81
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Temozolomide nano-in-nanofiber delivery system with sustained release and enhanced cellular uptake by U87MG cells

& ORCID Icon
Pages 420-431 | Received 05 Jun 2023, Accepted 15 Mar 2024, Published online: 01 Apr 2024

References

  • Holland EC. Glioblastoma multiforme: the terminator. Proc Natl Acad Sci U S A. 2000;97(12):6242–6244. doi: 10.1073/pnas.97.12.6242.
  • Holland EC. Gliomagenesis: genetic alterations and mouse models. Nat Rev Genet. 2001;2(2):120–129. doi: 10.1038/35052535.
  • Sayiner O, Arisoy S, Comoglu T, et al. Development and in vitro evaluation of temozolomide-loaded PLGA nanoparticles in a thermoreversible hydrogel system for local administration in glioblastoma multiforme. J Drug Deliv Sci Technol. 2020;57:101627. doi: 10.1016/j.jddst.2020.101627.
  • Senturk F, Cakmak S, Kocum IC, et al. GRGDS-conjugated and curcumin-loaded magnetic polymeric nanoparticles for the hyperthermia treatment of glioblastoma cells. Colloids Surf A Physicochem Eng Asp. 2021;622:126648. doi: 10.1016/j.jddst.2020.101627.
  • Delgado‐Martín B, Medina MÁ. Advances in the knowledge of the molecular biology of glioblastoma and its impact in patient diagnosis, stratification, and treatment. Adv Sci. 2020;7(9):1902971. doi: 10.1002/advs.201902971.
  • Batich KA, Reap EA, Archer GE, et al. Long-term survival in glioblastoma with cytomegalovirus pp65-targeted vaccination. Clin Cancer Res. 2017;23(8):1898–1909. doi: 10.1158/1078-0432.CCR-16-2057.
  • Leroy HA, Vermandel M, Lejeune JP, et al. Fluorescence guided resection and glioblastoma in 2015: a review. Lasers Surg Med. 2015;47(5):441–451. doi: 10.1002/lsm.22359.
  • Ghandour F, Squassina A, Karaky R, et al. Presenting psychiatric and neurological symptoms and signs of brain tumors before diagnosis: a systematic review. Brain Sci. 2021;11(3):301. doi: 10.3390/brainsci11030301.
  • Hanif F, Muzaffar K, Perveen K, et al. Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev. 2017;18(1):3–9. doi: 10.22034/APJCP.2017.18.1.3.
  • Ellor SV, Pagano-Young TA, Avgeropoulos NG. Glioblastoma: background, standard treatment paradigms, and supportive care considerations. J Law Med Ethics. 2014;42(2):171–182. doi: 10.1111/jlme.12.
  • Shetty K, Yasaswi S, Dutt S, et al. Multifunctional nanocarriers for delivering siRNA and miRNA in glioblastoma therapy: advances in nanobiotechnology-based cancer therapy. 3 Biotech. 2022;12(11):301. doi: 10.1007/s13205-022-03365-2.
  • Lozada-Delgado EL, Grafals-Ruiz N, Vivas-Mejía PE. RNA interference for glioblastoma therapy: innovation ladder from the bench to clinical trials. Life Sci. 2017;188:26–36. doi: 10.1016/j.lfs.2017.08.027.
  • Attenello FJ, Mukherjee D, Datoo G, et al. Use of Gliadel (BCNU) wafer in the surgical treatment of malignant glioma: a 10-year institutional experience. Ann Surg Oncol. 2008;15(10):2887–2893. doi: 10.1245/s10434-008-0048-2.
  • Korgaonkar N, Yadav KS. Understanding the biology and advent of physics of cancer with perspicacity in current treatment therapy. Life Sci. 2019;239:117060. doi: 10.1016/j.lfs.2019.117060.
  • Giese A, Bjerkvig R, Berens ME, et al. Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol. 2003;21(8):1624–1636. doi: 10.1200/JCO.2003.05.063.
  • Berman JI, Berger MS, Mukherjee P, et al. Diffusion-tensor imaging-guided tracking of fibers of the pyramidal tract combined with intraoperative cortical stimulation mapping in patients with gliomas. J Neurosurg. 2004;101(1):66–72. doi: 10.3171/jns.2004.101.1.0066.
  • Arvanitis CD, Ferraro GB, Jain RK. The blood–brain barrier and blood–tumor barrier in brain tumors and metastases. Nat Rev Cancer. 2020;20(1):26–41. doi: 10.1038/s41568-019-0205-x.
