Leininger B, Siest G. 1991. Drug metabolizing enzymes in the brain and cerebral microvessels. Brain Res Brain Res Rev. 16(1):65–82. doi: 10.1016/0165-0173(91)90020-9.
  • Morale MC, L’Episcopo F, Tirolo C, Giaquinta G, Caniglia S, Testa N, Arcieri P, Serra P-A, Lupo G, Alberghina M, et al. 2008. Loss of aromatase cytochrome P450 function as a risk factor for Parkinson’s disease? Brain Res Rev. 57(2):431–443. doi: 10.1016/j.brainresrev.2007.10.011.
  • Morgan ET, Goralski KB, Piquette-Miller M, Renton KW, Robertson GR, Chaluvadi MR, Charles KA, Clarke SJ, Kacevska M, Liddle C, et al. 2008. Regulation of drug-metabolizing enzymes and transporters in infection, inflammation, and cancer. Drug Metab Dispos. 36(2):205–216. doi: 10.1124/dmd.107.018747.
  • Morgan ET. 2009. Impact of infectious and inflammatory disease on cytochrome P450-mediated drug metabolism and pharmacokinetics. Clin Pharmacol Ther. 85(4):434–438. doi: 10.1038/clpt.2008.302.
  • Morse DC, Stein AP, Thomas PE, Lowndes HE. 1998. Distribution and induction of cytochrome P450 1A1 and 1A2 in rat brain. Toxicol Appl Pharmacol. 152(1):232–239. doi: 10.1006/taap.1998.8477.
  • Murray GI, Pritchard S, Melvin WT, Burke MD. 1995. Cytochrome P450 CYP3A5 in the human anterior pituitary gland. FEBS Lett. 364(1):79–82. doi: 10.1016/0014-5793(95)00367-i.
  • Murray GI, Taylor MC, McFadyen MC, McKay JA, Greenlee WF, Burke MD, Melvin WT. 1997. Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Res. 57(14):3026–3031.
  • Muskhelishvili L, Thompson PA, Kusewitt DF, Wang C, Kadlubar FF. 2001. In situ hybridization and immunohistochemical analysis of cytochrome P450 1B1 expression in human normal tissues. J Histochem Cytochem. 49(2):229–236. doi: 10.1177/002215540104900210.
  • Nagai K, Fukuno S, Suzuki H, Konishi H. 2016. Higher gene expression of CYP1A2, 2B1 and 2D2 in the brain of female compared with male rats. Pharmazie. 71(6):334–336.
  • Nakajima M, Yamanaka H, Fujiwara R, Katoh M, Yokoi T. 2007. Stereoselective glucuronidation of 5-(4′-hydroxyphenyl)-5-phenylhydantoin by human UDP-glucuronosyltransferase (UGT) 1A1, UGT1A9, and UGT2B15: effects of UGT-UGT interactions. Drug Metab Dispos. 35(9):1679–1686. doi: 10.1124/dmd.107.015909.
  • Navarro-Mabarak C, Loaiza-Zuluaga M, Hernández-Ojeda SL, Camacho-Carranza R, Espinosa-Aguirre JJ. 2020. Neuroinflammation is able to downregulate cytochrome P450 epoxygenases 2J3 and 2C11 in the rat brain. Brain Res Bull. 163:57–64. doi: 10.1016/j.brainresbull.2020.07.016.
  • Neafsey P, Ginsberg G, Hattis D, Sonawane B. 2009. Genetic polymorphism in cytochrome P450 2D6 (CYP2D6): population distribution of CYP2D6 activity. J Toxicol Environ Health B Crit Rev. 12(5–6):334–361. doi: 10.1080/10937400903158342.
  • Nebert DW, Russell DW. 2002. Clinical importance of the cytochromes P450. Lancet. 360(9340):1155–1162. doi: 10.1016/S0140-6736(02)11203-7.
  • Nelson DR, Kamataki T, Waxman DJ, Guengerich FP, Estabrook RW, Feyereisen R, Gonzalez FJ, Coon MJ, Gunsalus IC, Gotoh O. 1993. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol. 12(1):1–51. doi: 10.1089/dna.1993.12.1.
