575
Views
34
CrossRef citations to date
0
Altmetric
Review Article

Calcium phosphate-based nanosystems for advanced targeted nanomedicine

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 1223-1238 | Received 08 Nov 2017, Accepted 09 Mar 2018, Published online: 22 Mar 2018

References

  • Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J. 2005;19:311–330.
  • Wagner V, Dullaart A, Bock A-K. The emerging nanomedicine landscape. Nat Biotechnol. 2006; 24:1211–1217.
  • Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 2010;7:653–664.
  • Doane TL, Burda C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev. 2012;41:2885–2911.
  • Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol Rev 2001;53:283–318.
  • Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev. 2001;47:65–81.
  • Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005;5:161–171.
  • Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3:16–20.
  • Pietronave S, Iafisco M, Locarno D, et al. Functionalized nanomaterials for diagnosis and therapy of cancer. J Appl Biomater Biomech 2009;7:77–89.
  • Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–760.
  • Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7:771–782.
  • Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med. 1998;339:900–905.
  • Zhang Y-W, Shi J, Li Y-J, et al. Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Arch Immunol Ther Exp. 2009;57:435–445.
  • Arany I, Safirstein RL. Cisplatin nephrotoxicity. Semin Nephrol. 2003;23:460–464.
  • Yao X, Panichpisal K, Kurtzman N, et al. Cisplatin nephrotoxicity: a review. Am J Med Sci. 2007;334:115–124.
  • Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 2008;73:994–1007.
  • West SG. Methotrexate hepatotoxicity. Rheum Dis Clin North Am. 1997;23:883–915.
  • McCarthy JR. Multifunctional agents for concurrent imaging and therapy in cardiovascular disease. Adv Drug Deliv Rev. 2010;62:1023–1030.
  • Agulla J, Brea D, Campos F, et al. In vivo theranostics at the peri-infarct region in cerebral ischemia. Theranostics 2013;4:90–105.
  • Godin B, Sakamoto JH, Serda RE, et al. Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends Pharmacol Sci. 2010;31:199–205.
  • Miragoli M, Ceriotti P, Iafisco M, et al. Inhalation of peptide-loaded nanoparticles improves heart failure. Sci Transl Med 2018;10:eaan6205.
  • Zhang L, Gu FX, Chan JM, et al. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008;83:761–769.
  • Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev. 2006;58:1532–1555.
  • Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev. 2010;62:1064–1079.
  • von Maltzahn G, Park J-H, Agrawal A, et al. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 2009;69:3892–3900.
  • Norman RS, Stone JW, Gole A, et al. Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods. Nano Lett. 2008;8:302–306.
  • Bañobre-López M, Teijeiro A, Rivas J. Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep Pract Oncol Radiother. 2013;18:397–400.
  • Zarepour A, Zarrabi A. Khosravi A. SPIONs as nano-theranostics agents. In: Zarepour A, Zarrabi A, Khosravi A, editors. SPIONs as Nano-Theranostics Agents. Singapore: Springer; 2017. p. 1–44.
  • Chen W-H, Luo G-F, Qiu W-X, et al. Mesoporous silica-based versatile theranostic nanoplatform constructed by layer-by-layer assembly for excellent photodynamic/chemotherapy. Biomaterials 2017;117:54–65.
  • Satterlee AB, Yuan H, Huang L. A radio-theranostic nanoparticle with high specific drug loading for cancer therapy and imaging. J Control Release. 2015;217:170–182.
  • Mi P, Dewi N, Yanagie H, et al. Hybrid calcium phosphate-polymeric micelles incorporating gadolinium chelates for imaging-guided gadolinium neutron capture tumor therapy. ACS Nano. 2015;9:5913–5921.
  • Chapman S, Dobrovolskaia M, Farahani K, et al. Nanoparticles for cancer imaging: the good, the bad, and the promise. Nano Today. 2013;8:454–460.
  • Neuberger T, Schöpf B, Hofmann H, et al. Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater. 2005;293:483–496.
  • de Rosales RTM. Potential clinical applications of bimodal PET-MRI or SPECT-MRI agents. J Label Compd Radiopharm. 2014;57:298–303.
  • Pansare VJ, Hejazi S, Faenza WJ, et al. Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers. Chem Mater. 2012;24:812–827.
  • Xie J, Chen K, Huang J, et al. PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials 2010;31:3016–3022.
  • Kelkar SS, Reineke TM. Theranostics: combining imaging and therapy. Bioconjugate Chem. 2011;22:1879–1903.
  • Del Vecchio S, Zannetti A, Fonti R, et al. Nuclear imaging in cancer theranostics. Q J Nucl Med Mol Imaging 2007;51:152.
  • Degli Esposti L, Carella F, Iafisco M. Inorganic nanoparticles for theranostic use. In: Guarino V, Ambrosio L, editors. Electrofluidodynamic technologies (EFDTs) for biomaterials and medical devices. Sawston: Woodhead-Elsevier; 2017.
  • Hamburg MA, Collins FS. The path to personalized medicine. N Engl J Med. 2010;363:301–304.
  • Ginsburg GS, McCarthy JJ. Personalized medicine: revolutionizing drug discovery and patient care. Trends Biotechnol. 2001;19:491–496.
  • Singh N, Jenkins GJS, Asadi R, et al. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 2010;1:5358.
  • Stroh A, Zimmer C, Gutzeit C, et al. Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages. Free Radic Biol Med. 2004;36:976–984.
