508
Views
39
CrossRef citations to date
0
Altmetric
Articles

Nano-ZnO priming induces salt tolerance by promoting photosynthetic carbon assimilation in wheat

, , , , , , , , , , , & show all
Pages 1259-1273 | Received 25 Feb 2019, Accepted 01 Sep 2019, Published online: 08 Sep 2019

References

  • Abdel Latef AA, Alhmad MF, Abdelfattah KE. 2016. The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. J Plant Growth Regul. 36:60–70. doi:10.1007/s00344-016-9618-x.
  • Ahmad P, Abdel Latef AA, Hashem A, Abd Allah EF, Gucel S, Tran LS. 2016. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci. 7:347. doi:10.3389/fpls.2016.00347.
  • Ahmad P, Ahanger MA, Alam P, Alyemeni MN, Wijaya L, Ali S, Ashraf M. 2018. Silicon (Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes. J Plant Growth Regul. doi:10.1007/s00344-018-9810-2.
  • Ahmad P, Ahanger MA, Alyemeni MN, Wijaya L, Egamberdieva D, Bhardwaj R, Ashraf M. 2017. Zinc application mitigates the adverse effects of NaCl stress on mustard [Brassica juncea (L.) czern & coss] through modulating compatible organic solutes, antioxidant enzymes, and flavonoid content. J Plant Interact. 12:429–437. doi:10.1080/17429145.2017.1385867.
  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S. 2010. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol. 30:161–175. doi:10.3109/07388550903524243.
  • Ali S, Rizwan M, Noureen S, Anwar S, Ali B, Naveed M, Abd Allah EF, Alqarawi AA, Ahmad P. 2019. Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environ Sci Pollut Res Int. 26:11288–11299. doi:10.1007/s11356-019-04554-y.
  • Bailly C, Benamar A, Corbineau C, Côme D. 1996. Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiol Plant. 97:104–110. doi:10.1111/j.1399-3054.1996.tb00485.x.
  • Boonyanitipong P, Kositsup B, Kumar P, Baruah S, Dutta J. 2011. Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed L. Int J Biosci Biochem Bioinform. 1:282–285.
  • Botticella E, Sestili F, Sparla F, Moscatello S, Marri L, Cuesta-Seijo JA, Falini G, Battistelli A, Trost P, Lafiandra D. 2018. Combining mutations at genes encoding key enzymes involved in starch synthesis affects the amylose content, carbohydrate allocation and hardness in the wheat grain. Plant Biotechnol J. 16:1723–1734. doi:10.1111/pbi.12908.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254. doi:10.1006/abio.1976.9999.
  • Brestic M, Zivcak M, Kalaji HM, Carpentier R, Allakhverdiev SI. 2012. Photosystem II thermostability in situ: environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L. Plant Physiol Biochem. 57:93–105. doi:10.1016/j.plaphy.2012.05.012.
  • Brestic M, Zivcak M, Olsovska K, Shao HB, Kalaji HM, Allakhverdiev SI. 2014. Reduced glutamine synthetase activity plays a role in control of photosynthetic responses to high light in barley leaves. Plant Physiol Biochem. 81:74–83. doi:10.1016/j.plaphy.2014.01.002.
  • Bruce TJA, Matthes MC, Napier JA, Pickett JA. 2007. Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci. 173:603–608. doi:10.1016/j.plantsci.2007.09.002.
  • Chen S, Strasser RJ, Qiang S. 2014. In vivo assessment of effect of phytotoxin tenuazonic acid on PSII reaction centers. Plant Physiol Biochem. 84:10–21. doi:10.1016/j.plaphy.2014.09.004.
  • Chen S, Zhou F, Yin C, Strasser RJ, Yang C, Qiang S. 2011. Application of fast chlorophyll a fluorescence kinetics to probe action target of 3-acetyl-5-isopropyltetramic acid. Environ Exp Bot. 73:31–41. doi:10.1016/j.envexpbot.2011.08.005.
  • Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H. 2011. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit. 13:822–828. doi:10.1039/c0em00611d.
  • El-Hendawy SE, Hassan WM, Al-Suhaibani NA, Refay Y, Abdella KA. 2017. Comparative performance of multivariable agro-physiological parameters for detecting salt tolerance of wheat cultivars under simulated saline field growing conditions. Front Plant Sci. 8:435. doi:10.3389/fpls.2017.00435.
  • Fernandes FM, Arrabaça MC, Carvalho LMM. 2004. Sucrose metabolism in Lupinus albus L. Under Salt Stress Biol Plant. 48:317.
  • Fukushima E, Arata Y, Endo T, Sonnewald U, Sato F. 2001. Improved salt tolerance of transgenic tobacco expressing apoplastic yeast-derived invertase. Plant Cell Physiol. 42:245–249. doi:10.1093/pcp/pce027.
  • Gasperl A, Morvan-Bertrand A, Prud’homme MP, Van Der Graaff E, Roitsch T. 2015. Exogenous classic phytohormones have limited regulatory effects on fructan and primary carbohydrate metabolism in perennial ryegrass (Lolium perenne L.). Front Plant Sci. 6:1251.
  • Jakab G, Ton J, Flors V, Zimmerli L, Metraux JP, Mauch-Mani B. 2005. Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol. 139:267–274. doi:10.1104/pp.105.065698.
  • Jammer A, Gasperl A, Luschin-Ebengreuth N, Heyneke E, Chu H, Cantero-Navarro E, Grosskinsky DK, Albacete AA, Stabentheiner E, Franzaring J, et al. 2015. Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants. J Exp Bot. 66:5531–5542. doi:10.1093/jxb/erv228.
  • Janda T, Darko E, Shehata S, Kovacs V, Pal M, Szalai G. 2016. Salt acclimation processes in wheat. Plant Physiol Biochem. 101:68–75. doi:10.1016/j.plaphy.2016.01.025.
  • Ju-Nam Y, Lead JR. 2008. Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ. 400:396–414. doi:10.1016/j.scitotenv.2008.06.042.
  • Kalaji HM, Govindjee Bosa K, Kościelniak J, Żuk-Gołaszewska K. 2011. Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ Exp Bot. 73:64–72. doi:10.1016/j.envexpbot.2010.10.009.
  • Kalaji HM, Rastogi A, Zivcak M, Brestic M, Daszkowska-Golec A, Sitko K, Alsharafa KY, Lotfi R, Stypinski P, Samborska IA. 2018. Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. Photosynthetica. 56:953–961. doi:10.1007/s11099-018-0766-z.
  • Kalaji HM, Schansker G, Brestic M, Bussotti F, Calatayud A, Ferroni L, Goltsev V, Guidi L, Jajoo A, Li P, et al. 2017. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth Res. 132:13–66. doi:10.1007/s11120-016-0318-y.
  • Kaur H, Sirhindi G, Bhardwaj R, Alyemeni MN, Siddique K, Ahmad P. 2018. 28-homobrassinolide regulates antioxidant enzyme activities and gene expression in response to salt- and temperature-induced oxidative stress in Brassica juncea. Sci Rep. 8:8735. doi:10.1038/s41598-018-27032-w.
  • Kerepesi I, Galiba G, Bányai É. 1998. Osmotic and salt stresses induced differential alteration in water-soluble carbohydrate content in wheat seedlings. J Agr Food Chem. 46:5347–5354. doi:10.1021/jf980455w.
  • Keunen E, Peshev D, Vangronsveld J, Van Den Ende W, Cuypers A. 2013. Plantsugars are crucial players in the oxidative challenge during abiotic stress: extendingthe traditional concept. Plant Cell Environ. 36:1242–1255. doi:10.1111/pce.12061.
