483
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Odorranalectin modified PEG–PLGA/PEG–PBLG curcumin-loaded nanoparticle for intranasal administration

, , , , , , & show all
Pages 899-909 | Received 09 Mar 2020, Accepted 22 Apr 2020, Published online: 07 May 2020

References

  • Nelson KM, Dahlin JL, Bisson J, et al. The essential medicinal chemistry of curcumin. J Med Chem. 2017; 60:1620–1637.
  • P A, Ab K, Ra N, et al. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4:807–818.
  • Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol. 2006;71:1397–1421.
  • Subramani PA, Panati K, Narala VR. Curcumin nanotechnologies and its anticancer activity. Nutr Cancer. 2017;69:381–393.
  • Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discovery Today. 2012;17:71–80.
  • Lelli D, Sahebkar A, Johnston TP, et al. Curcumin use in pulmonary diseases: state of the art and future perspectives. Pharmacol Res. 2017;115:133–148.
  • Shuai J, Jing H, Tian L, et al. Curcumin as a potential protective compound against cardiac diseases. Pharmacol Res. 2017;119:373–383.
  • Panahi Y, Ahmadi Y, Teymouri M, et al. Curcumin as a potential candidate for treating hyperlipidemia: a review of cellular and metabolic mechanisms. J Cell Physiol. 2018;233:141–152.
  • Yao J, Xiao Y. inventor; China Pharmaceutical University, assignee. Preparation of functional curcumin nano drug used for diagnosis and treatment of brain diseases comprises connecting curcumin and low molecular weight heparin and self-assembling amphiphilic curcumin derivative in aqueous medium. China patent CN 107050465A. 2017 Aug 18.
  • Kharat M, Du Z, Zhang G, et al. Physical and chemical stability of curcumin in aqueous solutions and emulsions: impact of pH, temperature, and molecular environment. J Agric Food Chem. 2017;65:1525–1532.
  • Wang YJ, Pan MH, Cheng AL, et al. Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal. 1997;15:1867–1876.
  • Araiza-Calahorra A, Akhtar M, Sarkar A. Recent advances in emulsion-based delivery approaches for curcumin: from encapsulation to bioaccessibility. Trends Food Sci Technol. 2018;71:155–169.
  • Mohanty C, Das M, Sahoo SK. Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. Exp Opin Drug Deliv. 2012;9:1347.
  • Shen L, Liu CC, An CY, et al. How does curcumin work with poor bioavailability? Clues from experimental and theoretical studies. Sci Rep. 2016;6:20872.
  • Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci. 2000;11:1–18.
  • Zaki NM. CNS delivery of drugs: challenges and chances. J Bioequivalence Bioavailability. 2012;4:xxiii–xxxiv.
  • Ipek O, Kawthar B, Freimar SS, et al. Synthesis and characterization of surface-modified PBLG nanoparticles for bone targeting: in vitro and in vivo evaluations. J Pharm Sci. 2011;100:4877–4887.
  • Ma EMB, Montembault V, Cammas-Marion S, et al. Synthesis and characterization of novel poly(γ‐benzyl‐L‐glutamate) derivatives tailored for the preparation of nanoparticles of pharmaceutical interest. Polym Int. 2010;56:317–324.
  • Lee M, Park CG, Huh BK, et al. Sinonasal delivery of resveratrol via mucoadhesive nanostructured microparticles in a nasal polyp mouse model. Sci Rep. 2017;7:40249.
  • Nigam K, Kaur A, Tyagi A, et al. Nose-to-brain delivery of lamotrigine-loaded PLGA nanoparticles. Drug Deliv Transl Res. 2019;9:879–890.
  • Sharma D, Sharma RK, Bhatnagar A, et al. Nose to brain delivery of midazolam loaded PLGA nanoparticle: in vitro and in vivo investigations. Curr Drug Deliv. 2015;13:557–564.
  • Jie C, Chi Z, Qingfeng L, et al. Solanum tuberosum lectin-conjugated PLGA nanoparticles for nose-to-brain delivery: in vivo and in vitro evaluations. J Drug Targeting. 2012;20:174.