  • Doshi N, Mitragotri S. Designer biomaterials for nanomedicine. Adv Funct Mater. 2009;19:3843–3854.
  • Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65:71–79.
  • Nichols JW, Bae YH. EPR: evidence and fallacy. J Control Release. 2014;190:451–464.
  • Danhier F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release 2016;244:108–121.
  • Steichen SD, Caldorera-Moore M, Peppas NA. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci. 2013;48:416–427.
  • Torchilin VP. Passive and active drug targeting: drug delivery to tumors as an example. In: Schäfer-Korting M, editor. Drug delivery. Berlin, Heidelberg: Springer; 2010. p. 3–53.
  • Toporkiewicz M, Meissner J, Matusewicz L, et al. Toward a magic or imaginary bullet? Ligands for drug targeting to cancer cells: principles, hopes, and challenges. Int J Nanomed 2015;10:1399–1414.
  • Stewart B, Wild CP. World cancer report 2014. Health. 2017. Available from: http://www.thehealthwell.info/node/725845
  • Ferlay J, Soerjomataram I, Ervik M., et al. GLOBOCAN 2012 V1.0, Estimated cancer incidence, mortality and prevalence worldwide: IARC CancerBase No. 11 [Internet]. 2012. Available from: http://globocan.iarc.fr
  • Bertrand N, Wu J, Xu X, et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Del Rev. 2014;66:2–25.
  • Danhier F, Feron O, Preat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148:135–146.
  • Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2012;2:3.
  • Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release. 2017;264:306–332.
  • Dang L, Liu J, Li F, et al. Targeted delivery systems for molecular therapy in skeletal disorders. IJMS. 2016;17:428.
  • Wang X, Yang Y, Jia H, et al. Peptide decoration of nanovehicles to achieve active targeting and pathology-responsive cellular uptake for bone metastasis chemotherapy. Biomater Sci. 2014;2:961–971.
  • Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res. 2010;62:90–99.
  • Dehaini D, Fang RH, Zhang L. Biomimetic strategies for targeted nanoparticle delivery. Bioeng Transl Med. 2016;1:30–46.
  • Ramzy L, Nasr M, Metwally AA, et al. Cancer nanotheranostics: a review of the role of conjugated ligands for overexpressed receptors. Eur J Pharm Sci. 2017;104:273–292.
  • Shaughnessy AF. Monoclonal antibodies: magic bullets with a hefty price tag. BMJ. 2012;345:e8346.
  • Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 2005;23:1126.
  • Zhang X-X, Eden HS, Chen X. Peptides in cancer nanomedicine: drug carriers, targeting ligands and protease substrates. J Control Release. 2012;159:2–13.
  • Laakkonen P, Vuorinen K. Homing peptides as targeted delivery vehicles. Integr Biol. 2010;2:326–337.
  • Dua P, Kim S, Lee D-K. Nucleic acid aptamers targeting cell-surface proteins. Methods. 2011;54:215–225.
  • Qian ZM. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev. 2002;54:561–587.
  • Daniels TR, Delgado T, Helguera G, et al. The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin Immunol. 2006;121:159–176.
  • Daniels TR, Bernabeu E, Rodríguez JA, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta. 2012;1820:291–317.
  • Irache JM, Salman HH, Gamazo C, et al. Mannose-targeted systems for the delivery of therapeutics. Expert Opin Drug Deliv. 2008;5:703–724.
  • Campbell IG, Jones TA, Foulkes WD, et al. Folate-binding protein is a marker for ovarian cancer. Cancer Res 1991;51:5329–5338.
  • Chen C, Ke J, Zhou XE, et al. Structural basis for molecular recognition of folic acid by folate receptors. Nature 2013;500:486.
  • Johnston APR, Kamphuis MMJ, Such GK, et al. Targeting cancer cells: controlling the binding and internalization of antibody-functionalized capsules. ACS Nano. 2012;6:6667–6674.
  • Brissette R, Prendergast J, Goldstein N. Identification of cancer targets and therapeutics using phage display. Curr Opin Drug Discov Devel 2006;9:363–369.
  • Beck A, Wurch T, Bailly C, et al. Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol. 2010;10:345–352.
  • Koivunen E, Arap W, Rajotte D, et al. Identification of receptor ligands with phage display peptide libraries. J Nucl Med 1999;40:883.
  • Marasco D, Perretta G, Sabatella M, et al. Past and future perspectives of synthetic peptide libraries. CPPS. Curr Cpps. 2008;9:447–467.
  • Smith GP, Petrenko VA. Phage display. Chem Rev. 1997;97:391–410.
  • Janas T, Janas T. The selection of aptamers specific for membrane molecular targets. Cell Mol Biol Lett 2010;16:25.
  • Stoltenburg R, Reinemann C, Strehlitz B. SELEX—a (r) evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng. 2007;24:381–403.
  • Gu FX, Karnik R, Wang AZ, et al. Targeted nanoparticles for cancer therapy. Nano Today. 2007;2:14–21.
  • Wilson DS, Szostak JW. In vitro selection of functional nucleic acids. Annu Rev Biochem. 1999;68:611–647.
  • Xiao Z, Levy-Nissenbaum E, Alexis F, et al. Engineering of targeted nanoparticles for cancer therapy using internalizing aptamers isolated by cell-uptake selection. ACS Nano. 2012;6:696–704.
  • Zhang K, Sefah K, Tang L, et al. A novel aptamer developed for breast cancer cell internalization. ChemMedChem 2012;7:79–84.
