34
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Ferulic acid nanoemulsion as a promising anti-ulcer tool: in vitro and in vivo assessment

, , , & ORCID Icon
Pages 460-469 | Received 28 Nov 2023, Accepted 07 Apr 2024, Published online: 13 Apr 2024

References

  • Cheong AM, Tan ZW, Patrick NO, et al. Improvement of gastroprotective and anti-ulcer effect of kenaf seed oil-in-water nanoemulsions in rats. Food Sci Biotechnol. 2018;27(4):1175–1184. doi:10.1007/s10068-018-0342-0.
  • Bhaskaran SK, Rangasamy A, Sundaram S, et al. Effect of aqueous extract of Azolla filiculoides in gastric mucosa of ulcerated rats. Int J Pharm Pharm Sci. 2015;7:355–358.
  • Aman RM, Zaghloul RA, El-Dahhan MS. Formulation, optimization and characterization of allantoin-loaded chitosan nanoparticles to alleviate ethanol-induced gastric ulcer: in-vitro and in-vivo studies. Sci Rep. 2021;11(1):2216. doi:10.1038/s41598-021-81183-x.
  • Sharifi-Rad M, Fokou PVT, Sharopov F, et al. Antiulcer agents: from plant extracts to phytochemicals in healing promotion. Molecules. 2018;23(7):1751. doi:10.3390/molecules23071751.
  • Zduńska K, Dana A, Kolodziejczak A, et al. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol Physiol. 2018;31(6):332–336. doi:10.1159/000491755.
  • Awaad AS, El-Meligy RM, Soliman GA. Natural products in treatment of ulcerative colitis and peptic ulcer. J Saudi Chem Soc. 2013;17(1):101–124. doi:10.1016/j.jscs.2012.03.002.
  • Umre R, Ganeshpurkar A, Ganeshpurkar A, et al. In vitro, in vivo and in silico antiulcer activity of ferulic acid. Future J Pharm Sci. 2018;4(2):248–253. doi:10.1016/j.fjps.2018.08.001.
  • Bairagi U, Mittal P, Singh J, et al. Preparation, characterization, and in vivo evaluation of nano formulations of ferulic acid in diabetic wound healing. Drug Dev Ind Pharm. 2018;44(11):1783–1796. doi:10.1080/03639045.2018.1496448.
  • Abd-Allah H, Abdel-Aziz RTA, Nasr M. Chitosan nanoparticles making their way to clinical practice: a feasibility study on their topical use for acne treatment. Int J Biol Macromol. 2020;156:262–270. doi:10.1016/j.ijbiomac.2020.04.040.
  • Ramzy L, Metwally AA, Nasr M, et al. Novel thymoquinone lipidic core nanocapsules with anisamide-polymethacrylate shell for Colon cancer cells overexpressing sigma receptors. Sci Rep. 2020;10(1):10987. doi:10.1038/s41598-020-67748-2.
  • Amer SS, Nasr M, Abdel-Aziz RTA, et al. Cosm-nutraceutical nanovesicles for acne treatment: physicochemical characterization and exploratory clinical experimentation. Int J Pharm. 2020;577:119092. doi:10.1016/j.ijpharm.2020.119092.
  • Nasr M, Al-Karaki R. Nanotechnological innovations enhancing the topical therapeutic efficacy of quercetin: a succinct review. Curr Drug Deliv. 2020;17(4):270–278. doi:10.2174/1567201817666200317123224.
  • El-Hussien D, El-Zaafarany GM, Nasr M, et al. Chrysin nanocapsules with dual anti-glycemic and anti-hyperlipidemic effects: chemometric optimization, physicochemical characterization and pharmacodynamic assessment. Int J Pharm. 2021;592:120044. doi:10.1016/j.ijpharm.2020.120044.
  • Rudrapal M, Mishra AK, Rani L, et al. Nanodelivery of dietary polyphenols for therapeutic applications. Molecules. 2022;27(24):8706. doi:10.3390/molecules27248706.
  • Said-Elbahr R, Nasr M, Alhnan MA, et al. Simultaneous pulmonary administration of celecoxib and naringin using a nebulization-friendly nanoemulsion: a device-targeted delivery for treatment of lung cancer. Expert Opin Drug Deliv. 2022;19(5):611–622. doi:10.1080/17425247.2022.2076833.
  • Saleh DO, Nasr M, Hassan A, et al. Curcumin nanoemulsion ameliorates brain injury in diabetic rats. J Food Biochem. 2022;46:e14104.
