332
Views
31
CrossRef citations to date
0
Altmetric
Research Article

pH- and thermo-sensitive MTX-loaded magnetic nanocomposites: synthesis, characterization, and in vitro studies on A549 lung cancer cell and MR imaging

, , , , &
Pages 452-462 | Received 29 May 2017, Accepted 20 Oct 2017, Published online: 14 Nov 2017

References

  • Shakoori Z, Ghanbari H, Omidi Y, et al. Fluorescent multi-responsive cross-linked P(N-isopropylacrylamide)-based nanocomposites for cisplatin delivery. Drug Dev Indus Pharm. 2017;43:1283–1291.
  • Panahi Y, Farshbaf M, Mohammadhosseini M, et al. Recent advances on liposomal nanoparticles: synthesis, characterization and biomedical applications. Artif Cells Nanomed Biotechnol. 2017;45:788–799.
  • PanahiMohammadhosseini Y, Nejati-Koshki MK, Abadi AJN, et al. Preparation, surface properties, and therapeutic applications of gold nanoparticles in biomedicine. Drug Res. 2017;67:77–87.
  • Prabhakar U, Maeda H, Jain RK, et al., Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013;73:2412–2417.
  • Shao H, Min C, Issadore D, et al. Magnetic nanoparticles and microNMR for diagnostic applications. Theranostics. 2012;2:55–65.
  • Schotter J, Schrittwieser S, Muellner P, et al. Optical biosensor technologies for molecular diagnostics at the point-of-care. SPIE Sens Technol + Appl. 2015;10.
  • Lian Q, Zheng X. Synthesis and application of magnetic chitosan nanoparticles in oilfield. Russ J Phys Chem. 2016;90:158–165.
  • Shabestari Khiabani S, Farshbaf M, Akbarzadeh A, et al. Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy. Artif Cells Nanomed Biotechnol. 2017;45:6–17.
  • Ye F, Barrefelt Å, Asem H, et al. Biodegradable polymeric vesicles containing magnetic nanoparticles, quantum dots and anticancer drugs for drug delivery and imaging. Biomaterials. 2014;35:3885–3894.
  • Vo-Dinh T. Nanotechnology in biology and medicine: methods, devices, and applications. Boca Raton, London, New York: Taylor & Francis Group, CRC Press, 2007.
  • Mou X, Ali Z, Li S, et al. Applications of magnetic nanoparticles in targeted drug delivery system. J Nanosci Nanotechnol. 2015;15:54–62.
  • Ulbrich K, Holá K, Šubr V, et al. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev. 2016;116:5338–5431.
  • Yapa AS, Bossmann SH. Development of magnetic theranostic agents. Magn Nanomater. 2017;172–194.
  • Kang T, Li F, Baik S, et al. Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials. 2017;136:98–114.
  • Rasekh M, Ahmad Z, Cross R, et al. Facile preparation of drug-loaded tristearin encapsulated superparamagnetic iron oxide nanoparticles using coaxial electrospray processing. Mol Pharm. 2017;14:2010–2023.
  • Hafeli U, Schutt W, Teller J, et al. Scientific and clinical applications of magnetic carriers. New York: Springer Science & Business Media, Plenum Press; 2013.
  • Sahoo B, Devi KSP, Banerjee R, et al. Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug. ACS Appl Mater Interfaces. 2013;5:3884–3893.
  • Zheng H, Huang Z, Che S. Mesostructured chitosan–silica hybrid as a biodegradable carrier for a pH-responsive drug delivery system. Dalton Trans. 2012;41:5038–5044.
  • Tang D, Liu B, Niessner R, et al. Target-induced displacement reaction accompanying cargo release from magnetic mesoporous silica nanocontainers for fluorescence immunoassay. Anal Chem. 2013;85:10589–10596.
  • Youssef NA, Gurbanov EM, Haciyeva SR, et al. Antioxidant enzymes, fluctuating asymmetry and morphological changes of urban trees as an ecological indicator of heavy metal stress. Int J Pharm Sci Health Care. 2013;1:1–18.
  • Kwon S, Singh RK, Perez RA, et al. Silica-based mesoporous nanoparticles for controlled drug delivery. J Tissue Eng. 2013;4:2041731413503357.