  • Zhou J, Rossi JJ. The therapeutic potential of cell-internalizing aptamers. Ctmc Curr Ctmc. 2009;9:1144–1157.
  • Bouchard P, Hutabarat R, Thompson K. Discovery and development of therapeutic aptamers. Annu Rev Pharmacol Toxicol. 2010;50:237–257.
  • Keefe AD, Cload ST. SELEX with modified nucleotides. Curr Opin Chem Biol. 2008;12:448–456.
  • Brown KC. New approaches for cell-specific targeting: identification of cell-selective peptides from combinatorial libraries. Curr Opin Chem Biol. 2000;4:16–21.
  • Danhier F, Le Breton A, Préat V. RGD-based strategies to target alpha (v) beta (3) integrin in cancer therapy and diagnosis. Mol Pharmaceutics. 2012;9:2961–2973.
  • Tortorella S, Karagiannis TC. Transferrin receptor-mediated endocytosis: a useful target for cancer therapy. J Membrane Biol. 2014;247:291–307.
  • McCarthy JR, Bhaumik J, Karver MR, et al. Targeted nanoagents for the detection of cancers. Mol Oncol. 2010;4:511–528.
  • Garcia-Bennett A, Nees M, Fadeel B. In search of the holy grail: folate-targeted nanoparticles for cancer therapy. Biochem Pharmacol. 2011;81:976–984.
  • Zhao X, Li H, Lee RJ. Targeted drug delivery via folate receptors. Expert Opin Drug Deliv. 2008;5:309–319.
  • Thorstensen K, Romslo I. The role of transferrin in the mechanism of cellular iron uptake. Biochem J. 1990;271:1
  • Ponka P, Lok CN. The transferrin receptor: role in health and disease. Int J Biochem Cell Biol. 1999;31:1111–1137.
  • Thorstensen K, Romslo I. The transferrin receptor: its diagnostic value and its potential as therapeutic target. Scand J Clin Lab Invest. 1993;53:113–120.
  • Hashida M. Cell-specific delivery of genes with glycosylated carriers. Adv Drug Deliv Rev. 2001;52:187–196.
  • Rensen PCN, Sliedregt LAJM, Ferns M, et al. Determination of the upper size limit for uptake and processing of ligands by the asialoglycoprotein receptor on hepatocytes in vitro and in vivo. J Biol Chem. 2001;276:37577–37584.
  • Platt VM, Szoka FC Jr. Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharmaceutics. 2008;5:474–486.
  • Mattheolabakis G, Milane L, Singh A, et al. Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine. J Drug Target. 2015;23:605–618.
  • Saravanakumar G, Deepagan VG, Jayakumar R, et al. Hyaluronic acid-based conjugates for tumor-targeted drug delivery and imaging. J Biomed Nanotechnol. 2014;10:17–31.
  • Arpicco S, Milla P, Stella B, et al. Hyaluronic acid conjugates as vectors for the active targeting of drugs, genes and nanocomposites in cancer treatment. Molecules. 2014;19:3193–3230.
  • Ogawa M, Kosaka N, Choyke PL, et al. In vivo molecular imaging of cancer with a quenching near-infrared fluorescent probe using conjugates of monoclonal antibodies and indocyanine green. Cancer Res. 2009;69:1268–1272.
  • Hu C-MJ, Kaushal S, Cao HST, et al. Half-antibody functionalized lipid − polymer hybrid nanoparticles for targeted drug delivery to carcinoembryonic antigen presenting pancreatic cancer cells. Mol Pharmaceutics. 2010;7:914–920.
  • Shen C, Lan X, Lu X, et al. Site-specific surface functionalization of gold nanorods using DNA origami clamps. J Am Chem Soc. 2016;138:1764–1767.
  • Polito L, Monti D, Caneva E, et al. One-step bioengineering of magnetic nanoparticles via a surface diazo transfer/azide–alkyne click reaction sequence. ChemComm 2008;621–623.
  • Brennan JL, Hatzakis NS, Tshikhudo TR, et al. Bionanoconjugation via click chemistry: the creation of functional hybrids of lipases and gold nanoparticles. Bioconjugate Chem. 2006;17:1373–1375.
  • Kamphuis MMJ, Johnston APR, Such GK, et al. Targeting of cancer cells using click-functionalized polymer capsules. J Am Chem Soc. 2010;132:15881–15883.
  • von Maltzahn G, Ren Y, Park J-H, et al. In vivo tumor cell targeting with “click” nanoparticles. Bioconjug Chem. 2008;19:1570–1578.
  • Deshayes S, Maurizot V, Clochard M-C, et al. “Click’ conjugation of peptide on the surface of polymeric nanoparticles for targeting tumor angiogenesis. Pharm Res. 2011;28:1631–1642.
  • Thorek DL, Elias eR, Tsourkas A. Comparative analysis of nanoparticle-antibody conjugations: carbodiimide versus click chemistry. Mol Imaging. 2009;8:221–229.
  • Bolley J, Guenin E, Lievre N, et al. Carbodiimide versus click chemistry for nanoparticle surface functionalization: a comparative study for the elaboration of multimodal superparamagnetic nanoparticles targeting αvβ3 integrins. Langmuir 2013;29:14639–14647.
  • Sivaram AJ, Wardiana A, Howard CB, et al. Recent advances in the generation of antibody–nanomaterial conjugates. Adv Healthcare Mater. 2018;7:1700607.
  • Niemeyer CM. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed. 2001;40:4128–4158.
