172
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Emerging theranostics to combat cancer: a perspective on metal-based nanomaterials

, &
Pages 585-601 | Received 11 Jul 2022, Accepted 26 Nov 2022, Published online: 20 Dec 2022

References

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA A Cancer J Clin. 2020;70(1):7–30.
  • Yao Y, Zhou Y, Liu L, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci. 2020;7:1–14.
  • Oliveira BSAd, de Assis ACC, Souza NM, et al. Nanotherapeutic approach to tackle chemotherapeutic resistance of cancer stem cells. Life Sci. 2021;279:119667.
  • Shan X, Li S, Sun B, et al. Ferroptosis-driven nanotherapeutics for cancer treatment. J Control Release. 2020;319(103):322–332.
  • Levitin HM, Yuan J, Sims PA. Single-cell transcriptomic analysis of tumor heterogeneity. Trends Cancer. 2018;4(4):264–268.
  • Osaki T, Yokoe I, Sunden Y, et al. Efficacy of 5-aminolevulinic acid in photodynamic detection and photodynamic therapy in veterinary medicine. Cancers. 2019;11(4):495.
  • Gao W, Wang Z, Lv L, et al. Photodynamic therapy induced enhancement of tumor vasculature permeability using an upconversion nanoconstruct for improved intratumoral nanoparticle delivery in deep tissues. Theranostics. 2016;6(8):1131–1144.
  • Cheng Z, Li M, Dey R, et al. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol. 2021;14(1):1–27.
  • Horst MF, Coral DF, Fernández van Raap MB, et al. Hybrid nanomaterials based on gum Arabic and magnetite for hyperthermia treatments. Mater Sci Eng C Mater Biol Appl. 2017;74:443–450.
  • Ahmed N, Fessi H, Elaissari A. Theranostic applications of nanoparticles in cancer. Drug Discov Today. 2012;17(17–18):928–934.
  • Jeyamogan S, Khan NA, Siddiqui R. Application and importance of theranostics in the diagnosis and treatment of cancer. Arch Med Res. 2021;52(2):131–142.
  • Zhang H, Yee D, Wang C. Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives. Nanomedicine (Lond). 2008;3(1):83–91.
  • Stegemann JP. NIH public access. Tissue Eng. 2007;23(1):1–7.
  • Naziris N, Demetzos C. Lipid nanoparticles as platforms for theranostic purposes : recent advances in the field. JNT. 2022;3(2):86–101.
  • Search H, Journals C, Contact A, et al. The engineering of doxorubicin-loaded liposome-quantum dot hybrids for cancer theranostics. Chinese Phys B. 2014;24(8):087805.
  • Muthu MS, Kulkarni SA, Raju A, et al. Biomaterials theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots. Biomaterials. 2012;33(12):3494–3501.
  • Seleci M, Seleci DA, Scheper T, et al. Theranostic liposome – nanoparticle hybrids for drug delivery and bioimaging. Int J Mol Sci. 2017;18(7):1415.
  • David L, Liu Y, Zhang B, et al. Near-infrared mediated quantum dots and paclitaxel co-loaded nanostructured lipid carriers for cancer theragnostic. Colloids Surf B Biointerfaces. 2017;150:121–130.
  • Sp V, Paul W, Cp S. Polymeric nanotheranostics : a perspective. Polymer Sci Peer Rev J. 2021:2(2). PSPRJ. 000533. 2021.
  • Chen X, Wong STC. Cancer theranostics: an introduction. Cancer Theranostics. 2014;:3–8.
  • Qian Z, Wang J. Application of computed tomography imaging in diagnosis of endocrine nerve of gastric cancer and nursing intervention effect. World Neurosurg. 2021;149:341–351.
  • Liu Y, Li S, Yan C, et al. Value of dual-phase, contrast-enhanced CT combined with ultrasound for the diagnosis of metastasis to Central lymph nodes in patients with papillary thyroid cancer. Clin Imaging. 2021;75:5–11.
  • Khademi S, Sarkar S, Shakeri-Zadeh A, et al. Targeted gold nanoparticles enable molecular CT imaging of head and neck cancer: an in vivo study. Int J Biochem Cell Biol. 2019;114:105554.