  • Bianco J, Bastiancich C, Jankovski A, et al. On glioblastoma and the search for a cure: where do we stand? Cell Mol Life Sci. 2017;74(13):2451–2466. doi: 10.1007/s00018-017-2483-3.
  • Groothuis DR. The blood–brain and blood–tumor barriers: a review of strategies for increasing drug delivery. Neuro Oncol. 2000;2(1):45–59. doi: 10.1093/neuonc/2.1.45.
  • Mo F, Pellerino A, Soffietti R, et al. Blood–brain barrier in brain tumors: biology and clinical relevance. Int J Mol Sci. 2021;22(23):12654. doi: 10.3390/ijms222312654.
  • Lehmann F, Wennerberg J. Evolution of nitrogen-based alkylating anticancer agents. Processes. 2021;9(2):377. doi: 10.3390/pr9020377.
  • Strobel H, Baisch T, Fitzel R, et al. Temozolomide and other alkylating agents in glioblastoma therapy. Biomedicines. 2019;7(3):69. doi: 10.3390/biomedicines7030069.
  • Yasaswi PS, Shetty K, Yadav KS. Temozolomide nano enabled medicine: promises made by the nanocarriers in glioblastoma therapy. J Control Release. 2021;336:549–571. doi: 10.1016/j.jconrel.2021.07.003.
  • Zhang J, Stevens MFG, Bradshaw DT. Temozolomide: mechanisms of action, repair and resistance. Curr Mol Pharmacol. 2012;5(1):102–114. doi: 10.2174/1874-470211205010102.
  • Silber JR, Bobola MS, Blank A, et al. O6-Methylguanine-DNA methyltransferase in glioma therapy: promise and problems. Biochim Biophys Acta. 2012;1826(1):71–82. doi: 10.1016/j.bbcan.2011.12.004.
  • Fang C, Wang K, Stephen ZR, et al. Temozolomide nanoparticles for targeted glioblastoma therapy. ACS Appl Mater Interfaces. 2015;7(12):6674–6682. doi: 10.1021/am5092165.
  • Senturk F, Cakmak S, Gumusderelioglu M, et al. Hydrolytic instability and low-loading levels of temozolomide to magnetic PLGA nanoparticles remain challenging against glioblastoma therapy. J Drug Deliv Sci Technol. 2022;68:103101. doi: 10.1016/j.jddst.2022.103101.
  • Fulfager AD, Yadav KS. Understanding the implications of co-delivering therapeutic agents in a nanocarrier to combat multidrug resistance (MDR) in breast cancer. J Drug Deliv Sci Technol. 2021;62:102405. doi: 10.1016/j.jddst.2021.102405.
  • Li J, Zhao J, Tan T, et al. Nanoparticle drug delivery system for glioma and its efficacy improvement strategies: a comprehensive review. Int J Nanomedicine. 2020;15:2563–2582. doi: 10.2147/IJN.S243223.
  • Shetty K, Bhandari A, Yadav KS. Nanoparticles incorporated in nanofibers using electrospinning: a novel nano-in-nano delivery system. J Control Release. 2022;350:421–434. doi: 10.1016/j.jconrel.2022.08.035.
  • Jain R, Shetty S, Yadav KS. Unfolding the electrospinning potential of biopolymers for preparation of nanofibers. J Drug Deliv Sci Technol. 2020;57:101604. doi: 10.1016/j.jddst.2020.101604.
  • Yadav KS, Mishra DK, Deshpande A, et al. Levels of drug targeting. In: Tekade RK (eds), Basic fundamentals of drug delivery. London: Academic Press; 2019. p. 269–305. doi: 10.1016/B978-0-12-817909-3.00007-8.
  • Tseng YY, Yang TC, Wang YC, et al. Targeted concurrent and sequential delivery of chemotherapeutic and antiangiogenic agents to the brain by using drug-loaded nanofibrous membranes. Int J Nanomedicine. 2017;12:1265–1276. doi: 10.2147/IJN.S124593.
  • Chen S, Boda SK, Batra SK, et al. Emerging roles of electrospun nanofibers in cancer research. Adv Healthc Mater. 2018;7(6):1701024. doi: 10.1002/adhm.201701024.
  • Anup N, Chavan T, Chavan S, et al. Reinforced electrospun nanofiber composites for drug delivery applications. J Biomed Mater Res A. 2021;109(10):2036–2064. doi: 10.1002/jbm.a.37187.
  • Jannesari M, Varshosaz J, Morshed M, et al. Composite poly(vinyl alcohol)/poly(vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs. Int J Nanomedicine. 2011;6:993–1003. doi: 10.2147/IJN.S17595.