  • Hazarika P, Ceyhan B, Niemeyer CM. Sensitive detection of proteins using difunctional DNA–gold nanoparticles. Small 2005;1:844–848.
  • Niemeyer CM, Ceyhan B. DNA‐directed functionalization of colloidal gold with proteins. Angew Chem Int Ed. 2001;40:3685–3688.
  • Kukolka F, Müller BK, Paternoster S, et al. A single‐molecule Förster resonance energy transfer analysis of fluorescent DNA–protein conjugates for nanobiotechnology. Small. 2006;2:1083–1089.
  • Degli Esposti L, Tampieri A, Iafisco M. Nanostructured calcium phosphates in theranostic nanomedicine. In: Uskoković V, Editor. Nanotechnologies in preventive and regenerative medicine. Amsterdam: Elsevier; 2017.
  • Gómez-Morales J, Iafisco M, Delgado-López JM, et al. Progress on the preparation of nanocrystalline apatites and surface characterization: overview of fundamental and applied aspects. Prog Cryst Growth Charact Mater. 2013;59:1–46.
  • Iafisco M, Delgado-López JM. Apatite: synthesis, structural characterization, and biomedical applications. Hauppauge: Nova Science Publishers, Incorporated; 2014.
  • Iafisco M, Varoni E, Di Foggia M, et al. Conjugation of hydroxyapatite nanocrystals with human immunoglobulin G for nanomedical applications. Colloids Surf B Biointerfaces. 2012;90:1–7.
  • Dorozhkin SV. Bioceramics of calcium orthophosphates. Biomaterials. 2010;31:1465–1485.
  • Dorozhkin SV. Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater. 2010;6:715–734.
  • Iafisco M, Catalucci D. Nano-apatites with designed chemistry and crystallinity for bone regeneration and nanomedical applications. In: Sprio S, Tampieri A, editors. Bio-inspired regenerative medicine: materials, processes, and clinical applications. Singapore: Pan Stanford Publishing; 2016. p. 47–83.
  • Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res. 1998;13:94–117.
  • LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res. 2002;395:81–98.
  • Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int Ed. 2002;41:3130–3146.
  • Doremus RH. Bioceramics. J Mater Sci. 1992;27:285–297.
  • Orlovskii VP, Komlev VS, Barinov SM. Hydroxyapatite and hydroxyapatite-based ceramics. Inorg Mater. 2002;38:973–984.
  • Ferraz M, Monteiro F, Manuel C. Hydroxyapatite nanoparticles: a review of preparation methodologies. J Appl Biomater Biomech. 2004;2:74–80.
  • Norton J, Malik KR, Darr JA, et al. Recent developments in processing and surface modification of hydroxyapatite. Adv Appl Ceram. 2006;105:113–139.
  • Murugan R, Ramakrishna S. Development of cell-responsive nanophase hydroxyapatite for tissue engineering. Am J Biochem Biotechnol. 2007;3:118–124.
  • Wang L, Nancollas GH. Calcium orthophosphates: crystallization and dissolution. Chem Rev. 2008;108:4628–4669.
  • Lin K, Wu C, Chang J. Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomater. 2014;10:4071–4102.
  • Sadat-Shojai M, Khorasani M-T, Dinpanah-Khoshdargi E, et al. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 2013;9:7591–7621.
  • Zhou L, Chen Z, Dong K, et al. DNA-mediated biomineralization of rare-earth nanoparticles for simultaneous imaging and stimuli-responsive drug delivery. Biomaterials 2014;35:8694–8702.
  • Navarro M, Michiardi A, Castaño O, et al. Biomaterials in orthopaedics. J R Soc Interface. 2008;5:1137–1158.
  • Roveri N, Iafisco M. Evolving application of biomimetic nanostructured hydroxyapatite. Nanotechnol Sci Appl. 2010;3:107–125.
  • Iafisco M, Palazzo B, Martra G, et al. Nanocrystalline carbonate-apatites: role of Ca/P ratio on the upload and release of anticancer platinum bisphosphonates. Nanoscale 2012;4:206–217.
  • Roveri N, Palazzo B, Iafisco M. The role of biomimetism in developing nanostructured inorganic matrices for drug delivery. Expert Opin Drug Deliv. 2008;5:861–877.
  • Delgado-López JM, Iafisco M, Rodríguez I, et al. Crystallization of bioinspired citrate-functionalized nanoapatite with tailored carbonate content. Acta Biomater. 2012;8:3491–3499.
  • Sandhofer B, Meckel M, Delgado-López JM, et al. Synthesis and preliminary in vivo evaluation of well-dispersed biomimetic nanocrystalline apatites labeled with positron emission tomographic imaging agents. ACS Appl Mater Interfaces. 2015;7:10623–10633.
  • Chatzipanagis K, Iafisco M, Roncal-Herrero T, et al. Crystallization of citrate-stabilized amorphous calcium phosphate to nanocrystalline apatite: a surface-mediated transformation. CrystEngComm 2016;18:3170–3173.
  • Iafisco M, Ramírez-Rodríguez GB, Sakhno Y, et al. The growth mechanism of apatite nanocrystals assisted by citrate: relevance to bone biomineralization. CrystEngComm 2015;17:507–511.
  • Di Mauro V, Iafisco M, Salvarani N, et al. Bioinspired negatively charged calcium phosphate nanocarriers for cardiac delivery of MicroRNAs. Nanomedicine 2016;11:891–906.
  • McCarthy JR, Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev. 2008;60:1241–1251.