  • Niwa T, Yanai M, Matsumoto M, Shizuku M. 2018. Effect of cytochrome P450 (CYP) 2D6 genetic polymorphism on the inhibitory action of antidepressants on CYP2D6-mediated dopamine formation from p-tyramine. J Pharm Pharm Sci. 21(1):135–142. doi: 10.18433/jpps29673.
  • Norris PJ, Hardwick JP, Emson PC. 1996. Regional distribution of cytochrome P450 2D1 in the rat central nervous system. J Comp Neurol. 366(2):244–258. doi: 10.1002/(SICI)1096-9861(19960304)366:2<244::AID-CNE5>3.0.CO;2-5.
  • Oguro A, Ishihara Y, Siswanto FM, Yamazaki T, Ishida A, Imaishi H, Imaoka S. 2021. Contribution of DHA diols (19,20-DHDP) produced by cytochrome P450s and soluble epoxide hydrolase to the beneficial effects of DHA supplementation in the brains of rotenone-induced rat models of Parkinson’s disease. Biochim Biophys Acta Mol Cell Biol Lipids. 1866(2):158858. doi: 10.1016/j.bbalip.2020.158858.
  • Ohno S, Nakajin S. 2009. Determination of mRNA expression of human UDP-glucuronosyltransferases and application for localization in various human tissues by real-time reverse transcriptase-polymerase chain reaction. Drug Metab Dispos. 37(1):32–40. doi: 10.1124/dmd.108.023598.
  • Oliw EH, Oates JA. 1981. Oxygenation of arachidonic acid by hepatic microsomes of the rabbit. Biochim Biophys Acta. 666(3):327–340. doi: 10.1016/0005-2760(81)90291-5.
  • O’Malley K, Browning M, Stevenson I, Turnbull MJ. 1973. Stimulation of drug metabolism in man by tricyclic antidepressants. Eur J Clin Pharmacol. 6(2):102–106. doi: 10.1007/BF00562435.
  • OuYang C, Chen B, Li L. 2015. High throughput in situ DDA analysis of neuropeptides by coupling novel multiplex mass spectrometric imaging (MSI) with gas-phase fractionation. J Am Soc Mass Spectrom. 26(12):1992–2001. doi: 10.1007/s13361-015-1265-0.
  • Ouzzine M, Gulberti S, Ramalanjaona N, Magdalou J, Fournel-Gigleux S. 2014. The UDP-glucuronosyltransferases of the blood–brain barrier: their role in drug metabolism and detoxication. Front Cell Neurosci. 8:349. doi: 10.3389/fncel.2014.00349.
  • Parkinson A, Mudra DR, Johnson C, Dwyer A, Carroll KM. 2004. The effects of gender, age, ethnicity, and liver cirrhosis on cytochrome P450 enzyme activity in human liver microsomes and inducibility in cultured human hepatocytes. Toxicol Appl Pharmacol. 199(3):193–209. doi: 10.1016/j.taap.2004.01.010.
  • Pavek P, Dvorak Z. 2008. Xenobiotic-induced transcriptional regulation of xenobiotic metabolizing enzymes of the cytochrome P450 superfamily in human extrahepatic tissues. Curr Drug Metab. 9(2):129–143. doi: 10.2174/138920008783571774.
  • Popat RA, Van Den Eeden SK, Tanner CM, Kamel F, Umbach DM, Marder K, Mayeux R, Ritz B, Ross GW, Petrovitch H, et al. 2011. Coffee, ADORA2A, and CYP1A2: the caffeine connection in Parkinson’s disease. Eur J Neurol. 18(5):756–765. doi: 10.1111/j.1468-1331.2011.03353.x.
  • Preissner SC, Hoffmann MF, Preissner R, Dunkel M, Gewiess A, Preissner S. 2013. Polymorphic cytochrome P450 enzymes (CYPs) and their role in personalized therapy. PLOS One. 8(12):e82562. doi: 10.1371/journal.pone.0082562.