  • Morrow M, Waters J, Morris E. MRI for breast cancer screening, diagnosis, and treatment. Lancet. 2011;378(9805):1804–1811.
  • Stabile A, Giganti F, Rosenkrantz AB, et al. Multiparametric MRI for prostate cancer diagnosis: current status and future directions. Nat Rev Urol. 2020;17(1):41–61.
  • Lefebvre TL, Brown E, Hacker L, et al. The potential of photoacoustic imaging in radiation oncology. Front Oncol. 2022;12:1–11.
  • Gargiulo S, Albanese S, Mancini M. State-of-the-art preclinical photoacoustic imaging in oncology: recent advances in cancer theranostics. Contrast Media Mol Imaging. 2019;2019:5080267.
  • Bertrand N, Leroux JC. The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Release. 2012;161(2):152–163.
  • Alexis F, Pridgen E, Molnar LK, et al. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–515.
  • Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1-2):271–284.
  • Radomski A, Jurasz P, Alonso-Escolano D, et al. Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol. 2005;146(6):882–893.
  • Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1–16.
  • Nanoparticle T, Therapy C. HHS Public Access. 2018;:139–148.
  • Henry NL, Hayes DF. Cancer biomarkers. Mol Oncol. 2012;6(2):140–146.
  • Tian Q, Price ND, Hood L. Systems cancer medicine: towards realization of predictive, preventive, personalized and participatory (P4) medicine. J Intern Med. 2012;271(2):111–121.
  • Honda K, Ono M, Shitashige M, et al. Proteomic approaches to the discovery of cancer biomarkers for early detection and personalized medicine. Jpn J Clin Oncol. 2013;43(2):103–109.
  • Aboud OA, Weiss RH. New opportunities from the cancer metabolome. Clin Chem. 2013;59(1):138–146.
  • Fiandra L, Mazzucchelli S, De Palma C, et al. Assessing the in vivo targeting efficiency of multifunctional nanoconstructs bearing antibody-derived ligands. ACS Nano. 2013;7(7):6092–6102.
  • Arranja AG, Pathak V, Lammers T, et al. Tumor-targeted nanomedicines for cancer theranostics. Pharmacol Res. 2017;115:87–95.
  • Yu B, Tai HC, Xue W, et al. Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol. 2010;27(7):286–298.
  • Talekar M, Kendall J, Denny W, et al. Targeting of nanoparticles in cancer: drug delivery and diagnostics. Anticancer Drugs. 2011;22(10):949–962.
  • Bazak R, Houri M, El Achy S, et al. Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol. 2015;141(5):769–784.
  • Wang X, Yang L, Chen Z, et al. Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin. 2008;58(2):97–110.
  • Nandi U, Onyesom I, Douroumis D. Transferrin conjugated stealth liposomes for sirolimus active targeting in breast cancer. J Drug Deliv Sci Technol. 2021;66:102900.
  • Ghalehkhondabi V, Soleymani M, Fazlali A. Folate-targeted nanomicelles containing silibinin as an active drug delivery system for liver cancer therapy. J Drug Deliv Sci Technol. 2021;61:102157.
  • Meng L, Ren J, Liu Z, et al. Hyaluronic acid-coated shikonin liposomes for the treatment of triple-negative breast cancer via targeting tumor cells and amplification of oxidative stress. J Drug Deliv Sci Technol. 2022;70(89):103193.
  • Moharil P, Wan Z, Pardeshi A, et al. Engineering a folic acid-decorated ultrasmall gemcitabine nanocarrier for breast cancer therapy: dual targeting of tumor cells and tumor-associated macrophages. Acta Pharm Sin B. 2022;12(3):1148–1162.
  • Zhang X, Yan R, Wei Z, et al. Folate decorated multifunctional biodegradable nanoparticles for gastric carcinoma active targeting theranostics. IJN. 2022;17:2493–2502.
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12 Pt 1):6387–6392.
  • Bazak R, Houri M, Achy SE, et al. Passive targeting of nanoparticles to cancer: a comprehensive review of the literature. Mol Clin Oncol. 2014;2(6):904–908.