  • Nasr M, Abd-Allah H, Ahmed-Farid OAH, et al. A comparative study between curcumin and curcumin nanoemulsion on high-fat, high-fructose diet induced impaired spermatogenesis in rats. J Pharm Pharmacol. 2022;74(2):268–281. doi:10.1093/jpp/rgab172.
  • Ismail A, Nasr M, Sammour O. Nanoemulsion as a feasible and biocompatible carrier for ocular delivery of travoprost: improved pharmacokinetic/pharmacodynamic properties. Int J Pharm. 2020;583:119402. doi:10.1016/j.ijpharm.2020.119402.
  • Sessa M, Balestrieri ML, Ferrari G, et al. Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems. Food Chem. 2014;147:42–50. doi:10.1016/j.foodchem.2013.09.088.
  • Singh Y, Meher JG, Raval K, et al. Nanoemulsion: concepts, development and applications in drug delivery. J Control Release. 2017;252:28–49. doi:10.1016/j.jconrel.2017.03.008.
  • Wilson RJ, Li Y, Yang G, et al. Nanoemulsions for drug delivery. Particuology. 2022;64:85–97. doi:10.1016/j.partic.2021.05.009.
  • Mota FL, Queimada AJ, Pinho SP, et al. Aqueous solubility of some natural phenolic compounds. Ind Eng Chem Res. 2008;47(15):5182–5189. doi:10.1021/ie071452o.
  • Harwansh RK, Mukherjee PK, Bahadur S, et al. Enhanced permeability of ferulic acid loaded nanoemulsion based gel through skin against UVA mediated oxidative stress. Life Sci. 2015;141:202–211. doi:10.1016/j.lfs.2015.10.001.
  • Nasr M. Development of an optimized hyaluronic acid-based lipidic nanoemulsion co-encapsulating two polyphenols for nose to brain delivery. Drug Deliv. 2016;23(4):1444–1452. doi:10.3109/10717544.2015.1092619.
  • Lovelyn C, Attama AA. Current state of nanoemulsions in drug delivery. JBNB. 2011;02(05):626–639. doi:10.4236/jbnb.2011.225075.
  • Davidov-Pardo G, McClements DJ. Nutraceutical delivery systems: resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification. Food Chem. 2015;167:205–212. doi:10.1016/j.foodchem.2014.06.082.
  • Morsi NM, Abdelbary GA, Ahmed MA. Silver sulfadiazine based cubosome hydrogels for topical treatment of burns: development and in vitro/in vivo characterization. Eur J Pharm Biopharm. 2014;86(2):178–189. doi:10.1016/j.ejpb.2013.04.018.
  • Mahboobian MM, Seyfoddin A, Rupenthal ID, et al. Formulation development and evaluation of the therapeutic efficacy of brinzolamide containing nanoemulsions. Iran J Pharm Res. 2017;16(3):847–857.
  • El-Gogary RI, Khattab MA, Abd-Allah H. Intra-articular multifunctional celecoxib loaded hyaluronan nanocapsules for the suppression of inflammation in an osteoarthritic rat model. Int J Pharm. 2020;583:119378. doi:10.1016/j.ijpharm.2020.119378.
  • Abd-Allah H, Kamel AO, Sammour OA. Injectable long acting chitosan/tripolyphosphate microspheres for the intra-articular delivery of lornoxicam: optimization and in vivo evaluation. Carbohydr Polym. 2016;149:263–273. doi:10.1016/j.carbpol.2016.04.096.
  • El-Gogary RI, Nasr M, Rahsed LA, et al. Ferulic acid nanocapsules as a promising treatment modality for colorectal cancer: preparation and in vitro/in vivo appraisal. Life Sci. 2022;298:120500. doi:10.1016/j.lfs.2022.120500.
  • Abu-Azzam O, Nasr M. In vitro anti-inflammatory potential of phloretin microemulsion as a new formulation for prospective treatment of vaginitis. Pharm Dev Technol. 2020;25(8):930–935. doi:10.1080/10837450.2020.1764032.
  • Granica S, Czerwińska ME, Piwowarski JP, et al. Chemical composition, antioxidative and anti-inflammatory activity of extracts prepared from aerial parts of Oenothera biennis L. and Oenothera paradoxa Hudziok obtained after seeds cultivation. J Agric Food Chem. 2013;61(4):801–810. doi:10.1021/jf304002h.
  • Anosike CA, Obidoa O, Ezeanyika U. L. Membrane stabilization as a mechanism of the anti-inflammatory activity of methanol extract of garden egg (Solanum aethiopicum). Daru. 2012;20:76.