  • Rackayova V, Cudalbu C, Pouwels PJW, Braissant O. 2017. Creatine in the central nervous system: from magnetic resonance spectroscopy to creatine deficiencies. Anal Biochem. 529:144–157. doi: 10.1016/j.ab.2016.11.007.
  • Rane A, Liu Z, Levol R, Bjelfman C, Thyr C, Ericson H, Hansson T, Henderson C, Wolf CR. 1996. Differential effects of neuroleptic agents on hepatic cytochrome P-450 isozymes in the male rat. Biochim Biophys Acta. 1291(1):60–66. doi: 10.1016/0304-4165(96)00046-3.
  • Ravindranath V, Anandatheerthavarada HK, Shankar SK. 1990. NADPH cytochrome P-450 reductase in rat, mouse and human brain. Biochem Pharmacol. 39(6):1013–1018. doi: 10.1016/0006-2952(90)90279-t.
  • Renton KW. 2005. Regulation of drug metabolism and disposition during inflammation and infection. Expert Opin Drug Metab Toxicol. 1(4):629–640. doi: 10.1517/17425255.1.4.629.
  • Rieder CR, Ramsden DB, Williams AC. 1998. Cytochrome P450 1B1 mRNA in the human central nervous system. Mol Pathol. 51(3):138–142. doi: 10.1136/mp.51.3.138.
  • Rieder CRM, Parsons RB, Fitch NJS, Williams AC, Ramsden DB. 2000. Human brain cytochrome P450 1B1: immunohistochemical localization in human temporal lobe and induction by dimethylbenz(a)anthracene in astrocytoma cell line (MOG-G-CCM). Neurosci Lett. 278(3):177–180. doi: 10.1016/s0304-3940(99)00932-5.
  • Riedl AG, Watts PM, Douek DC, Edwards RJ, Boobis AR, Rose S, Jenner P. 2000. Expression and distribution of CYP2C enzymes in rat basal ganglia. Synapse. 38(4):392–402. doi: 10.1002/1098-2396(20001215)38:4<392::AID-SYN4>3.0.CO;2-Z.
  • Riedl AG, Watts PM, Edwards RJ, Schulz-Utermoehl T, Boobis AR, Jenner P, Marsden CD. 1999. Expression and localisation of CYP2D enzymes in rat basal ganglia. Brain Res. 822(1–2):175–191. doi: 10.1016/s0006-8993(99)01113-0.
  • Rowland A, Miners JO, Mackenzie PI. 2013. The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell Biol. 45(6):1121–1132. doi: 10.1016/j.biocel.2013.02.019.
  • Rupert AE, Ou Y, Sandberg M, Weber SG. 2013. Electroosmotic push–pull perfusion: description and application to qualitative analysis of the hydrolysis of exogenous galanin in organotypic hippocampal slice cultures. ACS Chem Neurosci. 4(5):838–848. doi: 10.1021/cn400082d.
  • Sadakierska-Chudy A, Haduch A, Rysz M, Gołembiowska K, Daniel WA. 2013. The role of brain noradrenergic system in the regulation of liver cytochrome P450 expression. Biochem Pharmacol. 86(6):800–807. doi: 10.1016/j.bcp.2013.07.017.
  • Sakakibara Y, Katoh M, Kondo Y, Nadai M. 2016. Effects of beta-naphthoflavone on Ugt1a6 and Ugt1a7 expression in rat brain. Biol Pharm Bull. 39(1):78–83. doi: 10.1248/bpb.b15-00578.
  • Saleh MAA, Loo CF, Elassaiss-Schaap J, De Lange ECM. 2021. Lumbar cerebrospinal fluid-to-brain extracellular fluid surrogacy is context-specific: insights from LeiCNS-PK3.0 simulations. J Pharmacokinet Pharmacodyn. 48(5):725–741. doi: 10.1007/s10928-021-09768-7.
