2,544
Views
50
CrossRef citations to date
0
Altmetric
Reviews

Review on Encapsulation of Vegetable Oils: Strategies, Preparation Methods, and Applications

, &

References

  • Gershanik, T.; Benita, S. Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur. J. Pharm. Biopharm. 2000, 50(1), 179–188.
  • Yeo, Y.; Baek, N.; Park, K. Microencapsulation methods for delivery of protein drugs. Biotechnol. Bioprocess Eng. 2001, 6(4), 213–230.
  • Egilmez, N.K.; Jong, Y.S.; Sabel, M.S.; Jacob, J.S.; Mathiowitz, E.; Bankert, R.B. In situ tumor vaccination with interleukin-12-encapsulated biodegradable microspheres: Induction of tumor regression and potent antitumor immunity. Cancer Res. 2000, 60(14), 3832–3837.
  • Sinha, V.; Trehan, A. Biodegradable microspheres for protein delivery. J. Controlled Release 2003, 90(3), 261–280.
  • Tamber, H.; Johansen, P.; Merkle, H.; Gander, B. Formulation aspects of biodegradable polymeric microspheres for antigen delivery. Adv. Drug Delivery Rev. 2005, 57(3), 357–376.
  • Eun, Y.-J.; Utada, A.S.; Copeland, M.F.; Takeuchi, S.; Weibel, D.B. Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation. ACS Chem. Biol. 2010, 6(3), 260–266.
  • Yu, J.; Du, K.T.; Fang, Q.; Gu, Y.; Mihardja, S.S.; Sievers, R.E.; Wu, J.C.; Lee, R.J. The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat. Biomaterials 2010, 31(27), 7012–7020.
  • Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int. 2007, 40(9), 1107–1121.
  • Moribe, K.; Makishima, T.; Higashi, K.; Liu, N.; Limwikrant, W.; Ding, W.; Masuda, M.; Shimizu, T.; Yamamoto, K. Encapsulation of poorly water-soluble drugs into organic nanotubes for improving drug dissolution. Int. J. Pharm. 2014, 469(1), 190–196.
  • Wang, H.; Helwa, Y.; Rempel, G.L. Preparation of polyacrylamide based microgels with different charges for drug encapsulation. Eur. Polym. J. 2013, 49(6), 1479–1486.
  • Hattrem, M.N.; Kristiansen, K.A.; Aachmann, F.L.; Dille, M.J.; Draget, K.I. Ibuprofen-in-cyclodextrin-in-W/O/W emulsion – Improving the initial and long-term encapsulation efficiency of a model active ingredient. Int. J. Pharm. 2015, 487(1–2), 1–7.
  • Chakkarapani, P.; Subbiah, L.; Palanisamy, S.; Bibiana, A.; Ahrentorp, A.; Jonasson, C.; Johansson, C. Encapsulation of methotrexate loaded magnetic microcapsules for magnetic drug targeting and controlled drug release. J. Magn. Magn. Mater. 2015, 380, 285–294.
  • Gubernator, J.; Chwastek, G.; Korycińska, M.; Stasiuk, M.; Grynkiewicz, G.; Lewrick, F.; Süss, R.; Kozubek, A. The encapsulation of idarubicin within liposomes using the novel EDTA ion gradient method ensures improved drug retention in vitro and in vivo. J. Controlled Release 2010, 146(1), 68–75.
  • Desai, K.-G.H.; Schwendeman, S.P. Active self-healing encapsulation of vaccine antigens in PLGA microspheres. J. Controlled Release 2013, 165(1), 62–74.
  • Baxendale, A.J.; van Hooff, P.; Durrant, L.G.; Spendlove, I.; Howdle, S.M.; Woods, H.M.; Whitaker, M.J.; Davies, O.R.; Naylor, A.; Lewis, A.L.; Illum, L. Single shot tetanus vaccine manufactured by a supercritical fluid encapsulation technology. Int. J. Pharm. 2011, 413(1–2), 147–154.
  • Shrivastava, S.; Lole, K.S.; Tripathy, A.S.; Shaligram, A.S.; Arankalle, V.A. Development of candidate combination vaccine for hepatitis E and hepatitis B: A liposome encapsulation approach. Vaccine, 2009, 27(47), 6582–6588.
  • Murillo, M.; Irache, J.M.; Estevan, M.; Goñi, M.M.; Blasco, J.M.; Gamazo, C. Influence of the co-encapsulation of different excipients on the properties of polyester microparticle-based vaccine against brucellosis. Int. J. Pharm. 2004, 271(1–2), 125–135.
  • He, H.; Ye, J.; Wang, Y.; Liu, Q.; Chung, H.S.; Kwon, Y.M.; Shin, M.C.; Lee, K.; Yang, V.C. Cell-penetrating peptides meditated encapsulation of protein therapeutics into intact red blood cells and its application. J. Controlled Release 2014, 176, 123–132.
  • Bhatia, R.B.; Brinker, C.J.; Gupta, A.K.; Singh, A.K. Aqueous sol-gel process for protein encapsulation. Chem. Mater. 2000, 12(8), 2434–2441.
  • Volodkin, D.V.; Larionova, N.I.; Sukhorukov, G.B. Protein encapsulation via porous CaCO3 microparticles templating. Biomacromolecules, 2004, 5(5), 1962–1972.
  • Blanco, D.; Alonso, M.J. Protein encapsulation and release from poly(lactide-co-glycolide) microspheres: effect of the protein and polymer properties and of the co-encapsulation of surfactants. Eur. J. Pharm. Biopharm. 1998, 45(3), 285–294.
  • Quellec, P.; Gref, R.; Perrin, L.; Dellacherie, E.; Sommer, F.; Verbavatz, J.M.; Alonso, M.J. Protein encapsulation within polyethylene glycol-coated nanospheres. I. Physicochemical characterization. J. Biomed. Mater. Res. 1998, 42(1), 45–54.