  • Khramtsov P, Burdina O, Lazarev S, et al. Modified desolvation method enables simple one-step synthesis of gelatin nanoparticles from different gelatin types with any bloom values. Pharmaceutics. 2021;13(10):1537. doi: 10.3390/pharmaceutics13101537.
  • Ahsan SM, Rao CM. The role of surface charge in the desolvation process of gelatin: implications in nanoparticle synthesis and modulation of drug release. Int J Nanomedicine. 2017;12:795–808. doi: 10.2147/IJN.S124938.
  • Nahar M, Mishra D, Dubey V, et al. Development, characterization, and toxicity evaluation of amphotericin B-loaded gelatin nanoparticles. Nanomedicine. 2008;4(3):252–261. doi: 10.1016/j.nano.2008.03.007.
  • Elzoghby AO. Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research. J Control Release. 2013;172(3):1075–1091. doi: 10.1016/j.jconrel.2013.09.019.
  • Yang D, Li Y, Nie J. Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs. Carbohydr Polym. 2007;69(3):538–543. doi: 10.1016/j.carbpol.2007.01.008.
  • Soni G, Yadav KS, Gupta MK. Design of experiments (DoE) approach to optimize the sustained release microparticles of gefitinib. Curr Drug Deliv. 2019;16(4):364–374. doi: 10.2174/1567201816666181227114109.
  • Jain D, Bajaj A, Athawale R, et al. Surface-coated PLA nanoparticles loaded with temozolomide for improved brain deposition and potential treatment of gliomas: development, characterization and in vivo studies. Drug Deliv. 2016;23(3):999–1016. doi: 10.3109/10717544.2014.926574.
  • Shamsipour M, Mansouri AM, Moradipour P. Temozolomide conjugated carbon quantum dots embedded in core/shell nanofibers prepared by coaxial electrospinning as an implantable delivery system for cell imaging and sustained drug release. AAPS PharmSciTech. 2019;20(7):259. doi: 10.1208/s12249-019-1466-0.
  • Guo Z, Sui J, Ma M, et al. pH-responsive charge switchable PEGylated ε-poly-l-lysine polymeric nanoparticles-assisted combination therapy for improving breast cancer treatment. J Control Release. 2020;326:350–364. doi: 10.1016/j.jconrel.2020.07.030.
  • Weidemann H, Feger D, Ehlert JE, et al. Markedly divergent effects of ouabain on a temozolomide-resistant (T98G) vs. a temozolomide-sensitive (LN229) glioblastoma cell line. Discov Oncol. 2023;14(1):27. doi: 10.1007/s12672-023-00633-2.
  • Silva VL, Kaassis A, Dehsorkhi A, et al. Enhanced selectivity, cellular uptake, and in vitro activity of an intrinsically fluorescent copper–tirapazamine nanocomplex for hypoxia targeted therapy in prostate cancer. Biomater Sci. 2020;8(9):2420–2433. doi: 10.1039/C9BM01905G.
  • Wang Y, Fan S, Xiao D, et al. Novel silyl ether-based acid-cleavable antibody–MMAE conjugates with appropriate stability and efficacy. Cancers. 2019;11(7):957. doi: 10.3390/cancers11070957.
  • Yu C, Morshed R, Auffinger B, et al. Multifunctional nanoparticles for brain tumor diagnosis and therapy. Adv Drug Deliv Rev. 2014;66(1):42–57. doi: 10.1016/j.addr.2013.09.006.
  • Li Y, He H, Jia X, et al. A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas. Biomaterials. 2012;33(15):3899–3908. doi: 10.1016/j.biomaterials.2012.02.004.
  • Karavasili C, Panteris E, Vizirianakis IS, et al. Chemotherapeutic delivery from a self-assembling peptide nanofiber hydrogel for the management of glioblastoma. Pharm Res. 2018;35(8):1–13. doi: 10.1007/s11095-018-2442-1.
  • Varanko A, Saha S, Chilkoti A. Recent trends in protein and peptide-based biomaterials for advanced drug delivery. Adv Drug Deliv Rev. 2020;156:133–187. doi: 10.1016/j.addr.2020.08.008.
  • Saxena A, Sachin K, Bohidar HB, et al. Effect of molecular weight heterogeneity on drug entrapment efficiency of gelatin nano-particles. Colloids Surf B Biointerfaces. 2005;45(1):42–48. doi: 10.1016/j.colsurfb.2005.07.005.