  • Kuhlgert S, Austic G, Zegarac R, Osei-Bonsu I, Hoh D, Chilvers MI, Roth MG, Bi K, TerAvest D, Weebadde P, et al. 2016. MultispeQ beta: a tool for large-scale plant phenotyping connected to the open photosynQ network. R Soc Open Sci. 3:160592.
  • Mehta P, Jajoo A, Mathur S, Bharti S. 2010. Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiol Biochem. 48:16–20. doi:10.1016/j.plaphy.2009.10.006.
  • Moloi MJ, Westhuizen AJ. 2006. The reactive oxygen species are involved in resistance responses of wheat to the Russian wheat aphid. J Plant Physiol. 163:1118–1125. doi:10.1016/j.jplph.2005.07.014.
  • Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 59:651–681. doi:10.1146/annurev.arplant.59.032607.092911.
  • Rahnama A, James RA, Poustini K, Munns R. 2010. Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol. 37:255–263. doi:10.1071/FP09148.
  • Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M. 2017. Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem. 5:78. doi:10.3389/fchem.2017.00059.
  • Rastogi A, Zivcak M, Tripathi DK, Yadav S, Kalaji HM, Brestic M. 2019. Phytotoxic effect of silver nanoparticles in Triticum aestivum: improper regulation of photosystem I activity as the reason for oxidative damage in the chloroplast. Photosynthetica. 57:209–216. doi:10.32615/ps.2019.019.
  • Roitsch T, González M-C. 2004. Function and regulation of plant invertases: sweet sensations. Trends Plant Sci. 9:606–613. doi:10.1016/j.tplants.2004.10.009.
  • Sergeeva LI, Vreugdenhil D. 2002. In situ staining of activities of enzymes involved in carbohydrate metabolism in plant tissues. J Exp Bot. 53:361–370. doi:10.1093/jexbot/53.367.361.
  • Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M, Hossain Z. 2014. Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environ Exp Bot. 102:37–47. doi:10.1016/j.envexpbot.2014.02.016.
  • Sun Z, Ren L, Fan J, Li Q, Wang K, Guo M, Wang L, Li J, Zhang G, Yang Z, et al. 2016. Salt response of photosynthetic electron transport systemin wheat cultivars with contrasting tolerance. Plant Soil Environ. 62:515–521. doi:10.17221/529/2016-PSE.
  • Tan W, Liu J, Dai T, Jing Q, Cao W, Jiang D. 2008. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging. Photosynthetica. 46:21–27. doi:10.1007/s11099-008-0005-0.
  • Tripathi DK, Mishra RK, Singh S, Singh S, Vishwakarma K, Sharma S, Singh VP, Singh PK, Prasad SM, Dubey NK, et al. 2017a. Nitric oxide ameliorates zinc oxide nanoparticles phytotoxicity in wheat seedlings: implication of the ascorbate-glutathione cycle. Front Plant Sci. 8:1. doi:10.3389/fpls.2017.00001.
  • Tripathi DK, Singh S, Sing S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK. 2017b. An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem. 110:2–12. doi:10.1016/j.plaphy.2016.07.030.
  • Wang X, Yang X, Chen S, Li Q, Wang W, Hou C, Gao X, Wang L, Wang S. 2015. Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front Plant Sci. 6:1243.
  • Wang Z, Li X, Zhu X, Liu S, Song F, Liu F, Wang Y, Qi X, Wang F, Zuo Z, et al. 2017. Salt acclimation induced salt tolerance is enhanced by abscisic acid priming in wheat. Plant Soil Environ. 63:307–314. doi:10.17221/287/2017-PSE.
  • Zhao Q, Zhang H, Wang T, Chen S, Dai S. 2013. Proteomics-based investigation of salt-responsive mechanisms in plant roots. J Proteomics. 82:230–253. doi:10.1016/j.jprot.2013.01.024.
  • Zivcak M, Brestic M, Balatova Z, Drevenakova P, Olsovska K, Kalaji HM, Yang X, Allakhverdiev SI. 2013. Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynth Res. 117:529–546. doi:10.1007/s11120-013-9885-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.