  • Ylitervo, P.; Franzén, C.J.; Taherzadeh, M.J. Ethanol production at elevated temperatures using encapsulation of yeast. J. Biotechnol. 2011, 156(1), 22–29.
  • Shi, L.-E.; Li, Z.-H.; Zhang, Z.-L.; Zhang, T.-T.; Yu, W.-M.; Zhou, M.-L.; Tang, Z.-X. Encapsulation of Lactobacillus bulgaricus in carrageenan-locust bean gum coated milk microspheres with double layer structure. LWT--Food Sci. Technol. 2013, 54(1), 147–151.
  • Chan, E.S.; Zhang, Z. Encapsulation of probiotic bacteria lactobacillus acidophilus by direct compression. Food Bioprod. Process. 2002, 80(2), 78–82.
  • Perullini, M.; Orias, F.; Durrieu, C.; Jobbágy, M.; Bilmes, S.A. Co-encapsulation of daphnia magna and microalgae in silica matrices, a stepping stone toward a portable microcosm. Biotechnol. Rep. 2014, 4, 147–150.
  • Zielinski, B.A.; Aebischer, P. Chitosan as a matrix for mammalian cell encapsulation. Biomaterials, 1994, 15(13), 1049–1056.
  • Yoshioka, T.; Hirano, R.; Shioya, T.; Kako, M. Encapsulation of mammalian cell with chitosan‐CMC capsule. Biotechnol. Bioeng. 1990, 35(1), 66–72.
  • Koch, S.; Schwinger, C.; Kressler, J.; Heinzen, C.H.; Rainov, N.G. Alginate encapsulation of genetically engineered mammalian cells: Comparison of production devices, methods and microcapsule characteristics. J. Microencapsulation 2003, 20(3), 303–316.
  • Crooks, C.A.; Douglas, J.A.; Broughton, R.L.; Sefton, M.V. Microencapsulation of mammalian cells in a HEMA‐MMA copolymer: Effects on capsule morphology and permeability. J. Biomed. Mater. Res. 1990, 24(9), 1241–1262.
  • Koupantsis, T.; Pavlidou, E.; Paraskevopoulou, A. Flavour encapsulation in milk proteins – CMC coacervate-type complexes. Food Hydrocolloids 2014, 37, 134–142.
  • Ojagh, S.M.; Rezaei, M.; Razavi, S.H.; Hosseini, S.M.H. Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chem. 2010, 122(1), 161–166.
  • Specos, M.; García, J.J.; Tornesello, J.; Marino, P.; Della Vecchia, M.; Defain Tesoriero, M.V.; Hermida, L.G. Microencapsulated citronella oil for mosquito repellent finishing of cotton textiles. Trans. R. Soc. Trop. Med. Hyg. 2010, 104(10), 653–658.
  • Hsieh, W.-C.; Chang, C.-P.; Gao, Y.-L. Controlled release properties of chitosan encapsulated volatile citronella oil microcapsules by thermal treatments. Colloids Surf., B 2006, 53(2), 209–214.
  • Escamilla-García, M.; Calderón-Domínguez, G.; Chanona-Pérez, J.J.; Farrera-Rebollo, R.R.; Andraca-Adame, J.A.; Arzate-Vázquez, I.; Mendez-Mendez, J.V.; Moreno-Ruiz, L.A. Physical and structural characterisation of zein and chitosan edible films using nanotechnology tools. Int. J. Biol. Macromol. 2013, 61, 196–203.
  • Moretti, M.L.; Sanna-Passino, G.; Demontis, S.; Bazzoni, E. Essential oil formulations useful as a new tool for insect pest control. AAPS PharmSciTech 2002, 3(2), 64–74.
  • Chan, L.W.; Lim, L.T.; Heng, P.W.S. Microencapsulation of oils using sodium alginate. J. Microencapsulation 2000, 17(6), 757–766.
  • Fernandes, L.P.; Turatti, I.C.C.; Lopes, N.P.; Ferreira, J.C.; Candido, R.C.; Oliveira, W.P. Volatile retention and antifungal properties of spray-dried microparticles of Lippia sidoides essential oil. Drying Technol. 2008, 26(12), 1534–1542.
  • Huynh, T.V.; Caffin, N.; Dykes, G.A.; Bhandari, B. Optimization of the microencapsulation of lemon myrtle oil using response surface methodology. Drying Technol. 2008, 26(3), 357–368.
  • Weinbreck, F.; Minor, M.; de Kruif, C.G. Microencapsulation of oils using whey protein/gum arabic coacervates. J. Microencapsulation 2004, 21(6), 667–679.
  • Zhou, Y.; Feng, J.; Zhang, X. Preparation of wintergreen oil capsule suspension and control efficacy on Macrosiphoniella sanborni. Chin. J. Pestic. Sci. 2013, 2, 018.
  • Baranauskiene, R.; Bylaitė, E.; Žukauskaitė, J.; Venskutonis, R.P. Flavor retention of peppermint (Mentha piperita L.) essential oil spray-dried in modified starches during encapsulation and storage. J. Agric. Food Chem. 2007, 55(8), 3027–3036.
  • Walter, F.; Schöll, I.; Untersmayr, E.; Ellinger, A.; Boltz-Nitulescu, G.; Scheiner, O.; Gabor, F.; Jensen-Jarolim, E. Functionalisation of allergen-loaded microspheres with wheat germ agglutinin for targeting enterocytes. Biochem. Biophys. Res. Commun. 2004, 315(2), 281–287.
  • Sriamornsak, P.; Thirawong, N.; Puttipipatkhachorn, S. Morphology and buoyancy of oil-entrapped calcium pectinate gel beads. The AAPS J. 2004, 6(3), 65–71.