  • Garnett MC. Targeted drug conjugates: principles and progress. Adv Drug Deliv Rev. 2001;53(2):171–216.
  • Kim JH, Kim YS, Park K, et al. Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. J Control Release. 2008;127(1):41–49.
  • Chytil P, Etrych T, Konák C, et al. New HPMA copolymer-based drug carriers with covalently bound hydrophobic substituents for solid tumour targeting. J Control Release. 2008;127(2):121–130.
  • Patel JK, Patel AP. Passive targeting of nanoparticles to cancer. Surf Modif Nanoparticles Target Drug Deliv. 2019;:124–143.
  • Gaafar PME, El-Salamouni NS, Farid RM, et al. Pegylated liquisomes: a novel combined passive targeting nanoplatform of L-carnosine for breast cancer. Int J Pharm. 2021;602:120666.
  • Wei Z, Yuan S, Chen Y, et al. Enhanced antitumor efficacy by paclitaxel-loaded pluronic P123/F127 mixed micelles against non-small cell lung cancer based on passive tumor targeting and modulation of drug resistance. Eur J Pharm Biopharm. 2010;75(3):341–353.
  • Kallinen AM, Sarparanta MP, Liu D, et al. In vivo evaluation of porous silicon and porous silicon solid lipid nanocomposites for passive targeting and imaging. Mol Pharm. 2014;11(8):2876–2886.
  • Al-Ahmady Z, Kostarelos K. Chemical components for the design of temperature-responsive vesicles as cancer therapeutics. Chem Rev. 2016;116(6):3883–3918.
  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003.
  • Manzoor AA, Lindner LH, Landon CD, et al. Overcoming limitations in nanoparticle drug delivery: triggered, intravascular release to improve drug penetration into tumors. Cancer Res. 2012;72(21):5566–5575.
  • Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics. 2020;10(10):4557–4588.
  • Wu N, Fan CH, Yeh CK. Ultrasound-activated nanomaterials for sonodynamic cancer theranostics. Drug Discov Today. 2022;27(6):1590–1603.
  • Zhou LQ, Li P, Cui XW, et al. Ultrasound nanotheranostics in fighting cancer: advances and prospects. Cancer Lett. 2020;470:204–219.
  • Frinking PJA, Bouakaz A, Kirkhorn J, et al. Ultrasound contrast imaging: current and new potential methods. Ultrasound Med Biol. 2000;26(6):965–975.
  • Rahim MA, Jan N, Khan S, et al. Recent advancements in stimuli responsive drug delivery platforms for active and passive cancer targeting. Cancers. 2021;13(4):670–652.
  • Xi L, Li C, Wang Y, et al. Novel thermosensitive polymer-modified liposomes as nano-carrier of hydrophobic antitumor drugs. J Pharm Sci. 2020;109(8):2544–2552.
  • Mi X, Guo X, Du H, et al. Combined legumain- and integrin-targeted nanobubbles for molecular ultrasound imaging of breast cancer. Nanomedicine. 2022;42:102533.
  • Min HS, You DG, Son S, et al. Echogenic glycol chitosan nanoparticles for ultrasound-triggered cancer theranostics. Theranostics. 2015;5(12):1402–1418.
  • Sana B, Finne-Wistrand A, Pappalardo D. Recent development in near infrared light-responsive polymeric materials for smart drug-delivery systems. Mater Today Chem. 2022;25:100963.
  • Rapp TL, DeForest CA. Targeting drug delivery with light: a highly focused approach. Adv Drug Deliv Rev. 2021;171:94–107.
  • Lu Y, Sun W, Gu Z. Stimuli-responsive nanomaterials for therapeutic protein delivery. J Control Release. 2014;194:1–19.
  • Zhang K, Zhang Y, Meng X, et al. Light-triggered theranostic liposomes for tumor diagnosis and combined photodynamic and hypoxia-activated prodrug therapy. Biomaterials. 2018;185:301–309.
  • Hao Y, Chen YW, He XL, et al. Near-infrared responsive 5-fluorouracil and indocyanine green loaded MPEG-PCL nanoparticle integrated with dissolvable microneedle for skin cancer therapy. Bioact Mater. 2020;5(3):542–552.
