57
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Foraging plasticity in Chilean flamingos: influence of water depth, food abundance and intra-flock distances

ORCID Icon & ORCID Icon
Received 17 Aug 2023, Accepted 02 Jan 2024, Published online: 23 Feb 2024

REFERENCES

  • Altmann J. 1974. Observational study of behavior: sampling methods. Behaviour. 49(3–4): 227–266. doi:10.1163/156853974X00534
  • Aplin LM, Farine DR, Mann RP, Sheldon BC. 2014. Individual-level personality influences social foraging and collective behaviour in wild birds. Proc R Soc Lond B. 281(1789):20141016. doi:10.1098/rspb.2014.1016
  • Arengo F, Baldassarre GA. 1995. Effects of food density on the behavior and distribution of nonbreeding American flamingos in Yucatan, Mexico. Condor. 97(2):325–334. doi:10.2307/1369018
  • Arengo F, Baldassarre GA. 1999. Resource variability and conservation of American flamingos in coastal wetlands of Yucatán, Mexico. J Wildl Manage. 63(4):1201–1212. doi:10.2307/3802838
  • Arengo F, Baldassarre GA. 2002. Patch choice and foraging behavior of nonbreeding American flamingos in Yucatán, Mexico. Condor. 104(2):452–457. doi:10.1093/condor/104.2.452
  • Attrill MJ, Rundle SD. 2002. Ecotone or ecocline: ecological boundaries in estuaries. Estuar Coast Shelf Sci. 55(6):929–936. doi:10.1006/ecss.2002.1036
  • Bartoń KA, Hovestadt T. 2013. Prey density, value, and spatial distribution affect the efficiency of area-concentrated search. J Theor Biol. 316:61–69. doi:10.1016/j.jtbi.2012.09.002
  • Beauchamp G. 2005. Does group foraging promote efficient exploitation of resources? Oikos. 111(2):403–407. doi:10.1111/j.0030-1299.2005.14136.x
  • Beauchamp G. 2006. Nonrandom patterns of vigilance in flocks of the greater flamingo, Phoenicopterus ruber ruber. Anim Behav. 71(3):593–598. doi:10.1016/j.anbehav.2005.06.008
  • Beauchamp G. 2022. Flocking in birds is associated with diet, foraging substrate, timing of activity, and life history. Behav Ecol Sociobiol. 76(6):74. doi:10.1007/s00265-022-03183-9
  • Beauchamp G, McNeil R. 2003. Vigilance in greater flamingos foraging at night. Ethology. 109(6):511–520. doi:10.1046/j.1439-0310.2003.00899.x
  • Beerens JM, Gawlik DE, Herring G, Cook MI. 2011. Dynamic habitat selection by two wading bird species with divergent foraging strategies in a seasonally fluctuating wetland. Auk. 128(4):651–662. doi:10.1525/auk.2011.10165
  • Bildstein KL, Frederick PC, Spalding MG. 1991. Feeding patterns and aggressive behavior in juvenile and adult American flamingos. Condor. 93(4):916–925. doi:10.2307/3247726
  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-S. 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol. 24(3):127–135. doi:10.1016/j.tree.2008.10.008
  • Borcard D, Gillet F, Legendre P. 2018. Exploratory data analysis. In: Borcard D, et al., editors. Numerical ecology with R. Cham (Switzerland): Springer International Publishing; p. 11–34.