  • Sasame HA, Ames MM, Nelson SD. 1977. Cytochrome P-450 and NADPH cytochrome C reductase in rat brain: formation of catechols and reactive catechol metabolites. Biochem Biophys Res Commun. 78(3):919–926. doi: 10.1016/0006-291x(77)90510-1.
  • Sayers EW, Beck J, Bolton EE, Bourexis D, Brister JR, Canese K, Comeau DC, Funk K, Kim S, Klimke W, et al. 2021. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 49(D1):D10–D17. doi: 10.1093/nar/gkaa892.
  • Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, Connor R, Funk K, Kelly C, Kim S, et al. 2022. Database resources of the national center for biotechnology information. Nucleic Acids Res. 50(D1):D20–D26. doi: 10.1093/nar/gkab1112.
  • Schilter B, Omiecinski CJ. 1993. Regional distribution and expression modulation of cytochrome P-450 and epoxide hydrolase mRNAs in the rat brain. Mol Pharmacol. 44(5):990–996.
  • Sethy VH, Harris DW. 1982. Determination of biological activity of alprazolam, triazolam and their metabolites. J Pharm Pharmacol. 34(2):115–116. doi: 10.1111/j.2042-7158.1982.tb04197.x.
  • Shelby MK, Cherrington NJ, Vansell NR, Klaassen CD. 2003. Tissue mRNA expression of the rat UDP-glucuronosyltransferase gene family. Drug Metab Dispos. 31(3):326–333. doi: 10.1124/dmd.31.3.326.
  • Sheng Y, Yang H, Wu T, Zhu L, Liu L, Liu X. 2021. Alterations of cytochrome P450s and UDP-glucuronosyltransferases in brain under diseases and their clinical significances. Front Pharmacol. 12:650027. doi: 10.3389/fphar.2021.650027.
  • Siegle I, Fritz P, Eckhardt K, Zanger UM, Eichelbaum M. 2001. Cellular localization and regional distribution of CYP2D6 mRNA and protein expression in human brain. Pharmacogenetics. 11(3):237–245. doi: 10.1097/00008571-200104000-00007.
  • Simpson ER, Mahendroo MS, Means GD, Kilgore MW, Hinshelwood MM, Graham-Lorence S, Amarneh B, Ito Y, Fisher CR, Michael MD. 1994. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocr Rev. 15(3):342–355.
  • Singh S, Singh K, Patel DK, Singh C, Nath C, Singh VK, Singh RK, Singh MP. 2009. The expression of CYP2D22, an ortholog of human CYP2D6, in mouse striatum and its modulation in 1-methyl 4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease phenotype and nicotine-mediated neuroprotection. Rejuvenat Res. 12(3):185–197. doi: 10.1089/rej.2009.0850.
  • Sjöstedt E, Zhong W, Fagerberg L, Karlsson M, Mitsios N, Adori C, Oksvold P, Edfors F, Limiszewska A, Hikmet F, et al. 2020. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science. 367(6482). doi: 10.1126/science.aay5947.
  • Smith HS. 2009. Opioid metabolism. Mayo Clin Proc. 84(7):613–624. doi: 10.1016/S0025-6196(11)60750-7.
  • Song Y, Li C, Liu G, Liu R, Chen Y, Li W, Cao Z, Zhao B, Lu C, Liu Y. 2021. Drug-metabolizing cytochrome P450 enzymes have multifarious influences on treatment outcomes. Clin Pharmacokinet. 60(5):585–601. doi: 10.1007/s40262-021-01001-5.
  • Šrejber M, Navrátilová V, Paloncýová M, Bazgier V, Berka K, Anzenbacher P, Otyepka M. 2018. Membrane-attached mammalian cytochromes P450: an overview of the membrane’s effects on structure, drug binding, and interactions with redox partners. J Inorg Biochem. 183:117–136. doi: 10.1016/j.jinorgbio.2018.03.002.
  • Stamou M, Wu X, Kania-Korwel I, Lehmler HJ, Lein PJ. 2014. Cytochrome p450 mRNA expression in the rodent brain: species-, sex-, and region-dependent differences. Drug Metab Dispos. 42(2):239–244. doi: 10.1124/dmd.113.054239.