  • Liu J, Wang C, Wang X, et al. Mesoporous silica coated single-walled carbon nanotubes as a multifunctional light-responsive platform for cancer combination therapy. Adv Funct Mater. 2015;25(3):384–392.
  • Li B, Harlepp S, Gensbittel V, et al. Near infra-red light responsive carbon nanotubes@mesoporous silica for photothermia and drug delivery to cancer cells. Mater Today Chem. 2020;:17.
  • Li X, Li W, Wang M, et al. Magnetic nanoparticles for cancer theranostics: advances and prospects. J Control Release. 2021;335:437–448.
  • Singh A, Sahoo SK. Magnetic nanoparticles: a novel platform for cancer theranostics. Drug Discov Today. 2014;19(4):474–481.
  • Laranjeira MS, Ribeiro TP, Magalhães AI, et al. Magnetic mesoporous silica nanoparticles as a theranostic approach for breast cancer: loading and release of the poorly soluble drug exemestane. Int J Pharm. 2022;619:1–8.
  • Ak G, Yilmaz H, Güneş A, et al. In vitro and in vivo evaluation of folate receptor-targeted a novel magnetic drug delivery system for ovarian cancer therapy. Artif Cells Nanomed Biotechnol. 2018;46(suppl 1):926–937.
  • Sharma H, Mishra PK, Talegaonkar S, et al. Metal nanoparticles: a theranostic nanotool against cancer. Drug Discov Today. 2015;20(9):1143–1151.
  • Gao Q, Zhang J, Gao J, et al. Gold nanoparticles in cancer theranostics. Front Bioeng Biotechnol. 2021;9:1–20.
  • Navyatha B, Nara S. Gold nanotheranostics: future emblem of cancer nanomedicine. Nanobiomedicine. 2021;8:18495435211053945–18495435211053913.
  • Chhour P, Naha PC, Neill SMO, et al. Labeling monocytes with gold nanoparticles to track their recruitment in atherosclerosis with computed tomography. Biomaterials. 2016;87:93–103.
  • Qu X, Qiu P, Zhu Y, et al. Guiding nanomaterials to tumors for breast cancer precision medicine: from tumor-targeting small-molecule discovery to targeted nanodrug delivery. NPG Asia Mater. 2017;9(12):e452–e452.
  • Nikolopoulou SG, Boukos N, Sakellis E, et al. Synthesis of biocompatible silver nanoparticles by a modified polyol method for theranostic applications: studies on red blood cells, internalization ability and antibacterial activity. J Inorg Biochem. 2020;211:111177.
  • Vedelago J, Gomez CG, Valente M, et al. Green synthesis of silver nanoparticles aimed at improving theranostics. Radiat Phys Chem. 2018;146:55–67.
  • Gurunathan S, Jeyaraj M, Kang MH, et al. Anticancer properties of platinum nanoparticles and retinoic acid: combination therapy for the treatment of human neuroblastoma cancer. Int J Mol Sci. 2020;21(18):1–32.
  • Manikandan M, Hasan N, Wu HF. Platinum nanoparticles for the photothermal treatment of Neuro 2A cancer cells. Biomaterials. 2013;34(23):5833–5842.
  • Vinardell MP, Mitjans M. Antitumor activities of metal oxide nanoparticles. Nanomaterials. 2015;5(2):1004–1021.
  • Chu Z, Wang Z, Chen L, et al. Combining magnetic resonance imaging with photothermal therapy of CuS @ BSA nanoparticles for cancer theranostics. ACS Appl Nano Mater. 2018;1(5):2332–2340.
  • Wang X, Wang J, Pan J, et al. Rhenium sulfide nanoparticles as a biosafe spectral CT contrast agent for gastrointestinal tract imaging and tumor theranostics in vivo. ACS Appl. Mater. Interfaces. 2019; 11(37):33650–33658.
  • Wang H, Yang J, Cao P, et al. Functionalization of bismuth sulfide nanomaterials for their application in cancer theranostics. Chin Chem Lett. 2020;31(12):3015–3026.