  • Aubert-Pouëssel, A.; Venier-Julienne, M.-C.; Saulnier, P.; Sergent, M.; Benoît, J.-P. Preparation of PLGA microparticles by an emulsion-extraction process using glycofurol as polymer solvent. Pharm. Res. 2004, 21(12), 2384–2391.
  • Chan, E.-S. Preparation of Ca-alginate beads containing high oil content: Influence of process variables on encapsulation efficiency and bead properties. Carbohydr. Polym. 2011, 84(4), 1267–1275.
  • Rungseevijitprapa, W.; Bodmeier, R. Injectability of biodegradable in situ forming microparticle systems (ISM). Eur. J. Pharm. Sci. 2009, 36(4–5), 524–531.
  • Ribeiro, A.J.; Neufeld, R.J.; Arnaud, P.; Chaumeil, J.C. Microencapsulation of lipophilic drugs in chitosan-coated alginate microspheres. Int. J. Pharm. 1999, 187(1), 115–123.
  • Durante, M.; Lenucci, M.S.; Laddomada, B.; Mita, G.; Caretto, S. Effects of sodium alginate bead encapsulation on the storage stability of durum wheat (triticum durum desf.) bran oil extracted by supercritical CO2. J. Agric. Food Chem. 2012, 60(42), 10689–10695.
  • Bonnet, M.; Cansell, M.; Berkaoui, A.; Ropers, M.H.; Anton, M.; Leal-Calderon, F. Release rate profiles of magnesium from multiple W/O/W emulsions. Food Hydrocolloids, 2009, 23(1), 92–101.
  • Li, B.; Jiang, Y.; Liu, F.; Chai, Z.; Li, Y.; Li, Y.; Leng, X. Synergistic effects of whey protein–polysaccharide complexes on the controlled release of lipid‐soluble and water‐soluble vitamins in W1/O/W2 double emulsion systems. Int. J. Food Sci. Technol. 2012, 47(2), 248–254.
  • Akhtar, M.; Murray, B.S.; Afeisume, E.I.; Khew, S.H. Encapsulation of flavonoid in multiple emulsion using spinning disc reactor technology. Food Hydrocolloids, 2014, 34, 62–67.
  • Panthani, M.G.; Khan, T.A.; Reid, D.K.; Hellebusch, D.J.; Rasch, M.R.; Maynard, J.A.; Korgel, B.A. In vivo whole animal fluorescence imaging of a microparticle-based oral vaccine containing (CuInSexS2–x)/ZnS core/shell quantum dots. Nano Letters, 2013, 13(9), 4294–4298.
  • Boekhoven, J.; Zha, R.H.; Tantakitti, F.; Zhuang, E.; Zandi, R.; Newcomb, C.J.; Stupp, S.I. Alginate-peptide amphiphile core-shell microparticles as a targeted drug delivery system. RSC Adv. 2015, 5(12), 8753–8756.
  • Huang, K.-S.; Yang, C.-H.; Kung, C.-P.; Grumezescu, A.M.; Ker, M.-D.; Lin, Y.-S.; Wang, C.-Y. Synthesis of uniform core–shell gelatin–alginate microparticles as intestine-released oral delivery drug carrier. Electrophoresis 2014, 35(2–3), 330–336.
  • Konagai, C.; Yanagimoto, K.; Hayamizu, K.; Han, L.; Tsuji, T.; Koga, Y. Effects of krill oil containing n-3 polyunsaturated fatty acids in phospholipid form on human brain function: A randomized controlled trial in healthy elderly volunteers. Clin. Interventions Aging 2013, 8, 1247–1257.
  • Li, L.; Au, W.; Hua, T.; Zhao, D.; Wong, K. Improvement in antibacterial activity of moxa oil containing gelatin-arabic gum microcapsules. Text. Res. J. 2013.
  • Hill, L.E.; Gomes, C.; Taylor, T.M. Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT--Food Sci. Technol. 2013, 51(1), 86–93.
  • Ciobanu, A.; Mallard, I.; Landy, D.; Brabie, G.; Nistor, D.; Fourmentin, S. Inclusion interactions of cyclodextrins and crosslinked cyclodextrin polymers with linalool and camphor in Lavandula angustifolia essential oil. Carbohydr. Polym. 2012, 87(3), 1963–1970.
  • Bilia, A.R.; Guccione, C.; Isacchi, B.; Righeschi, C.; Firenzuoli, F.; Bergonzi, M.C. Essential oils loaded in nanosystems: A developing strategy for a successful therapeutic approach. J. Evidence-Based Complementary Altern. Med. 2014, 2014, 1–14.
  • Lv, Y.; Yang, F.; Li, X.; Zhang, X.; Abbas, S. Formation of heat-resistant nanocapsules of jasmine essential oil via gelatin/gum arabic based complex coacervation. Food Hydrocolloids, 2014, 35, 305–314.
  • Engel, R.H.; Riggi, S.J.; Fahrenbach, M.J. Insulin: Intestinal absorption as water-in-oil-in-water emulsions. Nature, 1968, 219(5156), 856–857.
  • Lee, G.-S.; Lee, D.-H.; and Pyo, H.-B. Preparation and characterization of encapsulation of multiple lipid carrier (MLC) using vegetable fat. J. Ind. Eng. Chem. 2011, 17(3), 421–426.
  • Kita, Y.; Matsumoto, S.; Yonezawa, D. Viscometric method for estimating the stability of W/O/W-type multiple-phase emulsions. J. Colloid Interface Sci. 1977, 62(1), 87–94.
  • Cournarie, F.; Savelli, M.-P.; Rosilio, V.; Bretez, F.; Vauthier, C.; Grossiord, J.-.L.; Seiller, M. Insulin-loaded W/O/W multiple emulsions: Comparison of the performances of systems prepared with medium-chain-triglycerides and fish oil. Eur. J. Pharm. Biopharm. 2004, 58(3), 477–482.