  • Halas N. Playing with plasmons: tuning the optical resonant properties of metallic nanoshells. MRS Bull. 2005;30:362–367.
  • Murphy CJ, Sau TK, Gole AM, et al. Anisotropic Metal Nanoparticles: synthesis, Assembly, and Optical Applications. J Phys Chem B. 2005;109:13857–13870.
  • Cobley CM, Chen J, Cho EC, et al. Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev. 2011;40:44–56.
  • Arriagada F, Osseo-Asare K. Phase and dispersion stability effects in the synthesis of silica nanoparticles in a non-ionic reverse microemulsion. Colloids Surf. 1992;69:105–115.
  • Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968;26:62–69.
  • Cai Q, Luo Z-S, Pang W-Q, et al. Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium. Chem Mater. 2001;13:258–263.
  • Huo Q, Margolese DI, Stucky GD. Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem Mater. 1996;8:1147–1160.
  • Discher DE, Eisenberg A. Polymer vesicles. Science. 2002;297:967–973.
  • Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B. 2010;75:1–18.
  • Soppimath KS, Aminabhavi TM, Kulkarni AR, et al. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70:1–20.
  • Rodríguez-Ruiz I, Delgado-López JM, Durán-Olivencia MA, et al. pH-Responsive delivery of doxorubicin from citrate–apatite nanocrystals with tailored carbonate content. Langmuir. 2013;29:8213–8221.
  • Uskoković V, Uskoković DP. Nanosized hydroxyapatite and other calcium phosphates: Chemistry of formation and application as drug and gene delivery agents. J Biomed Mater Res B. 2011;96B:152–191.
  • Lee H, Choi HW, Kim K, et al. Modification of hydroxyapatite nanosurfaces for enhanced colloidal stability and improved interfacial adhesion in nanocomposites. Chem Mater. 2006;18:5111–5118.
  • Boanini E, Gazzano M, Bigi A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 2010;6:1882–1894.
  • Šupová M. Substituted hydroxyapatites for biomedical applications: a review. Ceram Int. 2015;41:9203–9231.
  • Marycz K, Pazik R, Zawisza K, et al. Multifunctional nanocrystalline calcium phosphates loaded with Tetracycline antibiotic combined with human adipose derived mesenchymal stromal stem cells (hASCs). Mater Sci Eng. 2016;69:17–26.
  • Wang Y, Wang J, Hao H, et al. In vitro and in vivo mechanism of bone tumor inhibition by selenium-doped bone mineral nanoparticles. ACS Nano. 2016;10:9927–9937.
  • Iafisco M, Sandri M, Panseri S, et al. Magnetic bioactive and biodegradable hollow Fe-doped hydroxyapatite coated poly (l-lactic) acid micro-nanospheres. Chem Mater. 2013;25:2610–2617.
  • Iannotti V, Adamiano A, Ausanio G, et al. Fe-doping-induced magnetism in nano-hydroxyapatites. Inorg Chem. 2017;56:4446–4458.
  • Morgan TT, Muddana HS, Altinoǧlu E, et al. Encapsulation of organic molecules in calcium phosphate nanocomposite particles for intracellular imaging and drug delivery. Nano Lett. 2008;8:4108–4115.
  • Perera TSH, Han Y, Lu X, et al. Rare earth doped apatite nanomaterials for biological application. J Nanomater. 2015;2015:705390.
  • Hu Y-Y, Rawal A, Schmidt-Rohr K. Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc Natl Acad Sci. 2010;107:22425–22429.
  • Klesing J, Wiehe A, Gitter B, et al. Positively charged calcium phosphate/polymer nanoparticles for photodynamic therapy. J Mater Sci: Mater Med. 2010;21:887–892.
  • Liu T, Chen S, Liu D, et al. On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery. J Control Release. 2005;107:112–121.
  • Yang P, Quan Z, Li C, et al. Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier. Biomaterials. 2008;29:4341–4347.
  • Victor SP, Kumar TSS. Tailoring calcium-deficient hydroxyapatite nanocarriers for enhanced release of antibiotics. J Biomed Nanotechnol. 2008;4:203–209.
  • Rohanizadeh R, Chung K. Hydroxyapatite as a carrier for bone morphogenetic protein. J Oral Implantol. 2011;37:659–672.
  • Victor SP, Paul W, Jayabalan M, et al. Supramolecular hydroxyapatite complexes as theranostic near-infrared luminescent drug carriers. CrystEngComm. 2014;16:9033–9042.
  • Victor SP, Paul W, Jayabalan M, et al. Cucurbituril/hydroxyapatite based nanoparticles for potential use in theranostic applications. CrystEngComm. 2014;16:6929–6936.
  • Iafisco M, Drouet C, Adamiano A, et al. Superparamagnetic iron-doped nanocrystalline apatite as a delivery system for doxorubicin. J Mater Chem B. 2016;4:57–70.
  • Iafisco M, Delgado-Lopez JM, Varoni EM, et al. Cell surface receptor targeted biomimetic apatite nanocrystals for cancer therapy. Small. 2013;9:3834–3844.
  • Cheng X, Kuhn L. Chemotherapy drug delivery from calcium phosphate nanoparticles. Int J Nanomed. 2007;2:667.
  • Iafisco M, Palazzo B, Marchetti M, et al. Smart delivery of antitumoral platinum complexes from biomimetic hydroxyapatite nanocrystals. J Mater Chem. 2009;19:8385–8392.