  • Guided DB, Therapy P, Zou Y, et al. Design and synthesis of lead sulfide-based nanotheranostic agent for computer tomography/magnetic resonance dual-mode-bioimaging-guided photothermal therapy. ACS Appl Nano Mater. 2018;1(5):2294–2305.
  • Yazdi MH, Sepehrizadeh Z, Mahdavi M, et al. Metal, metalloid, and oxide nanoparticles for therapeutic and diagnostic oncology. Nano BioMed Eng. 2016;8(4):246–267.
  • Osminkina LA, Tamarov KP, Sviridov AP, et al. Photoluminescent biocompatible silicon nanoparticles for cancer theranostic applications. J Biophotonics. 2012;5(7):529–535.
  • Sivasankarapillai VS, Somakumar AK, Joseph J, et al. Cancer theranostic applications of MXene nanomaterials: recent updates. Nano-Struct Nano-Objects. 2020;22:100457.
  • Barsoum MW. The MN + 1AXN phases: a new class of solids. Prog Solid State Chem. 2000;28(1–4):201–281.
  • Malaki M, Maleki A, Varma RS. MXenes and ultrasonication. J Mater Chem A. 2019;7(18):10843–10857.
  • Lin H, Chen Y, Shi J. Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead. Adv Sci. 2018;5(10):1800518.
  • Liu Z, Zhao M, Lin H, et al. 2D magnetic titanium carbide MXene for cancer theranostics. J Mater Chem B. 2018;6(21):3541–3548.
  • Zong L, Wu H, Lin H, et al. A polyoxometalate-functionalized two-dimensional titanium carbide composite MXene for effective cancer theranostics. Nano Res. 2018;11(8):4149–4168.
  • Narayan R, Nayak UY, Raichur AM, et al. Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics. 2018;10(3):118–149.
  • Freidus LG, Kumar P, Marimuthu T, et al. Theranostic mesoporous silica nanoparticles loaded with a curcumin-naphthoquinone conjugate for potential cancer intervention. Front Mol Biosci. 2021;8:1–14.
  • Shu G, Chen M, Song J, et al. Sialic acid-engineered mesoporous polydopamine nanoparticles loaded with SPIO and Fe3+ as a novel theranostic agent for T1/T2 dual-mode MRI-guided combined chemo-photothermal treatment of hepatic cancer. Bioact Mater. 2021;6(5):1423–1435.
  • Safitriono WN, Lestari WA, Wahyuningsih S, et al. Synthesized and release study of labelled small mesoporous silica nanoparticle as theranostic material. J Phys Conf Ser. 2022;(1):2190:012035.
  • McGuckin MB, Wang J, Ghanma R, et al. Nanocrystals as a master key to deliver hydrophobic drugs via multiple administration routes. J Control Release. 2022;345:334–353.
  • Liu S, Shi D, Chen L, et al. Paclitaxel-loaded magnetic nanocrystals for tumor neovascular-targeted theranostics: an amplifying synergistic therapy combining magnetic hyperthermia with chemotherapy. Nanoscale. 2021;13(6):3613–3626.
  • Wu Q, Tong L, Zou Z, et al. Herceptin-functionalized SK-BR-3 cell membrane-wrapped paclitaxel nanocrystals for enhancing the targeted therapy effect of HER2-positive breast cancer. Mater Des. 2022;219:110818.
  • Agrawal S, Dwivedi M, Ahmad H, et al. CD44 targeting hyaluronic acid coated lapatinib nanocrystals foster the efficacy against triple-negative breast cancer. Nanomedicine. 2018;14(2):327–337.
  • Liang H, Zou F, Liu Q, et al. Nanocrystal-loaded liposome for targeted delivery of poorly water-soluble antitumor drugs with high drug loading and stability towards efficient cancer therapy. Int J Pharm. 2021;599:120418.
  • Dreaden EC, Mac Key MA, Huang X, et al. Beating cancer in multiple ways using nanogold. Chem Soc Rev. 2011;40(7):3391–3404.