  • Cunha, A.S.; Grossior, J.L.; Puisieux, F.; Seiller, M. Insulin in w/o/w multiple emulsions: preparation, characterization and determination of stability towards proteases in vitro. J. Microencapsulation 1997, 14(3), 311–319.
  • Schuster, D. Encyclopedia of Emulsion Technology: Basic theory, measurement, applications. Vol. 3, CRC Press: Boca Raton, FL, 1987.
  • Kumar, R.; Kumar, M.S.; Mahdevan, N. Multiple emulsions: A review. Int. J. Recent Adv. Pharm. Res. 2012, 2(1), 9–19.
  • Morais, J.M.; Rocha-Filho, P.A.; Burgess, D.J. Relationship between rheological properties and one-step W/O/W multiple emulsion formation. Langmuir, 2010, 26(23), 17874–17881.
  • Dams, S.S.; Walker, I.M. [5] Multiple emulsions as targetable delivery systems. Methods Enzymol. 1987, 149, 51–64.
  • Jiao, J.; Rhodes, D.G.; Burgess, D.J. Multiple emulsion stability: Pressure balance and interfacial film strength. J. Colloid Interface Sci. 2002, 250(2), 444–450.
  • Garti, N.; Aserin, A.; Tiunova, I.; Binyamin, H. Double emulsions of water-in-oil-in-water stabilized by α-form fat microcrystals. Part 1: Selection of emulsifiers and fat microcrystalline particles. J. Am. Oil Chem. Soc. 1999, 76(3), 383–389.
  • Souto, E.B.; Mehnert, W.; Müller, R.H. Polymorphic behaviour of Compritol®888 ATO as bulk lipid and as SLN and NLC. J. Microencapsulation 2006, 23(4), 417–433.
  • Hom, F.; Veresh, S.; Ebert, W. Soft gelatin capsules II: Oxygen permeability study of capsule shells. J. Pharm. Sci. 1975, 64(5), 851–857.
  • Cole, E.T.; Cadé, D.; Benameur, H. Challenges and opportunities in the encapsulation of liquid and semi-solid formulations into capsules for oral administration. Adv. Drug Delivery Rev. 2008, 60(6), 747–756.
  • Liu, S.; Low, N.; Nickerson, M.T. Entrapment of flaxseed oil within gelatin-gum arabic capsules. J. Am. Oil Chem. Soc. 2010, 87(7), 809–815.
  • Chang, C.P.; Dobashi, T. Preparation of alginate complex capsules containing eucalyptus essential oil and its controlled release. Colloids Surf., B 2003, 32(3), 257–262.
  • Lertsutthiwong, P.; Noomun, K.; Jongaroonngamsang, N.; Rojsitthisak, P.; Nimmannit, U. Preparation of alginate nanocapsules containing turmeric oil. Carbohydr. Polym. 2008, 74(2), 209–214.
  • Gomes, M.T.M.; Santos, D.T.; Meireles, M.A.A. Trends in particle formation of bioactive compounds using supercritical fluids and nanoemulsions. Food and Public Health, 2012, 2(5), 142–152.
  • Anton, N.; Li, X.; Chau, T.M.; Zhao, M. Messaddeq, N.; Vandamme, T. Microencapsulation of nanoemulsions: novel Trojan particles for bioactive lipid molecule delivery. Int. J. Nanomed. 2011, 6(1), 1313–1325.
  • Rubilar, M.; Morales, E.; Contreras, K.; Ceballos, C.; Acevedo, F.; Villarroel, M.; Shene, C. Development of a soup powder enriched with microencapsulated linseed oil as a source of omega‐3 fatty acids. Eur. J. Lipid Sci. Technol. 2012, 114(4), 423–433.
  • Can Karaca, A.; Low, N.; Nickerson, M. Encapsulation of flaxseed oil using a benchtop spray dryer for legume protein–maltodextrin microcapsule preparation. J. Agric. Food Chem. 2013, 61(21), 5148–5155.
  • Paula, H.C.B.; Sombra, F.M.; de Freitas Cavalcante, R.; Abreu, F.O.M.S.; de Paula, R.C.M. Preparation and characterization of chitosan/cashew gum beads loaded with Lippia sidoides essential oil. Mater. Sci. Eng., C 2011, 31(2), 173–178.
  • Lopez, M.; Maudhuit, A.; Pascual-Villalobos, M.J.; Poncelet, D. Development of formulations to improve the controlled-release of linalool to be applied as an insecticide. J. Agric. Food Chem. 2012, 60(5), 1187–1192.
  • de Barros Fernandes, R.V.; Borges, S.V.; Botrel, D.A. Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydr. Polym. 2014, 101, 524–532.
  • Sarkar, S.; Gupta, S.; Variyar, P.S.; Sharma, A.; Singhal, R.S. Hydrophobic derivatives of guar gum hydrolyzate and gum arabic as matrices for microencapsulation of mint oil. Carbohydr. Polym. 2013, 95(1), 177–182.
  • Soottitantawat, A.; Takayama, K.; Okamura, K.; Muranaka, D.; Yoshii, H.; Furuta, T.; Ohkawara, M.; Linko, P. Microencapsulation of l-menthol by spray drying and its release characteristics. Innovative Food Sci. Emerging Technol. 2005, 6(2), 163–170.
  • Murata, Y.; Sasaki, N.; Miyamoto, E.; Kawashima, S. Use of floating alginate gel beads for stomach-specific drug delivery. Eur. J. Pharm. Biopharm. 2000, 50(2), 221–226.