  • Bracey AM, Etterson MA, Strand FC, Matteson SW, Niemi GJ, Cuthbert FJ, Hoffman JC. 2021. Foraging ecology differentiates life stages and mercury exposure in common terns (Sterna hirundo). Integr Envir Assess Manage. 17(2):398–410. doi:10.1002/ieam.4341
  • Bryant DM. 1997. Energy expenditure in wild birds. Proc Nutr Soc. 56(3):1025–1039. doi:10.1079/PNS19970107
  • Bucher EH, Curto E. 2012. Influence of long-term climatic changes on breeding of the Chilean flamingo in Mar Chiquita, Córdoba, Argentina. Hydrobiologia. 697(1):127–137. doi:10.1007/s10750-012-1176-z
  • Buriol GA, Estefanel V, Chagas ÁD, Eberhardt D. 2007. Clima e vegetação natural do Estado do Rio Grande do Sul segundo o diagrama climático de Walter e Lieth [Climate and natural vegetation of the State of Rio Grande do Sul according to the Walter and Lieth climatic diagram]. Ciênc Florest. 17(2):91–100. Portuguese. doi:10.5902/198050981940
  • Burnham KP, Anderson DR, Huyvaert KP. 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol. 65(1):23–35. doi:10.1007/s00265-010-1029-6
  • Caziani SM, Rocha O, Rodríguez E, Romano M, Derlindati EJ, Tálamo A, Ricalde D, Quiroga C, Contreras J, Valqui M, Sosa H. 2007. Seasonal distribution, abundance, and nesting of Puna, Andean, and Chilean flamingos. Condor. 109(2):276–287. doi:10.1093/condor/109.2.276
  • Chatterjee A, Adhikari S, Pal S, Mukhopadhyay SK. 2020. Foraging guild structure and niche characteristics of waterbirds wintering in selected sub-Himalayan wetlands of India. Ecol Indic. 108:105693. doi:10.1016/j.ecolind.2019.105693
  • Chin DD, Lentink D. 2017. How birds direct impulse to minimize the energetic cost of foraging flight. Sci Adv. 3(5):e1603041. doi:10.1126/sciadv.1603041
  • Coolen I. 2002. Increasing foraging group size increases scrounger use and reduces searching efficiency in nutmeg mannikins (Lonchura punctulata). Behav Ecol Sociobiol. 52(3): 232–238. doi:10.1007/s00265-002-0500-4
  • Cowles SA, Gibson RM. 2015. Displaying to females may lower male foraging time and vigilance in a lekking bird. Auk. 132(1):82–91. doi:10.1642/AUK-14-67.1
  • Crippa LB, Stenert C, Maltchik L. 2013. Does the management of sandbar openings influence the macroinvertebrate communities in southern Brazil wetlands? A case study at Lagoa do Peixe National Park – Ramsar site. Ocean Coast Manage. 71:26–32. doi:10.1016/j.ocecoaman.2012.10.009
  • Croll DA, Tershy BR, Hewitt RP, Demer DA, Fiedler PC, Smith SE, Armstrong W, Popp JM, Kiekhefer T, Lopez VR, et al. 1998. An integrated approach to the foraging ecology of marine birds and mammals. Deep Sea Res Pt II. 45(7):1353–1371. doi:10.1016/S0967-0645(98)00031-9
  • Davis GH, Crofoot MC, Farine DR. 2022. Using optimal foraging theory to infer how groups make collective decisions. Trends Ecol Evol. 37(11):942–952. doi:10.1016/j.tree.2022.06.010
  • Delfino HC, Aldana-Ardila O. 2020. Comments on the population status of Chilean flamingos at Lagoa do Peixe National Park, Southern Brazil. Flamingo. 3:21–26. doi:10.5281/zenodo.4422061
  • Delfino HC, Aldana-Ardila O, Fedrizzi CE, Carlos CJ. 2023. Multisource data reveals relevant trends in a Chilean flamingo Phoenicopterus chilensis population at an important coastal wetland of Southern Brazil: implications for conservation and planning. J Coast Conserv. 27(4):33. doi:10.1007/s11852-023-00963-x
  • Delfino HC, Carlos CJ. 2021. Behavioral repertoire of a population of wild Chilean flamingos Phoenicopterus chilensis in southern Brazil. J Nat Hist. 55(31–32):1957–1981. doi:10.1080/00222933.2021.1978574
  • Delfino HC, Carlos CJ. 2022a. Intra-annual variation in activity budgets of a wild Chilean flamingo (Phoenicopterus chilensis) population in Southern Brazil. 47(5):971–982. doi:10.1111/aec.13180
  • Delfino HC, Carlos CJ. 2022b. What do we know about flamingo behaviors? A systematic review of the ethological research on the phoenicopteridae (1978–2020). Acta Ethol. 25(1):1–14. doi:10.1007/s10211-021-00381-y
  • Donadel L, Cardoso LDS, Torgan LC. 2016. Plankton community dynamics in a subtropical lagoonal system and related factors. An Acad Bras Ciênc. 88(1):249–267. doi:10.1590/0001-3765201520150022
  • du Plessis DS, Pillay D. 2022. Temporal interactions with flamingo (Phoenicopterus roseus) foraging plasticity: basal resources, assemblage structure and benthic heterogeneity. Estuar Coast Shelf Sci. 264:107659. doi:10.1016/j.ecss.2021.107659
  • Elgin AS, Clark RG, Morrissey CA. 2020. Tree swallow selection for wetlands in agricultural landscapes predicted by central-place foraging theory. Ornithol Appl. 122(4):duaa039. doi:10.1093/condor/duaa039
  • Esté EE, Casler CL. 2000. Abundance of benthic macroinvertebrates in Caribbean flamingo feeding areas at Los Olivitos Wildlife Refuge, Western Venezuela. Waterbirds. 23:87–94. doi:10.2307/1522151
  • Evens R, Beenaerts N, Witters N, Artois T. 2017. Study on the foraging behaviour of the European nightjar Caprimulgus europaeus reveals the need for a change in conservation strategy in Belgium. J Avian Biol. 48(9):1238–1245. doi:10.1111/jav.00996
  • Fedrizzi CE 2008. Distribuição, abundância e ecologia alimentar de aves costeiras (Charadriiformes: Charadrii e Scolopaci) na zona costeira do Rio Grande do Sul, Brasil. [Distribution, abundance, and feeding ecology of coastal birds (Charadriiformes: Charadrii and Scolopaci) in the coastal zone of Rio Grande do Sul, Brazil] [ Thesis]. Rio Grande (Brazil): Fundação Universidade Federal do Rio Grande do Sul. Portuguese.