  • Mahajan S, Raval N, Kalyane D, et al. NanoGold-core dendrimeric seeds for combined chemo-, photothermal-, and photodynamic therapy of cancer. J Drug Deliv Sci Technol. 2020;58:101814.
  • Salem DS, Hegazy SF, Obayya SSA. Nanogold-loaded chitosan nanocomposites for pH/light-responsive drug release and synergistic chemo-photothermal cancer therapy. Colloids Interface Sci Commun. 2021;41:100361.
  • Zhang D, Zhang J, Zeng J, et al. Nano-gold loaded with resveratrol enhance the anti-hepatoma effect of resveratrol in vitro and in vivo. J Biomed Nanotechnol. 2019;15(2):288–300.
  • Komenek S, Luesakul U, Ekgasit S, et al. Nanogold-gallate chitosan-targeted pulmonary delivery for treatment of lung cancer. AAPS PharmSciTech. 2017;18(4):1104–1115.
  • Chang CH, Tsai IC, Chiang CJ, et al. A theranostic approach to breast cancer by a quantum dots- and magnetic nanoparticles-conjugated peptide. J Taiwan Inst Chem Eng. 2019;97:88–95.
  • Bilan R, Nabiev I, Sukhanova A. Quantum dot‐based nanotools for bioimaging, diagnostics, and drug delivery. ChemBioChem. 2016 Nov 17;17(22):2103–14.
  • Moasses Ghafary S, Rahimjazi E, Hamzehil H, et al. Design and preparation of a theranostic peptideticle for targeted cancer therapy: peptide-based codelivery of doxorubicin/curcumin and graphene quantum dots. Nanomedicine. 2022;42:102544.
  • Pan Y, Zhao S, Chen F. The potential value of dequalinium chloride in the treatment of cancer : focus on malignant glioma. Clin Exp Pharmacol Physiol. 2021;48(4):445–454.
  • Lakshmi BA, Kim S. Current and emerging applications of nanostructured metal–organic frameworks in cancer-targeted theranostics. Mater Sci Eng C Mater Biol Appl. 2019;105:110091.
  • Saeb MR, Rabiee N, Mozafari M, et al. Metal–organic frameworks (MOFs) for cancer therapy. Materials. 2021;14(23):7277–7210.
  • Liu M, Wang L, Zheng X, et al. Hypoxia-triggered nanoscale metal-organic frameworks for enhanced anticancer activity. ACS Appl Mater Interfaces. 2018;10(29):24638–24647.
  • Cai W, Gao H, Chu C, et al. Engineering phototheranostic nanoscale metal-organic frameworks for multimodal imaging-guided cancer therapy. ACS Appl Mater Interfaces. 2017;9(3):2040–2051.
  • Sengul AB, Asmatulu E. Toxicity of metal and metal oxide nanoparticles: a review. Environ Chem Lett. 2020;18(5):1659–1683.
  • Sani A, Cao C, Cui D. Toxicity of gold nanoparticles (AuNPs): a review. Biochem Biophys Rep. 2021;26:100991.
  • Zhang XD, Wu D, Shen X, et al. In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials. 2012;33(18):4628–4638.
  • Jaswal T, Gupta J. A review on the toxicity of silver nanoparticles on human health. Mater Today Proc. 2021.
  • Makhdoumi P, Karimi H, Khazaei M. Review on metal-based nanoparticles: role of reactive oxygen species in renal toxicity. Chem Res Toxicol. 2020;33(10):2503–2514.
  • Barillet S, Simon-Deckers A, Herlin-Boime N, et al. Toxicological consequences of TiO2, SiC nanoparticles and multi-walled carbon nanotubes exposure in several mammalian cell types: an in vitro study. J Nanopart Res. 2010;12(1):61–73.
  • Carregal-Romero S, Plaza-García S, Piñol R, et al. MRI study of the influence of surface coating aging on the in vivo biodistribution of iron oxide nanoparticles. Biosensors. 2018;8(4):127–112.
  • Gómez-Vallejo V, Puigivila M, Plaza-García S, et al. PEG-copolymer-coated iron oxide nanoparticles that avoid the reticuloendothelial system and act as kidney MRI contrast agents. Nanoscale. 2018;10(29):14153–14164.