  • Stavropoulou E, Pircalabioru GG, Bezirtzoglou E. 2018. The role of cytochromes P450 in infection. Front Immunol. 9:89. doi: 10.3389/fimmu.2018.00089.
  • Stolerman IP, Jarvis M. 1995. The scientific case that nicotine is addictive. Psychopharmacology. 117(1):2–10. doi: 10.1007/BF02245088.
  • Stone AN, Mackenzie PI, Galetin A, Houston JB, Miners JO. 2003. Isoform selectivity and kinetics of morphine 3- and 6-glucuronidation by human UDP-glucuronosyltransferases: evidence for atypical glucuronidation kinetics by UGT2B7. Drug Metab Dispos. 31(9):1086–1089. doi: 10.1124/dmd.31.9.1086.
  • Suleman FG, Ghersi-Egea JF, Leininger-Muller B, Minn A. 1993. Uridine diphosphate-glucuronosyltransferase activities in rat brain microsomes. Neurosci Lett. 161(2):219–222. doi: 10.1016/0304-3940(93)90298-y.
  • Suzuki T, Mihara K, Nagai G, Kagawa S, Nakamura A, Nemoto K, Kondo T. 2019. Relationship between UGT1A4 and UGT2B7 polymorphisms and the steady-state plasma concentrations of lamotrigine in patients with treatment-resistant depressive disorder receiving lamotrigine as augmentation therapy. Ther Drug Monit. 41(1):86–90. doi: 10.1097/FTD.0000000000000577.
  • Swinney R, Hsu S, Tomlinson G. 2006. Phase I and phase II enzyme polymorphisms and childhood cancer. J Investig Med. 54(6):303–320. doi: 10.2310/6650.2006.05062.
  • Sychev DA, Ashraf GM, Svistunov AA, Maksimov ML, Tarasov VV, Chubarev VN, Otdelenov VA, Denisenko NP, Barreto GE, Aliev G. 2018. The cytochrome P450 isoenzyme and some new opportunities for the prediction of negative drug interaction in vivo. Drug Des Devel Ther. 12:1147–1156. doi: 10.2147/DDDT.S149069.
  • Thelen K, Dressman JB. 2009. Cytochrome P450-mediated metabolism in the human gut wall. J Pharm Pharmacol. 61(5):541–558. doi: 10.1211/jpp/61.05.0002.
  • Thuerl C, Otten U, Knoth R, Meyer RP, Volk B. 1997. Possible role of cytochrome P450 in inactivation of testosterone in immortalized hippocampal neurons. Brain Res. 762(1–2):47–55. doi: 10.1016/s0006-8993(97)00259-x.
  • Tindberg N, Bengtsson I, Hu Y. 2004. A novel lipopolysaccharide-modulated Jun binding repressor in intron 2 of CYP2E1. J Neurochem. 89(6):1336–1346. doi: 10.1111/j.1471-4159.2004.02449.x.
  • Tirumalai PS, Bhamre S, Upadhya SC, Boyd MR, Ravindranath V. 1998. Expression of multiple forms of cytochrome P450 and associated mono-oxygenase activities in rat brain regions. Biochem Pharmacol. 56(3):371–375. doi: 10.1016/s0006-2952(98)00036-7.
  • Togna AR, Antonilli L, Dovizio M, Salemme A, De Carolis L, Togna GI, Patrignani P, Nencini P. 2013. In vitro morphine metabolism by rat microglia. Neuropharmacology. 75:391–398. doi: 10.1016/j.neuropharm.2013.08.019.
  • Toselli F, Booth Depaz IM, Worrall S, Etheridge N, Dodd PR, Wilce PA, Gillam EM. 2015. Expression of CYP2E1 and CYP2U1 proteins in amygdala and prefrontal cortex: influence of alcoholism and smoking. Alcohol Clin Exp Res. 39(5):790–797. doi: 10.1111/acer.12697.