  • Iafisco M, Margiotta N. Silica xerogels and hydroxyapatite nanocrystals for the local delivery of platinum–bisphosphonate complexes in the treatment of bone tumors: a mini-review. J Inorg Biochem. 2012;117:237–247.
  • Barroug A, Kuhn LT, Gerstenfeld LC, et al. Interactions of cisplatin with calcium phosphate nanoparticles: in vitro controlled adsorption and release. J Orthop Res. 2004;22:703–708.
  • Palazzo B, Iafisco M, Laforgia M, et al. Biomimetic hydroxyapatite–drug nanocrystals as potential bone substitutes with antitumor drug delivery properties. Adv Funct Mater. 2007;17:2180–2188.
  • Mukesh U, Kulkarni V, Tushar R, et al. Methotrexate loaded self-stabilized calcium phosphate nanoparticles: a novel inorganic carrier for intracellular drug delivery. J Biomed Nanotechnol. 2009;5:99–105.
  • Dai CF, Li SP, Li XD. Synthesis of nanostructured methotrexate/hydroxyapatite: Morphology control, growth mechanism, and bioassay explore. Colloids Surf B Biointerfaces. 2015;136:262–271.
  • Rodan GA, Fleisch HA. Bisphosphonates: mechanisms of action. J Clin Invest. 1996;97:2692
  • Russell R, Rogers M. Bisphosphonates: from the laboratory to the clinic and back again. Bone. 1999;25:97–106.
  • Iafisco M, Palazzo B, Falini G, et al. Adsorption and conformational change of myoglobin on biomimetic hydroxyapatite nanocrystals functionalized with alendronate. Langmuir. 2008;24:4924–4930.
  • Pascaud P, Gras P, Coppel Y, et al. Interaction between a bisphosphonate, tiludronate, and biomimetic nanocrystalline apatites. Langmuir. 2013;29:2224–2232.
  • Grossmann G, Grossmann A, Ohms G, et al. Solid‐state NMR of bisphosphonates adsorbed on hydroxyapatite. Magn Reson Chem. 2000;38:11–16.
  • Pascaud P, Errassifi F, Brouillet F, et al. Adsorption on apatitic calcium phosphates for drug delivery: interaction with bisphosphonate molecules. J Mater Sci Mater Med. 2014;25:2373–2381.
  • Josse S, Faucheux C, Soueidan A, et al. Novel biomaterials for bisphosphonate delivery. Biomaterials. 2005;26:2073–2080.
  • Bosco R, Iafisco M, van den Beucken J, et al. Adsorption of alendronate onto biomimetic apatite nanocrystals to develop drug carrier coating for bone implants. In: Ishikawa K, Iwamoto Y, editors. Key Engineering Materials. Zürich: Trans Tech Publ; 2013.
  • Hoffman A, Stepensky D, Ezra A, et al. Mode of administration-dependent pharmacokinetics of bisphosphonates and bioavailability determination. Int J Pharm. 2001;220:1–11.
  • Bessa PC, Casal M, Reis R. Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med. 2008;2:1–96.
  • Burg KJL, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials. 2000;21:2347–2359.
  • Lutolf MP, Weber FE, Schmoekel HG, et al. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol. 2003;21:513–518.
  • Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J Royal Soc Interface. 2011;8:153–170.
  • Sheikh Z, Javaid M, Hamdan N, et al. Bone regeneration using bone morphogenetic proteins and various biomaterial carriers. Materials 2015;8:1778–1816.
  • Bessa PC, Casal M, Reis R. Bone morphogenetic proteins in tissue engineering: the road from the laboratory to the clinic, part I (basic concepts). J Tissue Eng Regen Med. 2008;2:1–13.
  • Wang Q, Wang M, Lu X, et al. Effects of atomic-level nano-structured hydroxyapatite on adsorption of bone morphogenetic protein-7 and its derived peptide by computer simulation. Sci Rep. 2017;7:15152.
  • Dong X-L, Qi W, Tao W, et al. The dynamic behaviours of protein BMP-2 on hydroxyapatite nanoparticles. Molecular Simulation. 2011;37:1097–1104.
  • Xie G, Sun J, Zhong G, et al. Hydroxyapatite nanoparticles as a controlled-release carrier of BMP-2: absorption and release kinetics in vitro. J Mater Sci Mater Med. 2010;21:1875–1880.
  • Epple M, Ganesan K, Heumann R, et al. Application of calcium phosphate nanoparticles in biomedicine. J Mater Chem. 2010;20:18–23.
  • Graham FL, van der Eb AJ. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973;52:456–467.
  • James RF, Grosveld FG. DNA-mediated gene transfer into mammalian cells. In: Walker JM, Gaastra W, editors. Techniques in molecular biology. Boston: Springer; 1987. p. 187–202.
  • Mostaghaci B, Loretz B, Lehr CM. Calcium phosphate system for gene delivery: historical background and emerging opportunities. Cpd. 2016;22:1529–1533.
  • Roy I, Mitra S, Maitra A, et al. Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery. Int J Pharm. 2003;250:25–33.
  • Xie Y, Chen Y, Sun M, et al. A mini review of biodegradable calcium phosphate nanoparticles for gene delivery. Cpb. 2013;14:918–925.
  • Bisht S, Bhakta G, Mitra S, et al. pDNA loaded calcium phosphate nanoparticles: highly efficient non-viral vector for gene delivery. Int J Pharm. 2005;288:157–168.
  • Sokolova VV, Radtke I, Heumann R, et al. Effective transfection of cells with multi-shell calcium phosphate-DNA nanoparticles. Biomaterials. 2006;27:3147–3153.