  • Sagiri, S.S.; Sethy, J.; Pal, K.; Banerjee, I.; Pramanik, K.; Maiti, T.K. Encapsulation of vegetable organogels for controlled delivery applications. Des. Monomers Polym. 2012, 16(4), 366–376.
  • Sagiri, S.S.; Pal, K.; Basak, P.; Rana, U.A.; Shakir, I.; Anis, A. Encapsulation of sorbitan ester-based organogels in alginate microparticles. AAPS PharmSciTech, 2014, 15, 1197–1208.
  • Sagiri, S.S.; Pal, K.; Basak, P. Encapsulation of animal wax‐based organogels in alginate microparticles. J. Appl. Polym. Sci. 2014, 131(20), 40910-1–40910-11.
  • Siqueira-Moura, M.P.; Franceschi-Messant, S.; Blanzat, M.; Inês Ré, M.; Perez, E.; Rico-Lattes, I.; Lattes, A.; Tedesco, A.C. Gelled oil particles: A new approach to encapsulate a hydrophobic metallophthalocyanine. J. Colloid Interface Sci. 2013, 401, 155–160.
  • Jerobin, J.; Sureshkumar, R.S.; Anjali, C.H.; Mukherjee, A.; Chandrasekaran, N. Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of Aza-A. Carbohydr. Polym. 2012, 90(4), 1750–1756.
  • Shojaee-Aliabadi, S.; Hosseini, H.; Mohammadifar, M.A.; Mohammadi, A.; Ghasemlou, M.; Ojagh, S.M.; Hosseini, S.M.; Khaksar, R. Characterization of antioxidant-antimicrobial κ-carrageenan films containing Satureja hortensis essential oil. Int. J. Biol. Macromol. 2013, 52(0), 116–124.
  • Shojaee-Aliabadi, S.; Hosseini, H.; Mohammadifar, M.A.; Mohammadi, A.; Ghasemlou, M.; Hosseini, S.M.; Khaksar, R. Characterization of κ-carrageenan films incorporated plant essential oils with improved antimicrobial activity. Carbohydr. Polym. 2014, 101(0), 582–591.
  • Ghasemlou, M.; Aliheidari, N.; Fahmi, R.; Shojaee-Aliabadi, S.; Keshavarz, B.; Cran, M.J.; Khaksar, R. Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils. Carbohydr. Polym. 2013, 98(1), 1117–1126.
  • Salarbashi, D.; Tajik, S.; Ghasemlou, M.; Shojaee-Aliabadi, S.; Noghabi, M.S.; Khaksar, R. Characterization of soluble soybean polysaccharide film incorporated essential oil intended for food packaging. Carbohydr. Polym. 2013, 98(1), 1127–1136.
  • Salmieri, S.; Lacroix, M. Physicochemical properties of alginate/polycaprolactone-based films containing essential oils. J. Agric. Food Chem. 2006, 54(26), 10205–10214.
  • Seydim, A.C.; Sarikus, G. Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Res. Int. 2006, 39(5), 639–644.
  • Sánchez-González, L.; Cháfer, M.; Hernández, M.; Chiralt, A.; González-Martínez, C. Antimicrobial activity of polysaccharide films containing essential oils. Food Control, 2011, 22(8), 1302–1310.
  • Yılmaz, G.; Jongboom, R.O.J.; van Soest, J.J.G.; Feil, H. Effect of glycerol on the morphology of starch–sunflower oil composites. Carbohydr. Polym. 1999, 38(1), 33–39.
  • Yılmaz, G.; Jongboom, R.O.J.; Feil, H.; Hennink, W.E. Encapsulation of sunflower oil in starch matrices via extrusion: effect of the interfacial properties and processing conditions on the formation of dispersed phase morphologies. Carbohydr. Polym. 2001, 45(4), 403–410.
  • Gupta, N.; Nimesh, S. Perspectives and challenges of nanomedicine in gene silencing. Pharm. Technol. 2014, 38(3), 30–35.
  • Hosseini, S.F.; Zandi, M.; Rezaei, M.; Farahmandghavi, F. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydr. Polym. 2013, 95(1), 50–56.
  • Paula, H.C.B.; Sombra, F.M.; Abreu, F.O.M.S.; de Paul, R.C.M. Lippia sidoides essential oil encapsulation by angico gum/chitosan nanoparticles. J. Braz. Chem. Soc. 2010, 21, 2359–2366.
  • de Oliveira, E.F.; Paula, H.C.B.; de Paula, R.C.M. Alginate/cashew gum nanoparticles for essential oil encapsulation. Colloids Surf., B 2014, 113(0), 146–151.
  • Wattanasatcha, A.; Rengpipat, S.; Wanichwecharungruang, S. Thymol nanospheres as an effective anti-bacterial agent. Int. J. Pharm. 2012, 434(1–2), 360–365.
  • Zhang, Y.; Niu, Y.; Luo, Y.; Ge, M.; Yang, T.; Yu, L.; Wang, Q. Fabrication, characterization and antimicrobial activities of thymol-loaded zein nanoparticles stabilized by sodium caseinate–chitosan hydrochloride double layers. Food Chemistry 2014, 142(0), 269–275.
  • Parris, N.; Cooke, P.H.; Hicks, K.B. Encapsulation of essential oils in zein nanospherical particles. J. Agric. Food Chem. 2005, 53(12), 4788–4792.
  • Kumar, P.; Mishra, S.; Malik, A.; Satya, S. Preparation and characterization of PEG-mentha oil nanoparticles for housefly control. Colloids Surf., B 2014, 116, 707–713.
  • Yang, F.-L.; Li, X.-G.; Zhu, F.; Lei, C.-L. Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Agric. Food Chem. 2009, 57(21), 10156–10162.
  • Gomes, C.; Moreira, R.G.; Castell-Perez, E. Poly(DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped trans-cinnamaldehyde and eugenol for antimicrobial delivery applications. J. Food Sci. 2011, 76(2), N16–N24.
