179
Views
14
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and characterization of insulin/zirconium phosphate@TiO2 hybrid composites for enhanced oral insulin delivery applications

, , , &
Pages 862-870 | Received 06 Apr 2016, Accepted 19 Jun 2016, Published online: 22 Aug 2016

References

  • Li P, Tan A, Prestidge CA, et al. Self-nanoemulsifying drug delivery systems for oral insulin delivery: in vitro and in vivo evaluations of enteric coating and drug loading. Int J Pharm 2014;477:390–8.
  • Diaz A, David A, Perez R, et al. Nanoencapsulation of insulin into zirconium phosphate for oral delivery applications. Biomacromolecules 2010;11:2465–70.
  • Mo R, Jiang T, Di J, et al. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem Soc Rev 2014;43:3595–629.
  • Wong TW. Design of oral insulin delivery systems. J Drug Target 2010;18:79–92.
  • Yan HB, Zhang YQ, Ma YL, Zhou LX. Biosynthesis of insulin-silk fibroin nanoparticles conjugates and in vitro evaluation of a drug delivery system. J Nanopart Res 2009;11:1937–46.
  • Maroni A, Zema L, Curto MD, et al. Oral colon delivery of insulin with the aid of functional adjuvants. Adv Drug Deliv Rev 2012;64:540–56.
  • Ghilzai NMK. New developments in insulin delivery. Drug Dev Ind Pharm 2003;29:253–65.
  • Bailey MM, Gorman EM, Munson EJ, Berkland C. Pure insulin nanoparticle agglomerates for pulmonary delivery. Langmuir 2008;24:13614–20.
  • Smirnova E, Safenkova I, Margolina VS, et al. Can aggregation of insulin govern its fate in the intestine? Implications for oral delivery of the drug. Int J Pharm 2014;471:65–8.
  • Zhu X, Shan W, Zhang P, et al. Penetratin derivative-based nanocomplexes for enhanced intestinal insulin delivery. Mol Pharm 2014;11:317–28.
  • Sakloetsakun D, Dünnhaupt S, Barthelmes J, et al. Combining two technologies: multifunctional polymers and self-nanoemulsifying drug delivery system (SNEDDS) for oral insulin administration. Int J Biol Macromol 2013;61:363–72.
  • Kumar TM, Misra A. Influence of absorption promoters on pulmonary insulin bioactivity. AAPS PharmSciTech 2003;4:1–12.
  • Golomb G, Avramoff A, Haffman A. A new route of drug administration: intrauterine delivery of insulin and calcitonin. Pharm Res 1993;10:828–33.
  • Safari M, Ghiaci M, Jafari-Asl M, Ensafi AA. Hybrid organic–inorganic chitosan/dopamine/TiO2 compositeswith controlled drug-delivery properties. Appl Surf Sci 2015;342:26–33.
  • Sant S, Tao SL, Fisher OZ, et al. Microfab-rication technologies for oral drug delivery. Adv Drug Deliv Rev 2012;64:496–507.
  • Jiang T, James R, Kumbar SG, Laurencin CT. Chapter 5 – chitosan as a bio-material: structure properties and applications in tissue engineering and drug delivery. In: Kumbar S, Laurencin C, Deng M, eds. Natural and synthetic biomedical polymers. Burlington: Elsevier North Holland; 2014:91–113.
  • Cui M, Wua W, Hovgaard L, et al. Liposomes containing cholesterol analogs of botanical origin as drug delivery systems to enhance the oral absorption of insulin. Int J Pharm 2015;489:277–84.
  • Alai MS, Lin WJ, Pingale SS. Application of polymeric nanoparticles and micelles in insulin oral delivery. J Food Drug Anal 2015;23:351–8.
  • Nicolas J, Mura S, Brambilla D, et al. Design functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 2013;42:1147–235.
  • Fonte P, Araújo F, Silva C, et al. Polymer-based nanoparticles for oral insulin delivery: revisited approaches. Biotechnol Adv 2015;33:1342–54.
  • Lim HP, Tey BT, Chan ES. Particle designs for the stabilization and controlled-delivery of protein drugs by biopolymers: a case study on insulin. J Control Release 2014;186:11–21.
  • Rezanejade-Bardajee GR, Hooshyar Z. One-pot synthesis of biocompatible superparamagnetic iron oxide nanoparticles/hydrogel based on salep: characterization and drug delivery. Carbohyd Polym 2014;101:741–51.