  • Fedrizzi CE, Carlos CJ. 2011. Planície Costeira Central do Rio Grande do Sul [Central Coastal Plain of Rio Grande do Sul. In: Valente R, et al., editors. Conservação de aves migratórias neárticas no Brasil [Conservation of Nearctic migratory birds in Brazil]. Belém (Brazil): Conservation International; p. 331–334. Portuguese.
  • Ferrario M, Sar E, Sala S. 1995. Metodología básica para el estudio del fitoplancton con especial referencia a las diatomeas [Basic methodology for the study of phytoplankton with special reference to diatoms]. In: Alveal K, et al., editors. Manual de métodos ficológicos [Manual of phycological methods]. Concepcion (Chile): Universidad de Concepción; p. 2–20. Spanish.
  • Field SA, Tyre AJ, Possingham HP. 2002. Estimating bird species richness: how should repeat surveys be organized in time? Austral Ecol. 27(6):624–629. doi:10.1046/j.1442-9993.2002.01223.x
  • Fritzsons E, Wreve MS, Mantovani LE. 2015. Altitude e temperatura: Estudo do gradiente térmico no Rio Grande do Sul [Altitude and temperature: Study of the thermal gradient in Rio Grande do Sul]. Rev Bras Climatol. 11(16):108–119. doi:10.5380/abclima.v16i0.39665
  • Gihwala KN, Pillay D, Varughese M. 2017. Differential impacts of foraging plasticity by greater flamingo Phoenicopterus roseus on intertidal soft sediments. Mar Ecol Prog Ser. 569:227–242. doi:10.3354/meps12069
  • Gihwala KN, Pillay D, Varughese M. 2019. Predictors of foraging plasticity by greater flamingo (Phoenicopterus roseus) in intertidal soft sediments. Mar Biol. 166(4):50. doi:10.1007/s00227-019-3497-1
  • Glassom D, Branch GM. 1997. Impact of predation by greater flamingos Phoenicopterus ruber on the macrofauna of two southern African lagoons. Mar Ecol Prog Ser. 149:1–12. doi:10.3354/meps149001
  • Green R. 2006. A simpler, more general method of finding the optimal foraging strategy for Bayesian birds. Oikos. 112(2):274–284. doi:10.1111/j.0030-1299.2006.13462.x
  • Guisan A, Edwards TC, Hastie T. 2002. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model. 157(2–3):89–100. doi:10.1016/S0304-3800(02)00204-1
  • Heal M, Hoover BA, Waggitt JJ. 2021. Using rangefinder binoculars to measure the behaviour and movement of European shags Phalacrocorax aristotelis in coastal environments. Bird Stud. 68(1):135–140. doi:10.1080/00063657.2021.1960947
  • Henriksen MVJ, Hangstrup S, Work F, Krogsgaard MK, Groom GB, Fox AD. 2015. Flock distributions of lesser flamingos Phoeniconaias minor as potential responses to food abundance-predation risk trade-offs at Kamfers Dam, South Africa. Wildfowl J. 65:3–18.