  • Maitra A. Calcium phosphate nanoparticles: second-generation nonviral vectors in gene therapy. Expert Rev Mol Diagn. 2005;5:893–905.
  • Kingston RE, Chen CA, Rose JK. Calcium phosphate transfection. Curr Protoc Mol Biol. 2003;20:20.3.1–20.3.8.
  • Al-Kattan A, Girod-Fullana S, Charvillat C, et al. Biomimetic nanocrystalline apatites: emerging perspectives in cancer diagnosis and treatment. Int J Pharm. 2012;423:26–36.
  • Zhou Z, Kennell C, Lee J-Y, et al. Calcium phosphate-polymer hybrid nanoparticles for enhanced triple negative breast cancer treatment via co-delivery of paclitaxel and miR-221/222 inhibitors. Nanomed Nanotechnol Biol Med. 2017;13:403–410.
  • Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6:688–701.
  • Mirkin CA, Niemeyer CM. Nanobiotechnology II: more Concepts and Applications. Hoboken: John Wiley & Sons; 2007.
  • Al-Kattan A, Errassifi F, Sautereau A-M, et al. Medical potentialities of biomimetic apatites through adsorption, ionic substitution, and mineral/organic associations: three illustrative examples. Adv Eng Mater. 2010;12:B224–B233.
  • Nadar RA, Margiotta N, Iafisco M, et al. Bisphosphonate‐functionalized imaging agents, anti‐tumor agents and nanocarriers for treatment of bone cancer. Adv Healthc Mater 2017;6:1601119.
  • Papapoulos SE. Bisphosphonate actions: physical chemistry revisited. Bone 2006;38:613–616.
  • Cole LE, Vargo-Gogola T, Roeder RK. Targeted delivery to bone and mineral deposits using bisphosphonate ligands. Adv Drug Deliv Rev. 2016;99:12–27.
  • Russo L, Taraballi F, Lupo C, et al. Carbonate hydroxyapatite functionalization: a comparative study towards (bio)molecules fixation. Interface Focus. 2014;4:20130040.
  • Liu Q, de Wijn JR, de Groot K, et al. Surface modification of nano-apatite by grafting organic polymer. Biomaterials. 1998;19:1067–1072.
  • Hong Z, Qiu X, Sun J, et al. Grafting polymerization of L-lactide on the surface of hydroxyapatite nano-crystals. Polymer. 2004;45:6699–6706.
  • Nwe K, Brechbiel MW. Growing applications of ‘click chemistry’ for bioconjugation in contemporary biomedical research. Cancer Biother Radiopharm. 2009;24:289–302.
  • Hein CD, Liu X-M, Wang D. Click chemistry, a powerful tool for pharmaceutical sciences. Pharm Res. 2008;25:2216–2230.
  • Katz E, Willner I. Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed. 2004;43:6042–6108.
  • Hirsch JD, Eslamizar L, Filanoski BJ, et al. Easily reversible desthiobiotin binding to streptavidin, avidin, and other biotin-binding proteins: uses for protein labeling, detection, and isolation. Anal Biochem. 2002;308:343–357.
  • Wilchek M, Bayer EA. [3] Applications of avidin-biotin technology: literature survey. Methods Enzymol 1990;184:14–45.
  • Diamandis EP, Christopoulos TK. The biotin-(strept) avidin system: principles and applications in biotechnology. Clin Chem. 1991;37:625–636.
  • Haugland RP, Spence MT, Johnson I. Handbook of fluorescent probes and research chemicals. In: Haugland RP, Spence MT, Johnson I, editors. Molecular probes; Carlsbad: Life Technologies; 1996.
  • Liu T, Zhang G, Chen Y-H, et al. Tissue specific expression of suicide genes delivered by nanoparticles inhibits gastric carcinoma growth. Cancer Biol Ther. 2006;5:1683–1690.
  • Zhang G, Liu T, Chen Y-H, et al. Tissue specific cytotoxicity of colon cancer cells mediated by nanoparticle-delivered suicide gene in vitro and in vivo. Clin Cancer Res. 2009;15:201–207.
  • Ashokan A, Menon D, Nair S, et al. A molecular receptor targeted, hydroxyapatite nanocrystal based multi-modal contrast agent. Biomaterials. 2010;31:2606–2616.
  • Li J, Chen Y-C, Tseng Y-C, et al. Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J Control Release. 2010;142:416–421.
  • Barth BM, Sharma R, Altınoğlu Eİ, et al. Bioconjugation of calcium phosphosilicate composite nanoparticles for selective targeting of human breast and pancreatic cancers in vivo. ACS Nano. 2010;4:1279–1287.
  • Barth BM, I. Altinoğlu E, Shanmugavelandy SS, et al. Targeted indocyanine-green-loaded calcium phosphosilicate nanoparticles for in vivo photodynamic therapy of leukemia. ACS Nano. 2011;5:5325–5337.
  • Kozlova D, Chernousova S, Knuschke T, et al. Cell targeting by antibody-functionalized calcium phosphate nanoparticles. J Mater Chem. 2012;22:396–404.
  • Yang Y, Li J, Liu F, et al. Systemic delivery of siRNA via LCP nanoparticle efficiently inhibits lung metastasis. Mol Ther. 2012;20:609–615.
  • Rout SR, Behera B, Maiti TK, et al. Multifunctional magnetic calcium phosphate nanoparticles for targeted platin delivery. Dalton Trans. 2012;41:10777–10783.