  • Shamarekh KS, Gad HA, Soliman ME, et al. Towards the production of monodisperse gelatin nanoparticles by modified one step desolvation technique. J Pharm Investig. 2020;50(2):189–200. doi: 10.1016/j.colsurfb.2005.07.005.
  • Zhang W, He Z, Han Y, et al. Structural design and environmental applications of electrospun nanofibers. Compos A Appl Sci Manuf. 2020;137:106009. doi: 10.1016/j.colsurfb.2005.07.005.
  • Soni G, Kale K, Shetty S, et al. Quality by design (QbD) approach in processing polymeric nanoparticles loading anticancer drugs by high pressure homogenizer. Heliyon. 2020;6(4):e03846. doi: 10.1016/j.heliyon.2020.e03846.
  • Yeo Y, Park K. Control of entrapment efficiency and initial burst in polymeric microparticle systems. Arch Pharm Res. 2004;27(1):1–12. doi: 10.1007/BF02980037.
  • Zhang JA, Anyarambhatla G, Ma L, et al. Development and characterization of a novel Cremophor® EL free liposome-based paclitaxel (LEP-ETU) formulation. Eur J Pharm Biopharm. 2005;59(1):177–187. doi: 10.1016/j.ejpb.2004.06.009.
  • Tan H, Sun G, Lin W, et al. Gelatin particle-stabilized high internal phase emulsions as nutraceutical containers. ACS Appl Mater Interfaces. 2014;6(16):13977–13984. doi: 10.1021/am503341j.
  • Zhao YZ, Li X, Lu CT, et al. Gelatin nanostructured lipid carriers-mediated intranasal delivery of basic fibroblast growth factor enhances functional recovery in hemiparkinsonian rats. Nanomedicine. 2014;10(4):755–764. doi: 10.1016/j.nano.2013.10.009.
  • Jain A, Jain SK. Formulation and optimization of temozolomide nanoparticles by 3 factor 2 level factorial design. Biomatter. 2013;3(2):e25102. doi: 10.4161/biom.25102.
  • Prakash J, Venkataprasanna KS, Bharath G, et al. In-vitro evaluation of electrospun cellulose acetate nanofiber containing graphene oxide/TiO2/curcumin for wound healing application. Colloids Surf A Physicochem Eng Asp. 2021;627:127166. doi: 10.1016/j.colsurfa.2021.127166.
  • Yan E, Jiang J, Yang X, et al. pH-sensitive core-shell electrospun nanofibers based on polyvinyl alcohol/polycaprolactone as a potential drug delivery system for the chemotherapy against cervical cancer. J Drug Deliv Sci Technol. 2020;55:101455. doi: 10.1016/j.jddst.2019.101455.
  • He S, Jiang L, Liu J, et al. Electrospun PVA/gelatin based nanofiber membranes with synergistic antibacterial performance. Colloids Surf A Physicochem Eng Asp. 2022;637:128196. doi: 10.1016/j.colsurfa.2021.128196.
  • Gaihre B, Khil MS, Lee DR, et al. Gelatin-coated magnetic iron oxide nanoparticles as carrier system: drug loading and in vitro drug release study. Int J Pharm. 2009;365(1–2):180–189. doi: 10.1016/j.ijpharm.2008.08.020.
  • Jain DS, Athawale RB, Bajaj AN, et al. Unraveling the cytotoxic potential of temozolomide loaded into PLGA nanoparticles. Daru. 2014;22(1):18. doi: 10.1186/2008-2231-22-18.
  • Ling Y, Wei K, Zou F, et al. Temozolomide loaded PLGA-based superparamagnetic nanoparticles for magnetic resonance imaging and treatment of malignant glioma. Int J Pharm. 2012;430(1–2):266–275. doi: 10.1016/j.ijpharm.2012.03.047.
  • Tavakoli R, Vakilian S, Jamshidi-Adegani F, et al. Prolonged drug release using PCL–TMZ nanofibers induce the apoptotic behavior of U87 glioma cells. Int J Polym Mater Polym Biomater. 2018;67(15):873–878. doi: 10.1080/00914037.2017.1393677.
  • Soni G, Yadav KS. Applications of nanoparticles in treatment and diagnosis of leukemia. Mater Sci Eng C Mater Biol Appl. 2015;47:156–164. doi: 10.1016/j.msec.2014.10.043.
  • Augustine R, Hasan A, Primavera R, et al. Cellular uptake and retention of nanoparticles: insights on particle properties and interaction with cellular components. Mater Today Commun. 2020;25:101692. doi: 10.1016/j.mtcomm.2020.101692.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.