  • Bisht S, Feldmann G, Soni S, et al. Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy. J Nanobiotechnol. 2007;5:3–3.
  • Murali Mohan Y, Gupta BK, Meena J, et al. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci. 2010;351:19–29.
  • Ziyi W, Zhiqiang Y, Rui H, et al. Brain targeting and toxicity study of odorranalectin-conjugated nanoparticles following intranasal administration. Drug Deliv. 2011;18:555–561.
  • Wen Z, Yan Z, Hu K, et al. Odorranalectin-conjugated nanoparticles: preparation, brain delivery and pharmacodynamic study on Parkinson’s disease following intranasal administration. J Control Release. 2011;151:131–138.
  • Rakotoarisoa M, Angelov B, Garamus VM, et al. Curcumin-and fish oil-loaded spongosome and cubosome nanoparticles with neuroprotective potential against H2O2-induced oxidative stress in differentiated human SH-SY5Y cells. ACS Omega. 2019;4:3061–3073.
  • Rakotoarisoa M, Angelov B, Espinoza S, et al. Cubic liquid crystalline nanostructures involving catalase and curcumin: BioSAXS Study and catalase peroxidatic function after cubosomal nanoparticle treatment of differentiated SH-SY5Y cells. Molecules. 2019;24:3058.
  • Guerzoni LP, Nicolas V, Angelova A. In vitro modulation of TrkB receptor signaling upon sequential delivery of curcumin-DHA loaded carriers towards promoting neuronal survival. Pharm Res. 2017;34:492–505.
  • Rakotoarisoa M, Angelova A. Amphiphilic nanocarrier systems for curcumin delivery in neurodegenerative disorders. Medicines. 2018;5:126.
  • Patel MB, Surjyanarayan M, Rajesh KS. Formulation and kinetic modeling of curcumin loaded intranasal mucoadhesive microemulsion. J Pharm Bioallied Sci. 2012;4:S81–S83.
  • Ahmad N, Umar S, Ashafaq M, et al. A comparative study of PNIPAM nanoparticles of curcumin, demethoxycurcumin, and bisdemethoxycurcumin and their effects on oxidative stress markers in experimental stroke. Protoplasma. 2013;250:1327–1338.
  • Sood S, Jain K, Gowthamarajan K. Optimization of curcumin nanoemulsion for intranasal delivery using design of experiment and its toxicity assessment. Colloids Surf B Biointerfaces. 2014;113:330–337.
  • Madane RG, Mahaj HS. Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: design, characterization, and in vivo study. Drug Deliv. 2016;23:1326–1334.
  • Sparnaay MJ. Metal free thiol-maleimide ‘Click’ reaction as a mild functionalisation strategy for degradable polymers. Chem Commun. 2008;41:5158–5160.
  • Kiso Y, Yoshida M, Kimura T, et al. A new thiol protecting trimethylacetamidomethyl group. Synthesis of a new porcine brain natriuretic peptide using the S-trimethylacetamidomethyl-cysteine. Tetrahedron Lett. 1989;30:1979–1982.
  • Walkey CD, Olsen JB, Hongbo G, et al. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Amer Chem Soc. 2012;134:2139.
  • He C, Hu Y, Yin L, et al. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31:3657–3666.
  • Mandal SD, Mandal S, Patel J. Brain targeting efficiency of curcumin loaded mucoadhesive microemulsion through intranasal route. J Pharm Invest. 2016;46:179–188.
  • Shen BQ, Finkbeiner WE, Wine JJ, et al. Calu-3: a human airway epithelial cell line that shows cAMP-dependent Cl-secretion. Am J Physiol. 1994;266:493–501.
  • Borchard G. Calu-3 cells, a valid model for the airway epithelium?. STP Pharma Sci. 2002;12:205–211.
  • Florea BI, Cassara ML, Junginger HE, et al. Drug transport and metabolism characteristics of the human airway epithelial cell line Calu-3. J Control Release. 2003;87:131–138.
  • Foster KA, Avery ML, Yazdanian M, et al. Characterization of the Calu-3 cell line as a tool to screen pulmonary drug delivery. Int J Pharm. 2000;208:1–11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.