Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 48, 2024 - Issue 2
20
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Noninvasive Prenatal Diagnosis of SEA-Thalassemia by Combining 1000 Genomes Database and Relative Haplotype Dosage

, , , , &
Pages 71-78 | Received 25 Aug 2023, Accepted 29 Feb 2024, Published online: 18 Apr 2024

References

  • Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ. 2008;86(6):480–487. doi: 10.2471/blt.06.036673.
  • Weatherall DJ. The evolving spectrum of the epidemiology of thalassemia. Hematol Oncol Clin North Am. 2018;32(2):165–175. doi: 10.1016/j.hoc.2017.11.008.
  • Huang H, Xu L, Chen M, et al. Molecular characterization of thalassemia and hemoglobinopathy in Southeastern China. Sci Rep. 2019;9(1):3493. doi: 10.1038/s41598-019-40089-5.
  • Yin A, Li B, Luo M, et al. The prevalence and molecular spectrum of α- and β-globin gene mutations in 14,332 families of Guangdong Province, China. PLOS One. 2014;9(2):e89855. doi: 10.1371/journal.pone.0089855.
  • Farmakis D, Porter J, Taher A, et al. 2021 Thalassaemia International Federation Guidelines for the management of transfusion-dependent thalassemia. Hemasphere. 2022;6(8):e732. doi: 10.1097/HS9.0000000000000732.
  • Strocchio L, Locatelli F. Hematopoietic stem cell transplantation in thalassemia. Hematol Oncol Clin North Am. 2018;32(2):317–328. doi: 10.1016/j.hoc.2017.11.011.
  • Borgna-Pignatti C, Rugolotto S, De Stefano P, et al. Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. Haematologica. 2004;89(10):1187–1193.
  • Hsu WW, Hsieh CJ, Lee CN, et al. Complication rates after chorionic villus sampling and midtrimester amniocentesis: a 7-year national registry study. J Formos Med Assoc. 2019;118(7):1107–1113. doi: 10.1016/j.jfma.2019.03.006.
  • Tabor A, Vestergaard CH, Lidegaard Ø. Fetal loss rate after chorionic villus sampling and amniocentesis: an 11-year national registry study. Ultrasound Obstet Gynecol. 2009;34(1):19–24. doi: 10.1002/uog.6377.
  • Bakker M, Birnie E, Robles de Medina P, et al. Total pregnancy loss after chorionic villus sampling and amniocentesis: a cohort study. Ultrasound Obstet Gynecol. 2017;49(5):599–606. doi: 10.1002/uog.15986.
  • Williams J, 3rd, Medearis AL, Chu WH, et al. Maternal cell contamination in cultured chorionic villi: comparison of chromosome Q-polymorphisms derived from villi, fetal skin, and maternal lymphocytes. Prenat Diagn. 1987;7(5):315–322. doi: 10.1002/pd.1970070504.
  • Lo YM, Corbetta N, Chamberlain PF, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350(9076):485–487. doi: 10.1016/S0140-6736(97)02174-0.
  • Lo YM, Chan KC, Sun H, et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med. 2010;2(61):61ra91. doi: 10.1126/scitranslmed.3001720.
  • Drury S, Mason S, McKay F, et al. Implementing non-invasive prenatal diagnosis (NIPD) in a National Health Service Laboratory; from dominant to recessive disorders. Adv Exp Med Biol. 2016;924:71–75.
  • Hui WW, Jiang P, Tong YK, et al. Universal haplotype-based noninvasive prenatal testing for single gene diseases. Clin Chem. 2017;63(2):513–524. doi: 10.1373/clinchem.2016.268375.
  • Zhao G, Wang X, Liu L, et al. Noninvasive prenatal diagnosis of duchenne muscular dystrophy in five Chinese families based on relative mutation dosage approach. BMC Med Genomics. 2021;14(1):275. doi: 10.1186/s12920-021-01128-1.
  • Breveglieri G, Travan A, D'Aversa E, et al. Postnatal and non-invasive prenatal detection of β-thalassemia mutations based on Taqman genotyping assays. PLOS One. 2017;12(2):e0172756. doi: 10.1371/journal.pone.0172756.
  • Papasavva T, Kalikas I, Kyrri A, et al. Arrayed primer extension for the noninvasive prenatal diagnosis of beta-thalassemia based on detection of single nucleotide polymorphisms. Ann N Y Acad Sci. 2018;1137(1):302–308. doi: 10.1196/annals.1448.029.
  • Yang L, Wu Y, Hu Z, et al. Simultaneous detection of fetal aneuploidy, de novo FGFR3 mutations and paternally derived β-thalassemia by a novel method of noninvasive prenatal testing. Prenat Diagn. 2021;41(4):440–448. doi: 10.1002/pd.5879.
  • Lun FM, Tsui NB, Chan KC, et al. Noninvasive prenatal diagnosis of monogenic diseases by digital size selection and relative mutation dosage on DNA in maternal plasma. Proc Natl Acad Sci U S A. 2008;105(50):19920–19925. doi: 10.1073/pnas.0810373105.
  • Yang X, Zhou Q, Zhou W, et al. A cell-free DNA barcode-enabled single-molecule test for noninvasive prenatal diagnosis of monogenic disorders: application to β-thalassemia. Adv Sci . 2019;6(11):1802332.