  • Dilnawaz F, Acharya S, Sahoo SK. Recent trends of nanomedicinal approaches in clinics. Int J Pharm. 2018;538(1–2):263–278.
  • Jackman JA, Mészáros T, Fülöp T, et al. Comparison of complement activation-related pseudoallergy in miniature and domestic pigs: foundation of a validatable immune toxicity model. Nanomedicine. 2016;12(4):933–943.
  • Szebeni J, Storm G. Complement activation as a bioequivalence issue relevant to the development of generic liposomes and other nanoparticulate drugs. Biochem Biophys Res Commun. 2015;468(3):490–497.
  • Hua S, de Matos MBC, Metselaar JM, et al. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol. 2018;9:1–14.
  • Johnston HJ, Hutchison G, Christensen FM, et al. A review of the in vivo and in vitro toxicity of silver and gold particulates : particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol. 2010;40(4):328–346.
  • Takenaka S, Karg E, Roth C, et al. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect. 2001;109:547–551.
  • Sung JH, Ji JH, Park JD, et al. Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci. 2009;108(2):452–461.
  • Hyun J, Seok B, Yeol H, et al. Effects of repeated silver nanoparticles exposure on the histological structure and mucins of nasal respiratory mucosa in rats. Toxicol Lett. 2008;182(1–3):24–28.
  • Sainz V, Conniot J, Matos AI, et al. Regulatory aspects on nanomedicines. Biochem Biophys Res Commun. 2015;468(3):504–510.
  • Gaspar R. Regulatory issues surrounding nanomedicines: setting the scene for the next generation of nanopharmaceuticals. Nanomedicine. 2007;2(2):143–147.
  • Tinkle S, Mcneil SE, Mühlebach S, et al. Nanomedicines: addressing the scientific and regulatory gap. Ann NY Acad Sci. 2014;1313(1):35–56.
  • Bukhari SI, Imam SS, Ahmad MZ, et al. Recent progress in lipid nanoparticles for cancer theranostics: opportunity and challenges. Pharmaceutics. 2021;13(6):840.
  • Baptista PV, Fernandes AR, Figueiredo S, et al. Gold nanoparticle-based theranostics : disease diagnostics and treatment using a single nanomaterial. Dovepress. 2015;4:11–23.
  • Mehtala JG, Torregrosa-Allen S, Elzey BD, et al. Synergistic effects of cisplatin chemotherapy and gold nanorod-mediated hyperthermia on ovarian cancer cells and tumors. Nanomedicine. 2014;9(13):1939–1955.
  • Chen Z, Yu D, Huang Y, et al. Tunable SERS-tags-hidden gold nanorattles for theranosis of cancer cells with single laser beam. Sci Rep. 2014;4:1–7.
  • Meyers JD, Cheng Y, Broome AM, et al. Peptide-targeted gold nanoparticles for photodynamic therapy of brain cancer. Part Part Syst Charact. 2015;32(4):448–457.
  • Park J, Park J, Ju EJ, et al. Multifunctional hollow gold nanoparticles designed for triple combination therapy and CT imaging. J Control Release. 2015;207:77–85.
  • Croissant JG, Qi C, Maynadier M, et al. Multifunctional gold-mesoporous silica nanocomposites for enhanced two-photon imaging and therapy of cancer cells. Front Mol Biosci. 2016;3:1.
  • Muhammad Z, Raza A, Ghafoor S, et al. PEG capped methotrexate silver nanoparticles for efficient anticancer activity and biocompatibility. Eur J Pharm Sci. 2016;91:251–255.
  • Elbaz NM, Ziko L, Siam R, et al. Core-shell silver/polymeric nanoparticles-based combinatorial therapy against breast cancer in-vitro. Sci Rep. 2016;6:30729–30729.
  • Baskar G, Bikku George G, Chamundeeswari M. Synthesis and characterization of asparaginase bound silver nanocomposite against ovarian cancer cell line A2780 and lung cancer cell line A549. J Inorg Organomet Polym. 2017;27(1):87–94.