  • Hillebrand H, Sommer U. 1999. The nutrient stoichiometry of benthic microalgal growth: Redfield proportions are optimal. Limnol Oceanogr. 44(2):440–446. doi:10.4319/lo.1999.44.2.0440
  • Hinton MG, Bendelow A, Lantz S, Wey TW, Schoen L, Brockett R, Karubian J. 2013. Patterns of aggression among captive American flamingos (Phoenicopterus ruber). Zoo Biol. 32(4):445–453. doi:10.1002/zoo.21078
  • Hon-Kai K. 2009. Foraging ecology of insectivorous birds in a mixed forest of Hong Kong. Acta Ecol Sin. 29(6):341–346. doi:10.1016/j.chnaes.2009.09.014
  • Houston AI, McNamara JM, Humphries M. 2013. Foraging currencies, metabolism and behavioural routines. J Anim Ecol. 83(1):30–40. doi:10.1111/1365-2656.12096
  • Hughes AL, Driscoll C. 2014. Being in the thick of things: context-dependent network centrality in a captive flock of American flamingos. J Ethol. 32(2):83–90. doi:10.1007/s10164-014-0398-0
  • [ICMBIO] Instituto Chico Mendes de Conservação da Biodiversidade. 2022. Parna da Lagoa do Peixe. Portuguese. Available from: https://www.gov.br/icmbio/pt-br/assuntos/biodiversidade/unidade-de-conservacao/unidades-de-biomas/marinho/lista-de-ucs/parna-da-lagoa-do-peixe/parna-da-lagoa-do-peixe [Accessed 21 Dec 2022].
  • [INMET] Instituto Nacional de Metereologia. 2023. Estação Metereológica MOSTARDAS A878. Portuguese. Available from: https://tempo.inmet.gov.br/TabelaEstacoes/A878 [Accessed 2 Mar 2023].
  • Jensen P, Algers B, Ekesbo I. 1986. Methods in the construction of ethograms. In: Jensen P, et al., editors. Methods of sampling and analysis of data in farm animal ethology. Basel (Switzerland): Birkhäuser; p. 31–43.
  • Johnson A, Cézilly F. 2009. The greater flamingo. ‎London (UK): T & AD Poyser.
  • Johnson PCD, Barry SJE, Ferguson HM, Müller P, Schielzeth H. 2015. Power analysis for generalized linear mixed models in ecology and evolution. Met Ecol Evol. 6(2):133–142. doi:10.1111/2041-210X.12306
  • Kahane-Rapport SR, Whelan S, Ammendolia J, Hatch SA, Elliott KH, Jacobs S. 2022. Food supply and individual quality influence seabird energy expenditure and reproductive success. Oecologia. 199(2):367–376. doi:10.1007/s00442-022-05191-y
  • Kierończyk B, Rawski M, Mikołajczak Z, Homska N, Jankowski J, Ognik K, Józefiak A, Mazurkiewicz J, Józefiak D. 2022. Available for millions of years but discovered through the last decade: insects as a source of nutrients and energy in animal diets. Anim Nutrit. 11:60–79. doi:10.1016/j.aninu.2022.06.015
  • Knak RB, organizer. 1999. Plano de Manejo do Parque Nacional da Lagoa do Peixe - Fase 2 [Management plan of the Lagoa do Peixe National Park - Phase 2]. Rio Grande (Brazil): Fundação Universidade Federal do Rio Grande. Portuguese.
  • Lanés LEK, Rolon AS, Stenert C, Maltchik L. 2015. Effects of an artificial and annual opening of a natural sandbar on the fish community in a coastal lagoon system: a case study in lagoa do peixe floodplains, southern Brazil. J Appl Ichthyol. 31(2):321–327. doi:10.1111/jai.12687
  • Langerhans RB, Goins TR, Stemp KM, Riesch R, Araújo MS, Layman CA. 2021. Consuming costly prey: optimal foraging and the role of compensatory growth. Front Ecol Evol. 8:603387. doi:10.3389/fevo.2020.603387
  • Lee HW, DeAngelis DL, Yurek S, Tennenbaum S. 2022. Wading bird foraging on a wetland landscape: a comparison of two strategies. Math Biosci Eng. 19(8):7687–7718. doi:10.3934/mbe.2022361
  • Leu M, Thompson CW. 2002. The potential importance of migratory stopover sites as flight feather molt staging areas: a review for neotropical migrants. Biol Conserv. 106(1):45–56. doi:10.1016/S0006-3207(01)00228-2
  • Liu W, Wu Y, DuBay SG, Zhao C, Wang B, Ran J. 2019. Dung-associated arthropods influence foraging ecology and habitat selection in Black-necked cranes (Grus nigricollis) on the Qinghai–Tibet Plateau. Ecol Evol. 9(4):2096–2105. doi:10.1002/ece3.4904
  • Madsen AE, Vander Meiden LN, Shizuka D, Pinter-Wollman N. 2021. Social partners and temperature jointly affect morning foraging activity of small birds in winter. Behav Ecol. 32(3):407–415. doi:10.1093/beheco/araa134
  • Marconi P. 2010. Manual de técnicas de monitoreo de condiciones ecológicas para el manejo integrado de la red de humedales de importancia para la conservación de flamencos altoandinos [Manual of monitoring techniques for ecological conditions in the integrated management of the wetland network of importance for Andean flamingo conservation]. Salta (Argentina): Fundación YUCHAN. Spanish.
