111
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Design, optimization and pharmaceutical characterization of wound healing film dressings with chloramphenicol and ibuprofen

, , , , , , & show all
Pages 446-459 | Received 16 Dec 2023, Accepted 13 Mar 2024, Published online: 15 Apr 2024

References

  • Cardona AF, Wilson SE. Skin and Soft-Tissue infections: a critical review and the role of telavancin in their treatment. Clin Infect Dis. 2015;61(suppl 2):S69–S78. doi:10.1093/cid/civ528.
  • Broussard KC, Powers JG. Wound dressings: selecting the most appropriate type. Am J Clin Dermatol. 2013;14(6):449–459. doi:10.1007/s40257-013-0046-4.
  • Weller CD, Team V, Sussman G. First-Line interactive wound dressing update: a comprehensive review of the evidence. Front Pharmacol. 2020;11:155. doi:10.3389/fphar.2020.00155.
  • Özcan Bülbül E, Okur ME, Üstündağ Okur N, et al. Chapter 2 - Traditional and advanced wound dressings: physical characterization and desirable properties for wound healing. In: Sah MK, Kasoju N, Mano JF, editors. Natural polymers in wound healing and repair. Amsterdam: Elsevier; 2022. p. 19–50.
  • Rezvani Ghomi E, Niazi M, Ramakrishna S. The evolution of wound dressings: from traditional to smart dressings. Polymers Adv Techs. 2023;34(2):520–530. doi:10.1002/pat.5929.
  • Savencu I, Iurian S, Porfire A, et al. Review of advances in polymeric wound dressing films. React Funct Polym. 2021;168:105059. doi:10.1016/j.reactfunctpolym.2021.105059.
  • Karki S, Kim H, Na S-J, et al. Thin films as an emerging platform for drug delivery. Asian J Pharm Sci. 2016;11(5):559–574. doi:10.1016/j.ajps.2016.05.004.
  • Ahmad N, Tayyeb D, Ali I, et al. Development and characterization of Hemicellulose-Based films for antibacterial wound-dressing application. Polymers. 2020;12(3):548. doi:10.3390/polym12030548.
  • Amalraj A, Haponiuk JT, Thomas S, et al. Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum arabic/chitosan composite films incorporated with black pepper essential oil and ginger essential oil. Int J Biol Macromol. 2020;151:366–375. doi:10.1016/j.ijbiomac.2020.02.176.
  • Genesi BP, de Melo Barbosa R, Severino P, et al. Aloe vera and copaiba oleoresin-loaded chitosan films for wound dressings: microbial permeation, cytotoxicity, and in vivo proof of concept. Int J Pharm. 2023;652:123823. doi:10.1016/j.ijpharm.2023.122648.
  • Pawar HV, Tetteh J, Boateng JS. Preparation, optimisation and characterisation of novel wound healing film dressings loaded with streptomycin and diclofenac. Colloids Surf B Biointerfaces. 2013;102:102–110. doi:10.1016/j.colsurfb.2012.08.014.
  • Nesseem DI, Eid SF, El-Houseny SS. Development of novel transdermal self-adhesive films for tenoxicam, an anti-inflammatory drug. Life Sci. 2011;89(13-14):430–438. doi:10.1016/j.lfs.2011.06.026.
  • Costa NN, de Faria Lopes L, Ferreira DF, et al. Polymeric films containing pomegranate peel extract based on PVA/starch/PAA blends for use as wound dressing: in vitro analysis and physicochemical evaluation. Mater Sci Eng C Mater Biol Appl. 2020;109:110643. doi:10.1016/j.msec.2020.110643.
  • Das A, Uppaluri R, Das C. Feasibility of poly-vinyl alcohol/starch/glycerol/citric acid composite films for wound dressing applications. Int J Biol Macromol. 2019;131:998–1007. doi:10.1016/j.ijbiomac.2019.03.160.
  • Arthe R, Arivuoli D, Ravi V. Preparation and characterization of bioactive silk fibroin/paramylon blend films for chronic wound healing. Int J Biol Macromol. 2020;154:1324–1331. doi:10.1016/j.ijbiomac.2019.11.010.