  • ALHaj, N.A.; Shamsudin, M.N.; Alipiah, N.M.; Zamri, H.F.; Bustamam, A.; Ibrahim, S.; Abdullah, S. Characterization of Nigella sativa L. essential oil-loaded solid lipid nanoparticles. Am. J. Pharmacol. Toxicol. 2010, 5(1), 52.
  • Lai, F.; Sinico, C.; De Logu, A.; Zaru, M.; Müller, R.H.; Fadda, A.M. SLN as a topical delivery system for Artemisia arborescens essential oil: In vitro antiviral activity and skin permeation study. Int. J. Nanomed. 2007, 2(3), 419.
  • Shi, F.; Zhao, J.H.; Liu, Y.; Wang, Z.; Zhang, Y.T.; Feng, N.P. Preparation and characterization of solid lipid nanoparticles loaded with frankincense and myrrh oil. Int. J. Nanomed. 2012, 7, 2033.
  • Moghimipour, E.; Ramezani, Z.; Handali, S. Solid lipid nanoparticles as a delivery system for Zataria multiflora essential oil: Formulation and characterization. Curr. Drug Delivery, 2013, 10(2), 151–157.
  • Müller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Delivery Rev. 2002, 54, S131–S155.
  • Roccia, P.; Martínez, M.L.; Llabot, J.M.; Ribotta, P.D. Influence of spray-drying operating conditions on sunflower oil powder qualities. Powder Technol. 2014, 254(0), 307–313.
  • Gallo, L.; Llabot, J.M.; Allemandi, D.; Bucalá, V.; Piña, J. Influence of spray-drying operating conditions on Rhamnus purshiana (Cáscara sagrada) extract powder physical properties. Powder Technol. 2011, 208(1), 205–214.
  • Turchiuli, C.; Munguia, M.T.J.; Sanchez, M.H.; Ferre, M.C.; Dumoulin, E. Use of different supports for oil encapsulation in powder by spray drying. Powder Technol. 2014, 255, 103–108.
  • Carneiro, H.C.F.; Tonon, R.V.; Grosso, C.R.F.; Hubinger, M.D. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J. Food Eng., 2013, 115(4), 443–451.
  • Mohanty, B.; Bohidar, H. Systematic of alcohol-induced simple coacervation in aqueous gelatin solutions. Biomacromolecules, 2003, 4(4), 1080–1086.
  • Lazko, J.; Popineau, Y.; Legrand, J. Soy glycinin microcapsules by simple coacervation method. Colloids and Surfaces B: Biointerfaces, 2004, 37(1), 1–8.
  • Mauguet, M.; Legrand, J.; Brujes, L.; Carnelle, G.; Larre, C.; Popineau, Y. Gliadin matrices for microencapsulation processes by simple coacervation method. J. Microencapsulation 2002, 19(3), 377–384.
  • Wu, K.G.; Xiao, Q. Microencapsulation of fish oil by simple coacervation of hydroxypropyl methylcellulose. Chin. J. Chem. 2005, 23(11), 1569–1572.
  • Weiβ, G.; Knoch, A.; Laicher, A.; Stanislaus, F.; Daniels, R. Simple coacervation of hydroxypropyl methylcellulose phthalate (HPMCP) II. Microencapsulation of ibuprofen. Int. J. Pharm. 1995, 124(1), 97–105.
  • Prabaharan, M.; Mano, J. Chitosan-based particles as controlled drug delivery systems. Drug delivery 2004, 12(1), 41–57.
  • Latha, M.; Rathinam, K.; Mohanan, P.V.; Jayakrishnan, A. Bioavailability of theophylline from glutaraldehyde cross-linked casein microspheres in rabbits following oral administration. J. Controlled Release, 1995, 34(1), 1–7.
  • Lin, S.Y.; Yang, J.C. Bioavailability studies of theophylline ethylcellulose microcapsules prepared by using ethylene‐vinyl acetate copolymer as a coacervation‐inducing agent. J. Pharm. Sci. 1987, 76(3), 219–223.
  • Maji, T.K.; Baruah, I.; Dube, S.; Hussain, M. Microencapsulation of Zanthoxylum limonella oil (ZLO) in glutaraldehyde crosslinked gelatin for mosquito repellent application. Bioresour. Technol. 2007, 98(4), 840–844.
  • Weinbreck, F.; de Vries, R.; Schrooyen, P.; de Kruif, C.G. Complex coacervation of whey proteins and gum arabic. Biomacromolecules, 2003, 4(2), 293–303.
  • Burgess, D.; Carless, J. Microelectrophoretic studies of gelatin and acacia for the prediction of complex coacervation. J. Colloid Interface Sci. 1984, 98(1), 1–8.
  • Schmitt, C.; Sanchez, C.; Thomas, F.; Hardy, J. Complex coacervation between β-lactoglobulin and acacia gum in aqueous medium. Food Hydrocolloids, 1999, 13(6), 483–496.
  • Tsung, M.; Burgess, D.J. Preparation and stabilization of heparin/gelatin complex coacervate microcapsules. J. Pharm. Sciences, 1997, 86(5), 603–607.
  • Thimma, R.; Tammishetti, S. Study of complex coacervation of gelatin with sodium carboxymethyl guar gum: Microencapsulation of clove oil and sulphamethoxazole. J. Microencapsulation 2003, 20(2), 203–210.
  • Singh, O.; Burgess, D. Characterization of albumin‐alginic acid complex coacervation. J. Pharm. Pharmacol. 1989, 41(10), 670–673.
  • Hwang, D.S.; Waite, J.H.; Tirrell, M. Promotion of osteoblast proliferation on complex coacervation-based hyaluronic acid-recombinant mussel adhesive protein coatings on titanium. Biomaterials, 2010, 31(6), 1080–1084.