  • Aldalaen S, Nasr M, El-Gogary RI. Angiogenesis and collagen promoting nutraceutical-loaded nanovesicles for wound healing. J Drug Deliv Sci Technol. 2020;56:101548. doi:10.1016/j.jddst.2020.101548.
  • Simões S, Lopes R, Campos MCD, et al. Animal models of acute gastric mucosal injury: macroscopic and microscopic evaluation. Animal Model Exp Med. 2019;2(2):121–126. doi:10.1002/ame2.12060.
  • Zhou D, Yang Q, Tian T, et al. Gastroprotective effect of gallic acid against ethanol-induced gastric ulcer in rats: involvement of the Nrf2/HO-1 signaling and anti-apoptosis role. Biomed Pharmacother. 2020;126:110075. doi:10.1016/j.biopha.2020.110075.
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–358. doi:10.1016/0003-2697(79)90738-3.
  • Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249(22):7130–7139.
  • Góth L. A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta. 1991;196(2-3):143–151. doi:10.1016/0009-8981(91)90067-M.
  • Saint-Denis M, Labrot F, Narbonne JF, et al. Glutathione, glutathione-related enzymes, and catalase activities in the earthworm Eisenia fetida andrei. Arch Environ Contam Toxicol. 1998;35(4):602–614. doi:10.1007/s002449900422.
  • Wu X, Huang Q, Xu N, et al. Antioxidative and anti-inflammatory effects of water extract of Acrostichum aureum Linn. against ethanol-induced gastric ulcer in rats. J Evidence- Based Complementary Altern Med. 2018;2018:1–10.
  • Yahia H, Hassan A, El-Ansary MR, et al. IL-6/STAT3 and adipokine modulation using tocilizumab in rats with fructose-induced metabolic syndrome. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(12):2279–2292. doi:10.1007/s00210-020-01940-z.
  • Hassan NF, Nada SA, Hassan A, et al. Saroglitazar deactivates the hepatic LPS/TLR4 signaling pathway and ameliorates adipocyte dysfunction in rats with high-fat emulsion/LPS model-induced non-alcoholic steatohepatitis. Inflammation. 2019;42(3):1056–1070. doi:10.1007/s10753-019-00967-6.
  • Rao SVR, Shao J. Self-nanoemulsifying drug delivery systems (SNEDDS) for oral delivery of protein drugs: I. Formulation development. Int J Pharm. 2008;362(1-2):2–9. doi:10.1016/j.ijpharm.2008.05.018.
  • Soliman KA, Ibrahim HK, Ghorab MM. Formulation of avanafil in a solid self-nanoemulsifying drug delivery system for enhanced oral delivery. Eur J Pharm Sci. 2016;93:447–455. doi:10.1016/j.ejps.2016.08.050.
  • Ahmed OAA, Fahmy UA, Bakhaidar R, et al. Omega-3 Self-Nanoemulsion role in gastroprotection against Indomethacin-Induced gastric injury in rats. Pharmaceutics. 2020;16(2):140. doi:10.3390/pharmaceutics16020192.
  • Alyoussef AA, El-Gogary RI, Ahmed RF, et al. The beneficial activity of curcumin and resveratrol loaded in nanoemulgel for healing of burn-induced wounds. J Drug Deliv Sci Technol. 2021;62:102360. doi:10.1016/j.jddst.2021.102360.
  • Gawlik-Dziki U, Bryda J, Dziki D, et al. Impact of interactions between ferulic and chlorogenic acids on enzymatic and non-enzymatic lipids oxidation: an example of bread enriched with green coffee flour. Appl Sci. 2019;9(3):568. doi:10.3390/app9030568.
  • Huang MT, Lysz T, Ferraro T, et al. Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis. Cancer Res. 1991;51(3):813–819.
  • de la Lastra CA, Martin MJ, Marhuenda E. Gastric anti-ulcer activity of silymarin, a lipoxygenase inhibitor in rats. J Pharm Pharmacol. 1992;44(11):929–931. doi:10.1111/j.2042-7158.1992.tb03239.x.
  • Pasechnikov VD, Radsev YA, Guminskij SP. 5- Lipoxygenase products: their biosynthesis in human gastric mucosa and possible involvement in inflammatory response and oxygen saturation index reduction in gastric ulcer patients. Biochim Biophys Acta. 1991;1097(1):45–48. doi:10.1016/0925-4439(91)90022-2.
  • Rahman Z, Dwivedi DK, Jena GB. Ethanol-induced gastric ulcer in rats and intervention of tert-butylhydroquinone: involvement of Nrf2/HO-1 signaling pathway. Hum Exp Toxicol. 2020;39(4):547–562. doi:10.1177/0960327119895559.