  • Huang J, Shu Q, Wang L, et al. Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine. Biomaterials 2015;39:105–13.
  • Amirthalingam E, Rodrigues M, Casal-Dujat L, et al. Macrocyclic imidazolium-based amphiphiles for the synthesis of gold nanoparticles and delivery of anionic drugs. J Colloid Interf Sci 2015;437:132–9.
  • Popova M, Szegedi A, Yoncheva K, et al. New method for preparation of delivery systems of poorly soluble drugs on the basis of functionalized mesoporous MCM-41 nanoparticles. Micropor Mesopor Mat 2014;198:247–55.
  • Skorupska E, Jeziorna A, Paluch P, Potrzebowski MJ. Ibuprofen in mesopores of mobil crystalline material 41 (MCM-41): a deeper understanding. Mol Pharm 2014;11:1512–19.
  • Andreani T, De Souza ALR, Kiill CP, et al. Preparation and characterization of PEG-coated silica nanoparticles for oral insulin delivery. Int J Pharm 2014;473:627–35.
  • Hu L, Sun H, Zhaoa Q, et al. Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine. Mater Sci Eng C 2015;47:313–24.
  • Gao W, Chan JM, Farokhzad OC. pH-responsive nanoparticles for drug delivery. Mol Pharm 2010;7:1913–20.
  • Kapoor S, Hegde R, Bhattacharyya AJ. Influence of surface chemistry of mesoporous alumina with wide pore distribution on controlled drug release. J Control Release 2009;140:34–9.
  • Gu Z, Thomas AC, Xu ZP, et al. In vitro sustained release of LMWH from MgAl-layered double hydroxide hybrids. Chem Mater 2008;20:3715–22.
  • Kankala RK, Kuthati Y, Sie HW, et al. Multi-laminated metal hydroxide nanocontainers for oral-specific delivery for bioavailability improvement and treatment of inflammatory paw edema in mice. J Colloid Interf Sci 2015;458:217–28.
  • Diaz A, Gonzalez ML, Perez RJ, et al. Direct intercalation of cisplatin into zirconium phosphate nanoplatelets for potential cancer nanotherapy. Nanoscale 2013;5:11456–63.
  • Casanas-Montes B, Diaz A, Barbosa C, et al. Molybdocene dichloride intercalation into zirconium phosphate nanoparticles. J Organomet Chem 2015;791:34–40.
  • Diaz A, Saxena V, Gonzalez J, et al. Zirconium phosphate nano-platelets: a novel platform for drug delivery in cancer therapy. Chem Commun 2012;48:1754–6.
  • Mosby BM, Goloby M, Diaz A, et al. Designable architectures on nanoparticle surfaces: zirconium phosphate nanoplatelets as a platform for tetravalent metal and phosphonic acid assemblies. Langmuir 2014;30:2513–21.
  • Zhou Y, Huang R, Ding F, et al. Sulfonic acid-functionalized α-zirconium phosphate single-layer nanosheets as a strong solid acid for heterogeneous catalysis applications. ACS Appl Mater Interf 2014;6:7417–25.
  • Li D, Miao C, Wang X, et al. AIE cation functionalized layered zirconium phosphate nanoplatelets: ion-exchange intercalation and cell imaging. Chem Commun 2013;49:9549–51.
  • Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc 1938;60:309–19.
  • Barrett EP, Joyner LG, Halenda PP. The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms. J Am Chem Soc 1951;73:373–80.
  • Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery. Acta Pol Pharm Drug Res 2010;67:217–23.
  • Saghaie L, Sadeghi-Aliabadi H, Ashaehshoar M. Synthesis analysis and cytotoxic evaluation of some hydroxypyridinone derivatives on HeLa and K562 cell lines. Res Pharm Sci 2013;8:185–95.
  • Beranek R, Kisch H. Tuning the optical and photoelectrochemical properties of surface-modified TiO2. Photochem Photobiol Sci 2008;7:40–8.
  • Ofokansi K, Winter G, Fricker G, Coester C. Matrix-loaded biodegradable gelatin nanoparticles as new approach to improve drug loading and delivery. Eur J Pharm Biopharm 2010;76:1–9.
  • Leofanti G, Padovan M, Tozzola G, Venturelli B. Surface area and pore texture of catalysts. Catal Today 1998;41:207–19.
  • Song H, Liang B, Lü L, et al. Effect of hydrolysis conditions on hydrous TiO2 polymorphs precipitated from a titanyl sulfate and sulfuric acid solution. Int J Miner Metall Mater 2012;19:642–50.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.