  • Saravanan, M.; Rao, K.P. Pectin-gelatin and alginate-gelatin complex coacervation for controlled drug delivery: Influence of anionic polysaccharides and drugs being encapsulated on physicochemical properties of microcapsules. Carbohydr. Polym. 2010, 80(3), 808–816.
  • Jyothi, N.V.N.; Prasanna, P.M.; Sakarkar, S.N.; Prabha, K.S.; Ramaiah, P.S.; Srawan, G.Y. Microencapsulation techniques, factors influencing encapsulation efficiency. J. Microencapsulation 2010, 27(3), 187–197.
  • Yang, Y.-Y.; Chung, T.-S.; Ng, N.P. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials 2001, 22(3), 231–241.
  • Silva, C.M.; Ribeiro, A.J.; Figueiredo, I.V.; Gonçalves, A.R.; Veiga, F. Alginate microspheres prepared by internal gelation: Development and effect on insulin stability. Int. J. Pharm. 2006, 311(1–2), 1–10.
  • Zhang, L.; Huang, J.; Si, T.; Xu, R.X. Coaxial electrospray of microparticles and nanoparticles for biomedical applications. Expert Rev. Med. Devices 2012, 9(6), 595–612.
  • Loscertales, I.G.; Barrero, A.; Guerrero, I.; Cortijo1, R.; Marquez, M.; Gañán-Calvo, A.M. Micro/nano encapsulation via electrified coaxial liquid jets. Science, 2002, 295(5560), 1695–1698.
  • Xie, J.; Ng, W.J.; Lee, L.Y.; Wang, C.-H. Encapsulation of protein drugs in biodegradable microparticles by co-axial electrospray. J. Colloid Interface Sci. 2008, 317(2), 469–476.
  • Koo, S.Y.; Cha, K.H.; Song, D.-G.; Chung, D.; Pan, C.-H. Microencapsulation of peppermint oil in an alginate–pectin matrix using a coaxial electrospray system. Int. J. Food Sci. Technol. 2014, 49(3), 733–739.
  • Almeida, A.P.; Rodríguez-Rojo, S.; Serra, A.T.; Vila-Real, H.; Simplicio, A.L.; Delgadilho, I.; da Costa, S.B.; da Costa, L.B.; Nogueira, I.D.; Duarte, C.M.M. Microencapsulation of oregano essential oil in starch-based materials using supercritical fluid technology. Innovative Food Sci. Emerging Technol. 2013, 20, 140–145.
  • Varona, S.; Rodríguez-Rojo, S.; Martín, A.; Cocero, M.J.; Duarte, C.M.M. Supercritical impregnation of lavandin (Lavandula hybrida) essential oil in modified starch. J. Supercrit. Fluids 2011, 58(2), 313–319.
  • Xi, J.; Zhang, Q.; Myers, D.; Sun, Y.; Cao, G. Hollow hemispherical titanium dioxide aggregates fabricated by coaxial electrospray for dye-sensitized solar cell application. J. Nanophotonics, 2012, 6(1), 063519-1–063519-11.
  • Parhi, R.; Suresh, P. Supercritical fluid technology: A review. Advanced Pharmaceutical Science and Technology, 2012, 1(1), 13–36
  • Arana-Sánchez, A.; Estarrón-Espinosa, M.; Obledo-Vázquez, E.N.; Padilla-Camberos, E.; Silva-Vázquez, R.; Lugo-Cervantes, E. Antimicrobial and antioxidant activities of Mexican oregano essential oils (Lippia graveolens H. B. K.) with different composition when microencapsulated in β-cyclodextrin. Lett. Appl. Microbiol. 2010, 50(6), 585–590.
  • Donsì, F.; Annunziata, M.; Sessa, M.; Ferrari, G. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT--Food Sci. Technol. 2011, 44(9), 1908–1914.
  • Hu, Y.; Du, Y.; Wang, X.; Feng, T. Self-aggregation of water-soluble chitosan and solubilization of thymol as an antimicrobial agent. J. Biomed. Mater. Res., Part A 2009, 90A(3), 874–881.
  • Wu, Y.; Luo, Y.; Wang, Q. Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid–liquid dispersion method. LWT--Food Sci. Technol. 2012, 48(2), 283–290.
  • Solomon, B.; Sahle, F.F.; Gebre-Mariam, T.; Asres, K.; Neubert, R.H.H. Microencapsulation of citronella oil for mosquito-repellent application: Formulation and in vitro permeation studies. Eur. J. Pharm. Biopharm. 2012, 80(1), 61–66.
  • Sakulku, U.; Nuchuchua, O.; Uawongyart, N.; Puttipipatkhachorn, S.; Soottitantawat, A.; Ruktanonchai, U. Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int. J. Pharm. 2009, 372(1–2), 105–111.
  • Nuchuchua, O.; Sakulku, U.; Uawongyart, N.; Puttipipatkhachorn, S.; Soottitantawat, A.; Ruktanonchai, U. In vitro characterization and mosquito (Aedes aegypti) repellent activity of essential-oils-loaded nanoemulsions. AAPS PharmSciTech, 2009, 10(4), 1234–1242.
  • Paula, H.C.B.; de Oliveira, E.F.; Abreu, F.O.M.S.; de Paula, R.C.M. Alginate/cashew gum floating bead as a matrix for larvicide release. Mater. Sci. Eng., C 2012, 32(6), 1421–1427.
  • Abreu, F.O.M.S.; Oliveira, E.F.; Paula, H.C.B.; de Paula, R.C.M. Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydr. Polym. 2012, 89(4), 1277–1282.
  • Glenn, G.M.; Klamczynski, A.P.; Woods, D.F.; Chiou, B.; Orts, W.J.; Imam, S.H. Encapsulation of plant oils in porous starch microspheres. J. Agric. Food Chem. 2010, 58(7), 4180–4184.