  • Sakthiguru N, Sithique MA. Fabrication of bioinspired chitosan/gelatin/allantoin biocomposite film for wound dressing application. Int J Biol Macromol. 2020;152:873–883. doi:10.1016/j.ijbiomac.2020.02.289.
  • Pereira GG, Guterres SS, Balducci AG, et al. Polymeric films loaded with vitamin E and aloe vera for topical application in the treatment of burn wounds. Biomed Res Int. 2014;2014:641590–641599. (Electronic)). doi:10.1155/2014/641590.
  • Ng S-F, Leow H-L. Development of biofilm-targeted antimicrobial wound dressing for the treatment of chronic wound infections. Drug Dev Ind Pharm. 2015;41(11):1902–1909. doi:10.3109/03639045.2015.1019888.
  • Kollicoat® SR 30 D. 2023. https://pharma.basf.com/products/kollicoat-sr-30-d
  • Hypromellose. In: Rowe RC, Sheskey PJ, Quinn ME, editors. Handbook of pharmaceutical excipients. 6th ed. London: Pharmaceutical Press; 2009. p. 326–329.
  • Muppalaneni S, Omidian H. Polyvinyl alcohol in medicine and pharmacy: a perspective. J Dev Drugs. 2013;02(03):112. doi:10.4172/2329-6631.1000112.
  • Jin SG. Production and application of biomaterials based on polyvinyl alcohol (PVA) as wound dressing. Chem Asian J. 2022;17(21):e202200595. doi:10.1002/asia.202200595.
  • Ingebrigtsen SG, Didriksen A, Johannessen M, et al. Old drug, new wrapping − a possible comeback for chloramphenicol? Int J Pharm. 2017;526(1-2):538–546. doi:10.1016/j.ijpharm.2017.05.025.
  • Aycan D, Selmi B, Kelel E, et al. Conductive polymeric film loaded with ibuprofen as a wound dressing material. Eur Polym J. 2019;121:109308. doi:10.1016/j.eurpolymj.2019.109308.
  • Yu LX, Amidon G, Khan MA, et al. Understanding pharmaceutical quality by design. Aaps J. 2014;16(4):771–783. doi:10.1208/s12248-014-9598-3.
  • Gilani SJ, Rizwanullah M, Imam SS, et al. Chapter 7 - QbD considerations for topical and transdermal product development. In: Beg S, Hasnain MS, editors. Pharmaceutical quality by design. Cambridge, MA: Academic Press; 2019. p. 131–150.
  • Colobatiu L, Gavan A, Mocan A, et al. Development of bioactive compounds-loaded chitosan films by using a QbD approach – a novel and potential wound dressing material. React Funct Polym. 2019;138:46–54. doi:10.1016/j.reactfunctpolym.2019.02.013.
  • ICH Harmonized Tripartite Guideline - Pharmaceutical Development Q8 (R2). 2009. https://database.ich.org/sites/default/files/Q8_R2_Guideline.pdf
  • ICH guideline Q9 on quality risk management: European Medicines Agency. 2015. https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use-ich-guideline-q9-quality-risk-management-step-5-first-version_en.pdf
  • IEC 60812. 2018 Failure modes and effects analysis (FMEA and FMECA). 2018.
  • European Pharmacopoeia 11.2 Section 2.9.5. Uniformity of mass of single-dose preparations. 2023.
  • Baranauskaite J, Ockun MA, Uner B, et al. Development and in vitro characterization of pullulan fast dissolving films loaded with panax ginseng extract, antioxidant properties and cytotoxic efficiency on lung and breast cancer cell lines. J Drug Delivery Sci Technol. 2022;76:103701. doi:10.1016/j.jddst.2022.103701.
  • Nair AB, Kumria R, Harsha S, et al. In vitro techniques to evaluate buccal films. J Control Release. 2013;166(1):10–21. doi:10.1016/j.jconrel.2012.11.019.
  • ISO 175:2010 Plastics. Methods of test for the determination of the effects of immersion in liquid chemicals 2010. https://www.iso.org/standard/55483.html.
  • Muthuramalingam K, Choi SI, Hyun C, et al. β-Glucan-Based wet dressing for cutaneous wound healing. Adv Wound Care. 2019;8(4):125–135. doi:10.1089/wound.2018.0843.