  • Sun H, Guo B, Li X, et al. Shell-sheddable micelles based on dextran-SS-poly (ε-caprolactone) diblock copolymer for efficient intracellular release of doxorubicin. Biomacromolecules. 2010;11:848–854.
  • Dai Z. Advances in nanotheranostics II: cancer theranostic nanomedicine. Vol. 7. Singapore, Heidelberg, New York, Dordrecht, London: Springer; 2016.
  • Zhang H, Niu Q, Wang N, et al. Thermo-sensitive drug controlled release PLA core/PNIPAM shell fibers fabricated using a combination of electrospinning and UV photo-polymerization. Eur Polym J. 2015;71:440–450.
  • Yu H, Jia Y, Chen G, et al. Fabrication of core/sheath PCL/PEG–PNIPAAm fibers as thermosensitive release carriers by a new technique combining blend electrospinning and ultraviolet-induced graft polymerization. Mater Lett. 2016;164:505–508.
  • Zhang F, Wu W, Zhang X, et al. Temperature-sensitive poly-NIPAm modified cellulose nanofibril cryogel microspheres for controlled drug release. Cellulose. 2016;23:415–425.
  • Akbarzadeh A, Samiei M, Joo SW, et al. Synthesis, characterization and in vitro studies of doxorubicin-loaded magnetic nanoparticles grafted to smart copolymers on A549 lung cancer cell line. J Nanobiotechnol. 2012;10:46.
  • Chen J, Huang L, Lai H, et al. Methotrexate-loaded PEGylated chitosan nanoparticles: synthesis, characterization, and in vitro and in vivo antitumoral activity. Mol Pharm. 2013;11:2213–2223.
  • Rosenholm JM, Peuhu E, Bate‐Eya LT, et al. Cancer‐cell‐specific induction of apoptosis using mesoporous silica nanoparticles as drug‐delivery vectors. Small. 2010;6:1234–1241.
  • Rahimi M, Safa KD, Alizadeh E, et al. Dendritic chitosan as a magnetic and biocompatible nanocarrier for the simultaneous delivery of doxorubicin and methotrexate to MCF-7 cell line. New J Chem. 2017;41:3177–3189.
  • Wang X, Ding X, Zheng Z, et al. Magnetic molecularly imprinted polymer particles synthesized by suspension polymerization in silicone oil. Macromol Rapid Commun. 2006;27:1180–1184.
  • Muriithi B, Loy D. Proton conductivity of nafion/ex-situ sulfonic acid-modified Stöber silica nanocomposite membranes as a function of temperature, silica particles size and surface modification. Membranes. 2016;6:12.
  • Salehi R, Hamishehkar H, Eskandani M, et al. Development of dual responsive nanocomposite for simultaneous delivery of anticancer drugs. J Drug Target. 2014;22:327–342.
  • Muriithi B, Loy DA. Processing, morphology, and water uptake of nafion/ex situ stober silica nanocomposite membranes as a function of particle size ACS Appl Mater Interfaces. 2012;4:6766–6773.
  • Chen Z, Zhang Y, Zhang S, et al. Preparation and characterization of water-soluble monodisperse magnetic iron oxide nanoparticles via surface double-exchange with DMSA. Colloids Surfaces A Physicochem Eng Asp. 2008;316:210–216.
  • Lamanna G, Kueny-Stotz M, Mamlouk-Chaouachi H, et al. Dendronized iron oxide nanoparticles for multimodal imaging. Biomaterials. 2011;32:8562–8573.
  • Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem. 2009;17:2950–2962.
  • Rahimi M, Shojaei S, Safa KD, et al. Biocompatible magnetic tris (2-aminoethyl) amine functionalized nanocrystalline cellulose as a novel nanocarrier for anticancer drug delivery of methotrexate. New J Chem. 2017;41:2160–2168.
  • Deng L, Ke X, He Z, et al. A MSLN-targeted multifunctional nanoimmunoliposome for MRI and targeting therapy in pancreatic cancer. Int J Nanomedicine. 2012;7:5053–5065.
  • Cai H, Li K, Shen M, et al. Facile assembly of Fe3O4@Au nanocomposite particles for dual mode magnetic resonance and computed tomography imaging applications. J Mater Chem. 2012;22:15110–15120.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.