  • Yang Y, Hu Y, Wang Y, et al. Nanoparticle delivery of pooled siRNA for effective treatment of non-small cell lung caner. Mol Pharmaceutics. 2012;9:2280.
  • Hu Y, Haynes MT, Wang Y, et al. A highly efficient synthetic vector: non-hydrodynamic delivery of DNA to hepatocyte nuclei in vivo. ACS Nano. 2013;7:5376.
  • Temchura VV, Kozlova D, Sokolova V, et al. Targeting and activation of antigen-specific B-cells by calcium phosphate nanoparticles loaded with protein antigen. Biomaterials. 2014;35:6098–6105.
  • Al-Kattan A, Santran V, Dufour P, et al. Novel contributions on luminescent apatite-based colloids intended for medical imaging. J Biomater Appl. 2014;28:697–707.
  • Lee MS, Lee JE, Byun E, et al. Target-specific delivery of siRNA by stabilized calcium phosphate nanoparticles using dopa–hyaluronic acid conjugate. J Control Release. 2014;192:122–130.
  • Haedicke K, Kozlova D, Gräfe S, et al. Multifunctional calcium phosphate nanoparticles for combining near-infrared fluorescence imaging and photodynamic therapy. Acta Biomater. 2015;14:197–207.
  • Kong L, Mu Z, Yu Y, et al. Polyethyleneimine-stabilized hydroxyapatite nanoparticles modified with hyaluronic acid for targeted drug delivery. RSC Adv. 2016;6:101790–101799.
  • Chu W, Huang Y, Yang C, et al. Calcium phosphate nanoparticles functionalized with alendronate-conjugated polyethylene glycol (PEG) for the treatment of bone metastasis. Int J Pharm. 2017;516:352–363.
  • Suh MS, Shen J, Kuhn LT, et al. Layer-by-layer nanoparticle platform for cancer active targeting. Int J Pharm. 2017;517:58–66.
  • Zilker C, Kozlova D, Sokolova V, et al. Nanoparticle-based B-cell targeting vaccines: tailoring of humoral immune responses by functionalization with different TLR-ligands. Nanomedicine. 2017;13:173–182.
  • Wu VM, Mickens J, Uskokovic V. Bisphosphonate-functionalized hydroxyapatite nanoparticles for the delivery of the bromodomain inhibitor JQ1 in the treatment of osteosarcoma. ACS Appl Mater Interfaces. 2017;9:25887–25904.
  • Cipreste MF, Gonzalez I, da Mata MartinsTM, et al. Attaching folic acid on hydroxyapatite nanorod surfaces: an investigation of the HA–FA interaction. RSC Adv. 2016;6:76390–76400.
  • Dasargyri A, Kümin CD, Leroux JC. Targeting nanocarriers with anisamide: fact or artifact? Adv Mater. 2017;29:160351.
  • Cheng Z, Al Zaki A, Hui JZ, et al. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science. 2012; 338:903–910.
  • Tampieri A, D'Alessandro T, Sandri M, et al. Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite. Acta Biomater. 2012;8:843–851.
  • Chang K-C, Li C-Y, Hsu C-K, et al. Synthesis and properties of Fe-modified calcium-deficient hydroxyapatite nanocrystal for mri contrast agent. Biomed Eng Appl Basis Commun. 2011;23:393–401.
  • Panseri S, Montesi M, Sandri M, et al. Magnetic labelling of mesenchymal stem cells with iron-doped hydroxyapatite nanoparticles as tool for cell therapy. J Biomed Nanotechnol. 2016;12:909–921.
  • Kaygili O, Dorozhkin SV, Ates T, et al. Dielectric properties of Fe doped hydroxyapatite prepared by sol–gel method. Ceram Int. 2014;40:9395–9402.
  • Gou M, Li S, Zhang L, et al. Facile one-pot synthesis of carbon/calcium phosphate/Fe 3 O 4 composite nanoparticles for simultaneous imaging and pH/NIR-responsive drug delivery. Chem Commun. 2016;52:11068–11071.
  • Pareta RA, Taylor E, Webster TJ. Increased osteoblast density in the presence of novel calcium phosphate coated magnetic nanoparticles. Nanotechnology 2008;19:265101.
  • Ventura M, Sun Y, Cremers S, et al. A theranostic agent to enhance osteogenic and magnetic resonance imaging properties of calcium phosphate cements. Biomaterials 2014;35:2227–2233.
  • Syamchand SS, Sony G. Multifunctional hydroxyapatite nanoparticles for drug delivery and multimodal molecular imaging. Microchim Acta. 2015;182:1567–1589.
  • Petchsang N, Pon-On W, Hodak JH, et al. Magnetic properties of Co-ferrite-doped hydroxyapatite nanoparticles having a core/shell structure. J Magnet Magnet Mater. 2009; 321:1990–1995.
  • Gopi D, Ansari MT, Shinyjoy E, et al. Synthesis and spectroscopic characterization of magnetic hydroxyapatite nanocomposite using ultrasonic irradiation. Spectrochim Acta A Mol Biomol Spectrosc. 2012;87:245–250.
  • Pankhurst QA, Connolly J, Jones SK, et al. Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys. 2003;36:R167.
  • Dobson J. Magnetic nanoparticles for drug delivery. Drug Dev Res. 2006;67:55–60.
  • Clime L, Drogoff B, Zhao S, et al. Magnetic nanocarriers: from material design to magnetic manipulation. IJNT. 2008;5:1268–1305.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.