  • Lv W, Wei X, Guo R, et al. Noninvasive prenatal testing for Wilson disease by use of circulating single-molecule amplification and resequencing technology (cSMART). Clin Chem. 2015;61(1):172–181. doi: 10.1373/clinchem.2014.229328.
  • Han M, Li Z, Wang W, et al. A quantitative cSMART assay for noninvasive prenatal screening of autosomal recessive nonsyndromic hearing loss caused by GJB2 and SLC26A4 mutations. Genet Med. 2017;19(12):1309–1316. doi: 10.1038/gim.2017.54.
  • Yang J, Peng CF, Qi Y, et al. Noninvasive prenatal detection of hemoglobin Bart hydrops fetalis via maternal plasma dispensed with parental haplotyping using the semiconductor sequencing platform. Am J Obstet Gynecol. 2022;222(2):185.e1–e17. doi: 10.1016/j.ajog.2019.07.044.
  • Yang X, Ye Y, Fan D, et al. Non‑invasive prenatal diagnosis of thalassemia through multiplex PCR, target capture and next‑generation sequencing. Mol Med Rep. 2020;22(2):1547–1557. doi: 10.3892/mmr.2020.11234.
  • Wang W, Yuan Y, Zheng H, et al. A pilot study of noninvasive prenatal diagnosis of alpha- and beta-thalassemia with target capture sequencing of cell-free fetal DNA in maternal blood. Genet Test Mol Biomarkers. 2017;21(7):433–439. doi: 10.1089/gtmb.2016.0411.
  • Lam KW, Jiang P, Liao GJ, et al. Noninvasive prenatal diagnosis of monogenic diseases by targeted massively parallel sequencing of maternal plasma: application to β-thalassemia. Clin Chem. 2012;58(10):1467–1475. doi: 10.1373/clinchem.2012.189589.
  • Vermeulen C, Geeven G, de Wit E, et al. Sensitive monogenic noninvasive prenatal diagnosis by targeted haplotyping. Am J Hum Genet. 2017;101(3):326–339. doi: 10.1016/j.ajhg.2017.07.012.
  • Jiang F, Liu W, Zhang L, et al. Noninvasive prenatal testing for β-thalassemia by targeted nanopore sequencing combined with relative haplotype dosage (RHDO): a feasibility study. Sci Rep. 2021;11(1):5714. doi: 10.1038/s41598-021-85128-2.
  • Khatkar MS, Moser G, Hayes BJ, et al. Strategies and utility of imputed SNP genotypes for genomic analysis in dairy cattle. BMC Genomics. 2012;13(1):538. doi: 10.1186/1471-2164-13-538.
  • Ali J, Aslam UM, Tariq R, et al. Exploiting the genomic diversity of Rice (Oryza sativa L.): SNP-typing in 11 early-backcross introgression-breeding populations. Front Plant Sci. 2018;9:849. doi: 10.3389/fpls.2018.00849.
  • Howie B, Marchini J, Stephens M. Genotype imputation with thousands of genomes. G3 . 2011;1(6):457–470. doi: 10.1534/g3.111.001198.
  • Browning BL, Tian X, Zhou Y, et al. Fast two-stage phasing of large-scale sequence data. Am J Hum Genet. 2021;108(10):1880–1890. doi: 10.1016/j.ajhg.2021.08.005.
  • Delaneau O, Marchini J,. Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel. Nat Commun. 2014;5(1):3934. doi: 10.1038/ncomms4934.
  • Chen C, Li R, Sun J, et al. Noninvasive prenatal testing of α-thalassemia and β-thalassemia through population-based parental haplotyping. Genome Med. 2021;13(1):18. doi: 10.1186/s13073-021-00836-8.
  • Saba L, Masala M, Capponi V, et al. Non-invasive prenatal diagnosis of beta-thalassemia by semiconductor sequencing: a feasibility study in the sardinian population. Eur J Hum Genet. 2017;25(5):600–607. doi: 10.1038/ejhg.2017.26.
  • Li H, Du B, Jiang F, et al. Noninvasive prenatal diagnosis of β-thalassemia by relative haplotype dosage without analyzing proband. Mol Genet Genomic Med. 2019;7(11):e963.
  • Kardos M, Luikart G, Allendorf FW. Measuring individual inbreeding in the age of genomics: marker-based measures are better than pedigrees. Heredity. 2015;115(1):63–72. doi: 10.1038/hdy.2015.17.
  • Zeevi DA, Altarescu G, Weinberg-Shukron A, et al. Proof-of-principle rapid noninvasive prenatal diagnosis of autosomal recessive founder mutations. J Clin Invest. 2015;125(10):3757–3765. doi: 10.1172/JCI79322.
  • Suo C, Xu H, Khor CC, et al. Natural positive selection and north-south genetic diversity in East Asia. Eur J Hum Genet. 2012;20(1):102–110. doi: 10.1038/ejhg.2011.139.
  • Ali M, Liu X, Pillai EN, et al. Characterizing the genetic differences between two distinct migrant groups from Indo-European and Dravidian speaking populations in India. BMC Genet. 2014;15(1):86. doi: 10.1186/1471-2156-15-86.
  • Liu N, Sawyer SL, Mukherjee N, et al. Haplotype block structures show significant variation among populations. Genet Epidemiol. 2004;27(4):385–400. doi: 10.1002/gepi.20026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.