  • Martin GR, Jarrett N, Tovey P, White CR. 2005. Visual fields in flamingos: chick-feeding versus filter-feeding. Sci Nat. 92(8):351–354. doi:10.1007/s00114-005-0010-0
  • Mascitti V, Bonaventura SM. 2002. Patterns of abundance, distribution and habitat use of flamingos in the High Andes, South America. Waterbirds. 25(3):358–365. doi:10.1675/1524-4695(2002)025[0358:POADAH]2.0.CO;2
  • Mascitti V, Castañera MB. 2006. Foraging depth of flamingos in single-species and mixed-species flocks at Laguna de Pozuelos, Argentina. Waterbirds. 29(3):328–334. doi:10.1675/1524-4695(2006)29[328:FDOFIS]2.0.CO;2
  • Mezebish TD, Chandler RB, Olsen GH, Goodman M, Rohwer FC, Meng NJ, McConnell MD. 2021. Wetland selection by female ring-necked ducks (Aythya collaris) in the Southern Atlantic flyway. Wetlands. 41(6):84. doi:10.1007/s13157-021-01485-8
  • Miller MJ, Bermingham E, Turner BL, Touchon JC, Johnson AB, Winker K, Ruegg K. 2021. Demographic consequences of foraging ecology explain genetic diversification in neotropical bird species. Ecol Let. 24(3):563–571. doi:10.1111/ele.13674
  • Minohara RH, Dazzi RS, Santos AS. 2016. Unidades de conservação e sustentabilidade: Plano de manejo e aplicação da capacidade de carga no Parque Nacional da Lagoa do Peixe (RS) [Conservation units and sustainability: Management plan and application of carrying capacity in Lagoa do Peixe National Park (RS)]. Appl Tourism. 1:81–103. Portuguese.
  • Muro-Torres VM, Amezcua F, Soto-Jiménez M, Balart EF, Serviere-Zaragoza E, Green L, Rajnohova J. 2020. Primary sources and food web structure of a tropical wetland with high density of mangrove forest. Water. 12(11):3105. doi:10.3390/w12113105
  • Nadeau CP, Conway CJ. 2012. Field evaluation of distance-estimation error during wetland-dependent bird surveys. Wildl Res. 39(4):311–320. doi:10.1071/WR11161
  • Naef-Daenzer B. 2000. Patch time allocation and patch sampling by foraging great and blue tits. Anim Behav. 59(5):989–999. doi:10.1006/anbe.1999.1380
  • Nascimento JL, Santos PJP. 2010. Pre-migration preparation of Sterna hirundo (Charadriiformes, Sternidae) in Lagoa do Peixe National Park, Rio Grande do Sul. Rev Bras Ornitol. 18(4):307–314.