  • He Y, Du Z, Ma S, et al. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo. Int J Nanomedicine. 2016;11:1879–1887.
  • Haque S, Norbert CC, Acharyya R, et al. Biosynthesized silver nanoparticles for cancer therapy and in vivo bioimaging. Cancers. 2021;13(23):6114.
  • Li Y, Sun Y, Cao T, et al. A cation-exchange controlled core-shell MnS@Bi2S3 theranostic platform for multimodal imaging guided radiation therapy with hyperthermia boost. Nanoscale. 2017;9(38):14364–14375.
  • Li Z, Hu Y, Chang M, et al. Highly porous PEGylated Bi2S3 nano-urchins as a versatile platform for: in vivo triple-modal imaging, photothermal therapy and drug delivery. Nanoscale. 2016;8(35):16005–16016.
  • Cheng X, Yong Y, Dai Y, et al. Enhanced radiotherapy using bismuth sulfide nanoagents combined with photo-thermal treatment. Theranostics. 2017;7(17):4087–4098.
  • Wang X, Zhang C, Du J, et al. Enhanced generation of non-oxygen dependent free radicals by Schottky-type heterostructures of Au-Bi2S3 nanoparticles via X-ray-induced catalytic reaction for radiosensitization. ACS Nano. 2019;13(5):5947–5958.
  • Gao M, Zhao H, Wang Z, et al. Controllable preparation of Ag2S quantum dots with size-dependent fluorescence and cancer photothermal therapy. Adv Powder Technol. 2021;32(6):1972–1982.
  • Ouyang Z, Li D, Xiong Z, et al. Antifouling dendrimer-entrapped copper sul fi de nanoparticles enable photoacoustic imaging-guided targeted combination therapy of tumors and tumor metastasis. ACS Appl Mater Interfaces. 2021;13(5):6069–6080.
  • Huang X, Xu C, Li Y, et al. Quaternized chitosan-stabilized copper sulfide nanoparticles for cancer therapy. Mater Sci Eng C. 2018. 96:129–37.
  • Shetty A, Mishra SK, De A, et al. Smart releasing CuS/ZnS nanocomposite dual drug carrier and photothermal agent for use as a theranostic tool for cancer therapy. J Drug Deliv Sci Technol. 2022;70:103252.
  • Gao X, Zhang P, Du K, et al. Near-infrared-light-responsive copper oxide nanoparticles as efficient theranostic nanoagents for photothermal tumor ablation. ACS Appl Bio Mater. 2021;4(6):5266–5275.
  • Saesoo S, Sathornsumetee S, Anekwiang P, et al. Characterization of liposome-containing SPIONs conjugated with anti-CD20 developed as a novel theranostic agent for central nervous system lymphoma. Colloids Surf B Biointerfaces. 2018;161:497–507.
  • Nosrati R, Abnous K, Alibolandi M, et al. Targeted SPION siderophore conjugate loaded with doxorubicin as a theranostic agent for imaging and treatment of colon carcinoma. Sci Rep. 2021;11(1):15.
  • Sun Z, Huang G, Ma Z. Synthesis of theranostic anti-EGFR ligand conjugate iron oxide nanoparticles for magnetic resonance imaging for treatment of liver cancer. J Drug Deliv Sci Technol. 2020;55(83):101367.
  • Rajkumar S, Prabaharan M. Multi-functional nanocarriers based on iron oxide nanoparticles conjugated with doxorubicin, poly(ethylene glycol) and folic acid as theranostics for cancer therapy. Colloids Surf B Biointerfaces. 2018;170:529–537.
  • Nakayama M, Smith CL, Feltis BN, et al. Samarium doped titanium dioxide nanoparticles as theranostic agents in radiation therapy. Phys Med. 2020;75:69–76.
  • Chen X, Guo X, Hao S, et al. Iron oxide nanoparticles-loaded hyaluronic acid nanogels for MRI-aided Alzheimer’s disease theranostics. Arab J Chem. 2022;15(6):103748.
  • Zhang Z, Smith L, Li W, et al. Polydopamine-coated nanocomposite theranostic implants for localized chemotherapy and MRI imaging. Int J Pharm. 2022;615:121493.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.