  • Zhang B, Rao X, Zhang Y, et al. Protective effect of foxtail millet protein hydrolysate on ethanol and pyloric ligation-induced gastric ulcers in mice. Antioxidants (Basel). 2022;11(12):2459. doi:10.3390/antiox11122459.
  • Asaad GF, Mostafa RE. Lactoferrin mitigates ethanol-induced gastric ulcer via modulation of ROS/ICAM-1/Nrf2 signaling pathway in wistar rats. Iran J Basic Med Sci. 2022;25(12):1522–1527. doi:10.22038/IJBMS.2022.66823.14656.
  • Shams SGE, Eissa RG. Amelioration of ethanol-induced gastric ulcer in rats by quercetin: implication of Nrf2/HO1 and HMGB1/TLR4/NF-KB pathways. Heliyon. 2022;8(10):e11159. doi:10.1016/j.heliyon.2022.e11159.
  • Kazmi I, Saleem S, Ahmad T, et al. Protective effect of oleane-12-en-3 β -ol-28-oic acid 3β-D-glucopyranoside in ethanol induced gastric ulcer by enhancing the prostaglandin E2 level. J Ethnopharmacol. 2018;211:394–399. doi:10.1016/j.jep.2017.09.012.
  • Gyires K. Gastric mucosal protection: from prostaglandins to gene-therapy. Curr Med Chem. 2005;12(2):203–215. doi:10.2174/0929867053363478.
  • Pan L, Tang Q, Fu Q, et al. Roles of nitric oxide in protective effect of berberine in ethanol-induced gastric ulcer mice. Acta Pharmacol Sin. 2005;26(11):1334–1338. doi:10.1111/j.1745-7254.2005.00186.x.
  • Tarnawski AS. Cellular and molecular mechanisms of gastrointestinal ulcer healing. Dig Dis Sci. 2005;50 Suppl 1(S1):S24–S33. doi:10.1007/s10620-005-2803-6.
  • Fahmy NM, Al-Sayed E, Michel HE, et al. Gastroprotective effects of erythrina speciosa (fabaceae) leaves cultivated in Egypt against ethanol-induced gastric ulcer in rats. J Ethnopharmacol. 2020;248:112297. doi:10.1016/j.jep.2019.112297.
  • de Souza MC, Vieira AJ, Beserra FP, et al. Gastroprotective effect of limonene in rats: influence on oxidative stress, inflammation and gene expression. Phytomedicine. 2019;53:37–42. doi:10.1016/j.phymed.2018.09.027.
  • Sokolova O, Naumann M. Crosstalk between DNA damage and inflammation in the multiple steps of gastric carcinogenesis. Curr Top Microbiol Immunol. 2019;421:107–137. doi:10.1007/978-3-030-15138-6_5.
  • Saadaoui N, Weslati A, Barkaoui T, et al. Gastroprotective effect of leaf extract of two varieties grapevine (Vitis vinifera L.) native wild and cultivar grown in North of Tunisia against the oxidative stress induced by ethanol in rats. Biomarkers. 2020;25(1):48–61. doi:10.1080/1354750X.2019.1691266.
  • Li H, Song F, Duan LR, et al. Paeonol and danshensu combination attenuates apoptosis in myocardial infarcted rats by inhibiting oxidative stress: roles of Nrf2/HO-1 and PI3K/akt pathway. Sci Rep. 2016;6(1):23693. doi:10.1038/srep23693.
  • Albaayit SF, Abba Y, Abdullah R, et al. Prophylactic effects of clausena excavata burum. F. Leaf extract in ethanol-induced gastric ulcers. Drug Des Devel Ther. 2016;10:1973–1986. doi:10.2147/DDDT.S103993.
  • Li D, Rui Y-X, Guo S-D, et al. Ferulic acid: a review of its pharmacology, pharmacokinetics and derivatives. Life Sci. 2021;284:119921. doi:10.1016/j.lfs.2021.119921.
  • Hassani S, Pellequer Y, Lamprecht A. Selective adhesion of nanoparticles to inflamed tissue in gastric ulcers. Pharm Res. 2009;26(5):1149–1154. doi:10.1007/s11095-009-9834-1.
  • Alai M, Lin WJ. Novel lansoprazole-loaded nanoparticles for the treatment of gastric acid secretion-related ulcers: in vitro and in vivo pharmacokinetic pharmacodynamic evaluation. Aaps J. 2014;16(3):361–372. doi:10.1208/s12248-014-9564-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.