  • Tyndale RF, Li Y, Li NY, Messina E, Miksys S, Sellers EM. 1999. Characterization of cytochrome P-450 2D1 activity in rat brain: high-affinity kinetics for dextromethorphan. Drug Metab Dispos. 27(8):924–930.
  • Ur Rasheed MS, Mishra AK, Singh MP. 2017. Cytochrome P450 2D6 and Parkinson’s disease: polymorphism, metabolic role, risk and protection. Neurochem Res. 42(12):3353–3361. doi: 10.1007/s11064-017-2384-8.
  • van den Brink WJ, Wong YC, Gülave B, van der Graaf PH, de Lange ECM. 2017. Revealing the neuroendocrine response after remoxipride treatment using multi-biomarker discovery and quantifying it by PK/PD modeling. AAPS J. 19(1):274–285. doi: 10.1208/s12248-016-0002-3.
  • Vandooren J, Geurts N, Martens E, Van den Steen PE, Opdenakker G. 2013. Zymography methods for visualizing hydrolytic enzymes. Nat Methods. 10(3):211–220. doi: 10.1038/nmeth.2371.
  • Vences-Mejía A, Gómez-Garduño J, Caballero-Ortega H, Dorado-González V, Nosti-Palacios R, Labra-Ruíz N, Espinosa-Aguirre JJ. 2012. Effect of mosquito mats (pyrethroid-based) vapor inhalation on rat brain cytochrome P450s. Toxicol Mech Methods. 22(1):41–46. doi: 10.3109/15376516.2011.591448.
  • Vences-Mejía A, Labra-Ruíz N, Hernández-Martínez N, Dorado-González V, Gómez-Garduño J, Pérez-López I, Nosti-Palacios R, Camacho Carranza R, Espinosa-Aguirre JJ. 2006. The effect of aspartame on rat brain xenobiotic-metabolizing enzymes. Hum Exp Toxicol. 25(8):453–459. doi: 10.1191/0960327106het646oa.
  • Voirol P, Jonzier-Perey M, Porchet F, Reymond MJ, Janzer RC, Bouras C, Strobel HW, Kosel M, Eap CB, Baumann P. 2000. Cytochrome P-450 activities in human and rat brain microsomes. Brain Res. 855(2):235–243. doi: 10.1016/s0006-8993(99)02354-9.
  • Volk B, Meyer RP, von Lintig F, Ibach B, Knoth R. 1995. Localization and characterization of cytochrome P450 in the brain. In vivo and in vitro investigations on phenytoin- and phenobarbital-inducible isoforms. Toxicol Lett. 82–83:655–662. doi: 10.1016/0378-4274(95)03511-7.
  • Wahlström A, Winblad B, Bixo M, Rane A. 1988. Human brain metabolism of morphine and naloxone. Pain. 35(2):121–127. doi: 10.1016/0304-3959(88)90219-9.
  • Walther B, Ghersi-Egea JF, Minn A, Siest G. 1986. Subcellular distribution of cytochrome P-450 in the brain. Brain Res. 375(2):338–344. doi: 10.1016/0006-8993(86)90754-7.
  • Wang H, Kawashima H, Strobel HW. 1996. cDNA cloning of a novel CYP3A from rat brain. Biochem Biophys Res Commun. 221(1):157–162. doi: 10.1006/bbrc.1996.0562.
  • Wang Q, Zuo Z. 2018. Impact of transporters and enzymes from blood–cerebrospinal fluid barrier and brain parenchyma on CNS drug uptake. Expert Opin Drug Metab Toxicol. 14(9):961–972. doi: 10.1080/17425255.2018.1513493.
  • Wang Y, Zagorevski DV, Lennartz MR, Loegering DJ, Stenken JA. 2009. Detection of in vivo matrix metalloproteinase activity using microdialysis sampling and liquid chromatography/mass spectrometry. Anal Chem. 81(24):9961–9971. doi: 10.1021/ac901703g.
  • Weissleder R, Tung CH, Mahmood U, Bogdanov AJr. 1999. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol. 17(4):375–378. doi: 10.1038/7933.
  • Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, et al. 2018. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46(D1):D1074–D1082. doi: 10.1093/nar/gkx1037.
  • Wójcikowski J, Haduch A, Daniel WA. 2013. Effect of antidepressant drugs on cytochrome P450 2C11 (CYP2C11) in rat liver. Pharmacol Rep. 65(5):1247–1255. doi: 10.1016/s1734-1140(13)71482-8.
  • Woodland C, Huang TT, Gryz E, Bendayan R, Fawcett JP. 2008. Expression, activity and regulation of CYP3A in human and rodent brain. Drug Metab Rev. 40(1):149–168. doi: 10.1080/03602530701836712.
  • Wu J, Xu K, Landers JP, Weber SG. 2013. An in situ measurement of extracellular cysteamine, homocysteine, and cysteine concentrations in organotypic hippocampal slice cultures by integration of electroosmotic sampling and microfluidic analysis. Anal Chem. 85(6):3095–3103. doi: 10.1021/ac302676q.
  • Yamada H, Ishii K, Ishii Y, Ieiri I, Nishio S, Morioka T, Oguri K. 2003. Formation of highly analgesic morphine-6-glucuronide following physiologic concentration of morphine in human brain. J Toxicol Sci. 28(5):395–401. doi: 10.2131/jts.28.395.
  • Yamazaki H, Inoue K, Hashimoto M, Shimada T. 1999. Roles of CYP2A6 and CYP2B6 in nicotine C-oxidation by human liver microsomes. Arch Toxicol. 73(2):65–70. doi: 10.1007/s002040050588.
  • Yu X, Wu J, Hu M, Wu J, Zhu Q, Yang Z, Xie X, Feng YQ, Yue J. 2019. Glutamate affects the CYP1B1- and CYP2U1-mediated hydroxylation of arachidonic acid metabolism via astrocytic mGlu5 receptor. Int J Biochem Cell Biol. 110:111–121. doi: 10.1016/j.biocel.2019.03.001.
  • Yu Y, Fuscoe JC, Zhao C, Guo C, Jia M, Qing T, Bannon DI, Lancashire L, Bao W, Du T, et al. 2014. A rat RNA-Seq transcriptomic BodyMap across 11 organs and 4 developmental stages. Nat Commun. 5(1):3230. doi: 10.1038/ncomms4230.
  • Yue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T, Sandstrom R, Ma Z, Davis C, Pope BD, et al. 2014. A comparative encyclopedia of DNA elements in the mouse genome. Nature. 515(7527):355–364. doi: 10.1038/nature13992.
  • Yue J, Khokhar J, Miksys S, Tyndale RF. 2009. Differential induction of ethanol-metabolizing CYP2E1 and nicotine-metabolizing CYP2B1/2 in rat liver by chronic nicotine treatment and voluntary ethanol intake. Eur J Pharmacol. 609(1–3):88–95. doi: 10.1016/j.ejphar.2009.03.015.
  • Yueh MF, Mellon PL, Tukey RH. 2011. Inhibition of human UGT2B7 gene expression in transgenic mice by the constitutive androstane receptor. Mol Pharmacol. 79(6):1053–1060. doi: 10.1124/mol.110.070649.
  • Zaphiropoulos PG, Wood T. 1993. Identification of the major cytochrome P450s of subfamily 2C that are expressed in brain of female rats and in olfactory lobes of ethanol treated male rats. Biochem Biophys Res Commun. 193(3):1006–1013. doi: 10.1006/bbrc.1993.1725.
  • Zhang ZQ, Sheng L, Li Y. 2016. Drug glucuronidation and disposition in brain. Yao Xue Xue Bao. 51(11):1674–1680.
  • Zhao M, Ma J, Li M, Zhang Y, Jiang B, Zhao X, Huai C, Shen L, Zhang N, He L. 2021. Cytochrome P450 enzymes and drug metabolism in humans. Int J Mol Sci. 22(23):12808.
  • Zhou S-F, Liu J-P, Chowbay B. 2009. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev. 41(2):89–295. doi: 10.1080/03602530902843483.