  • Krull SM, Patel HV, Li M, et al. Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: i. Impact of plasticizer on film properties and dissolution. Eur J Pharm Sci. 2016;92:146–155. doi:10.1016/j.ejps.2016.07.005.
  • Gómez-Aldapa CA, Velazquez G, Gutierrez MC, et al. Effect of polyvinyl alcohol on the physicochemical properties of biodegradable starch films. Mater Chem Phys. 2020;239:122027. doi:10.1016/j.matchemphys.2019.122027.
  • El-Bary AA, Al Sharabi I, Haza’a BS. Effect of casting solvent, film-forming agent and solubilizer on orodispersible films of a polymorphic poorly soluble drug: an in vitro/in silico study. Drug Dev Ind Pharm. 2019;45(11):1751–1769. doi:10.1080/03639045.2019.1656733.
  • Morita Y, Tomida J, Kawamura Y. Responses of Pseudomonas aeruginosa to antimicrobials. Front Microbiol. 2014;4:422. doi:10.3389/fmicb.2013.00422.
  • Liew KB, Tan YTF, Peh K-K. Effect of polymer, plasticizer and filler on orally disintegrating film. Drug Dev Ind Pharm. 2014;40(1):110–119. doi:10.3109/03639045.2012.749889.
  • Okeke OC, Boateng JS. Composite HPMC and sodium alginate based buccal formulations for nicotine replacement therapy. Int J Biol Macromol. 2016;91:31–44. doi:10.1016/j.ijbiomac.2016.05.079.
  • Kaur G, Singh D, Brar V. Bioadhesive okra polymer based buccal patches as platform for controlled drug delivery. Int J Biol Macromol. 2014;70:408–419. doi:10.1016/j.ijbiomac.2014.07.015.
  • Boateng JS, Stevens HNE, Eccleston GM, et al. Development and mechanical characterization of solvent-cast polymeric films as potential drug delivery systems to mucosal surfaces. Drug Dev Ind Pharm. 2009;35(8):986–996. doi:10.1080/03639040902744704.
  • Maulana DS, Mubarak AS, Pujiastuti DY. The concentration of polyethylen glycol (PeG) 400 on bioplastic cellulose based carrageenan waste on biodegradability and mechanical properties bioplastic. IOP Conf Ser Earth Environ Sci. 2021;679(1):012008. doi:10.1088/1755-1315/679/1/012008.
  • Gomes Neto RJ, Genevro GM, Paulo L, et al. Characterization and in vitro evaluation of chitosan/konjac glucomannan bilayer film as a wound dressing. Carbohydr Polym. 2019;212:59–66. doi:10.1016/j.carbpol.2019.02.017.
  • Ahmed A, Boateng J. Calcium alginate-based antimicrobial film dressings for potential healing of infected foot ulcers. Ther Deliv. 2018;9(3):185–204. doi:10.4155/tde-2017-0104.
  • Pereira R, Carvalho A, Vaz DC, et al. Development of novel alginate based hydrogel films for wound healing applications. Int J Biol Macromol. 2013;52:221–230. doi:10.1016/j.ijbiomac.2012.09.031.
  • Rezvanian M, Ahmad N, Mohd Amin MCI, et al. Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. Int J Biol Macromol. 2017;97:131–140. doi:10.1016/j.ijbiomac.2016.12.079.
  • Llabot JM, Palma SD, Manzo RH, et al. Design of novel antifungal mucoadhesive films: part II. Formulation and in vitro biopharmaceutical evaluation. Int J Pharm. 2007;336(2):263–268. doi:10.1016/j.ijpharm.2006.12.001.
  • Francolini I, Donelli G, Vuotto C, et al. Antifouling polyurethanes to fight device-related staphylococcal infections: synthesis, characterization, and antibiofilm efficacy. Pathog Dis. 2014;70(3):401–407. doi:10.1111/2049-632X.12155.
  • Gultekin G, Atalay-Oral C, Erkal S, et al. Fatty acid-based polyurethane films for wound dressing applications. J Mater Sci Mater Med. 2009;20(1):421–431.
  • Alavi T, Rezvanian M, Ahmad N, et al. Pluronic-F127 composite film loaded with erythromycin for wound application: formulation, physicomechanical and in vitro evaluations. Drug Deliv Transl Res. 2019;9(2):508–519. doi:10.1007/s13346-017-0450-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.