  • Devi, N.; Maji, T.K. A novel microencapsulation of neem (Azadirachta indica A. Juss.) seed oil (NSO) in polyelectrolyte complex of κ-carrageenan and chitosan. J. Appl. Polym. Sci. 2009, 113(3), 1576–1583.
  • Devi, N.; Maji, T.K. Study of complex coacervation of gelatin A with sodium carboxymethyl cellulose: Microencapsulation of neem (Azadirachta indica A. Juss.) seed oil (NSO). Int. J. Polym. Mater. Polym. Biomater. 2011, 60(13), 1091–1105.
  • Kulkarni, A.R.; Soppimath, K.S.; Aminabhavi, T.M.; Dave, A.M.; Mehta, M.H. Glutaraldehyde crosslinked sodium alginate beads containing liquid pesticide for soil application. J. Controlled Release, 2000, 63(1–2), 97–105.
  • Riyajan, S.-A.; Sakdapipanich, J. Development of a controlled release neem capsule with a sodium alginate matrix, crosslinked by glutaraldehyde and coated with natural rubber. Polym. Bull. 2009, 63(4), 609–622.
  • Bochot, A.; Trichard, L.; Le Bas, G.; Alphandary, H.; Grossiord, J.L.; Duchêne, D.; Fattal, E. α-Cyclodextrin/oil beads: An innovative self-assembling system. Intx. J. Pharm. 2007, 339(1–2), 121–129.
  • Trichard, L.; Fattal, E.; Besnard, M.; Bochot, A. α-Cyclodextrin/oil beads as a new carrier for improving the oral bioavailability of lipophilic drugs. J. Controlled Release 2007, 122(1), 47–53.
  • Hamoudi, M.; Fattal, E.; Gueutin, C.; Nicolas, V.; Bochot, A. Beads made of cyclodextrin and oil for the oral delivery of lipophilic drugs: In vitro studies in simulated gastro-intestinal fluids. Int. J. Pharm. 2011, 416(2), 507–514.
  • Hamoudi, M.C.; Bourasset, F.; Domergue-Dupont, V.; Gueutin, C.; Nicolas, V.; Fattal, E.; Bochot, A. Formulations based on alpha cyclodextrin and soybean oil: An approach to modulate the oral release of lipophilic drugs. J. Controlled Release 2012, 161(3), 861–867.
  • Gallardo, G.; Guida, L.; Martinez, V.; López, M.C.; Bernhardt, D.; Blasco, R.; Pedroza-Islas, R.; Hermida, R.G. Microencapsulation of linseed oil by spray drying for functional food application. Food Res. Int. 2013, 52(2), 473–482.
  • Frascareli, E.; Silva, V.M.; Tonon, R.V.; Hubinger, M.D. Effect of process conditions on the microencapsulation of coffee oil by spray drying. Food and bioproducts processing, 2012, 90(3), 413–424.
  • Fuchs, M.; Turchiuli, C.; Bohin, M.; Cuvelier, M.E.; Ordonnaud, C.; Peyrat-Maillard, M.N.; Dumoulin, E. Encapsulation of oil in powder using spray drying and fluidised bed agglomeration. J. Food Eng. 2006, 75(1), 27–35.
  • Ahn, J.-H.; Kim, Y.-P.; Seo, E.-M.; Choi, Y.-K.; Kim, H.-S. Antioxidant effect of natural plant extracts on the microencapsulated high oleic sunflower oil. J. Food Eng. 2008, 84(2), 327–334.
  • Velasco, J.; Marmesat, S.; Dobarganes, C.; Márquez-Ruiz, G. Heterogeneous aspects of lipid oxidation in dried microencapsulated oils. J. Agric. Food Chem. 2006, 54(5), 1722–1729.
  • Drusch, S.; Serfert, Y.; Van Den Heuvel, A.; Schwarz, K. Physicochemical characterization and oxidative stability of fish oil encapsulated in an amorphous matrix containing trehalose. Food Res. Int. 2006, 39(7), 807–815.
  • Avila-Sosa, R.; Hernández-Zamoran, E.; López-Mendoza, I.; Palou, E.; Munguía, M.T.J.; Nevárez-Moorillón, G.V.; López-Malo, A. Fungal inactivation by Mexican oregano (Lippia berlandieri Schauer) essential oil added to amaranth, chitosan, or starch edible films. J. Food Sci. 2010, 75(3), M127–M133.
  • Phothisuwan, S.; Matan, N.; Matan, N. Efficacy of edible film incorporated with essential oils against white-rot decay fungus (Trametes versicolor). Int. J. Environ. Sci. Dev. 2013, 4(4), 412–414.
  • Whorton, C.; Reineccius, G.A. Evaluation of the mechanisms associated with the release of encapsulated flavor materials from maltodextrin matrices. ACS Symp. Ser. 1995, 590, 143–160.
  • Bylaitë, E.; Rimantas Venskutonis, P.; Maþdþierienë, R. Properties of caraway (Carum carvi L.) essential oil encapsulated into milk protein-based matrices. Eur. Food Res. Technol. 2001, 212(6), 661–670.
  • Baranauskienė, R.; Venskutonis, P.R. Dewettinck, K.; Verhé, R. Properties of oregano (Origanum vulgare L.), citronella (Cymbopogon nardus G.) and marjoram (Majorana hortensis L.) flavors encapsulated into milk protein-based matrices. Food Res. Int. 2006, 39(4), 413–425.
  • Chen, Q.; McGillivray, D.; Wen, J.; Zhong, F.; Quek, S.Y. Co-encapsulation of fish oil with phytosterol esters and limonene by milk proteins. J. Food Eng. 2013, 117(4), 505–512.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.