  • Navalón G, Bright JA, Marugán-Lobón J, Rayfield EJ. 2019. The evolutionary relationship among beak shape, mechanical advantage, and feeding ecology in modern birds. Evolution. 73(3):422–435. doi:10.1111/evo.13655
  • Nilsson L, Persson J, Bunnefeld N, Månsson J. 2020. Central place foraging in a human-dominated landscape: how do common cranes select feeding sites? J Avian Biol. 51(6):e02487. doi:10.1111/jav.02487
  • Paine RT, Vadas RL. 1969. Calorific values of benthic marine algae and their postulated relation to invertebrate food preference. Mar Biol. 4(2):79–86. doi:10.1007/BF00347036
  • Palecek AM, Novak MV, Blob RW. 2021. Wading through water: effects of water depth and speed on the drag and kinematics of walking Chilean flamingos, Phoenicopterus chilensis. J Exp Biol. 224(19):jeb242988. doi:10.1242/jeb.242988
  • Paludo D, Alves M, dos Santos RS, Lemos L, Zibetti AW, Hensberge H. 2022. Aves limícolas na praia do Parque Nacional da Lagoa do Peixe e do Entorno: Análise dos censos conduzidos entre os anos de 2012 e 2021 [Shorebirds at Lagoa do Peixe National Park beach and surroundings: analysis of censuses conducted between 2012 and 2021]. Biodiversidade Brasileira. 12(4):1–32. Portuguese. doi:10.37002/biobrasil.v12i2.2203
  • Pascoe BA, Schlesinger CA, Pavey CR, Morton SR. 2019. Effectiveness of transects, point counts and area searches for bird surveys in arid Acacia shrubland. Corella. 43:31–35.
  • Payne R 2013. Flamingo foraging activity as a driver of spatial heterogeneity in Langebaan Lagoon, South Africa [ Thesis]. Cape Town (South Africa): University of Cape Town.
  • Pedersen EJ, Miller DL, Simpson GL, Ross N. 2019. Hierarchical generalized additive models in ecology: an introduction with mgcv. PeerJ. 7:e6876. doi:10.7717/peerj.6876
  • Pickering S, Creighton E, Stevens-Wood B. 1992. Flock size and breeding success in flamingos. Zoo Biol. 11(4):229–234. doi:10.1002/zoo.1430110402
  • Podani J. 2005. Multivariate exploratory analysis of ordinal data in ecology: pitfalls, problems and solutions. J Veg Sci. 16:497–510. doi:10.1111/j.1654-1103.2005.tb02390.x
  • Polla WM, Pasquale VD, Rasuk MC, Barberis I, Romano M, Manzo RA, Paggi JC, Farías ME, Contreras M, Devercelli M. 2018. Diet and feeding selectivity of the Andean flamingo Phoenicoparrus andinus and Chilean flamingo Phoenicopterus chilensis in lowland wintering areas. Wildfowl J. 68:3–29.
  • Porter WP, Budaraju S, Stewart WE, Ramankutty N. 2000. Calculating climate effects on birds and mammals: impacts on biodiversity, conservation, population parameters, and global community structure. Am Zool. 40(4):597–630. doi:10.1093/icb/40.4.597
  • Portz L, Guasselli LA, Corrêa ICS. 2011. Variação espacial e temporal de NDVI na Lagoa do Peixe, RS [Spatial and temporal variation of NDVI in the Peixe Lagoon, RS]. Rev Bras Geog Fis. 4(5):897–908. Portuguese. doi:10.26848/rbgf.v4i5.232706
  • Pyke GH, Pulliam HR, Charnov EL. 1977. Optimal foraging: a selective review of theory and tests. Q Rev Biol. 52(2):137–154. doi:10.1086/409852
  • Ransom D, Pinchak WE. 2003. Assessing accuracy of a laser rangefinder in estimating grassland bird density. Wildl Soc Bull. 31:460–463.
  • Raubenheimer D, Simpson SJ. 2018. Nutritional ecology and foraging theory. Curr Opin Insect Sci. 27:38–45. doi:10.1016/j.cois.2018.02.002
  • R Core Team. 2023. R: A language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing.
  • Rolon AS, Lacerda T, Maltchik L, Guadagnin DL. 2008. Influence of area, habitat and water chemistry on richness and composition of macrophyte assemblages in southern Brazilian wetlands. J Veg Sci. 19(2):221–228. doi:10.3170/2008-8-18359
  • Rose PE, Croft DP. 2017. Social bonds in a flock bird: species differences and seasonality in social structure in captive flamingo flocks over a 12-month period. Appl Anim Behav Sci. 193:87–97. doi:10.1016/j.applanim.2017.03.006
  • Sartori M da GB. 2003. A dinâmica do clima do Rio Grande do Sul: indução empírica e conhecimento científico [The dynamics of the climate in Rio Grande do Sul: empirical induction and scientific knowledge]. Terra Livre. 1(20):27–50.
  • Schmitz RA, Baldassarre GA. 1992. Correlates of flock size and behavior of foraging American flamingos following hurricane Gilbert in Yucatan, Mexico. Condor. 94(1):260–264. doi:10.2307/1368815
  • Schossler V, Simões JC, Aquino FE, Fitzpatrick C. 2017. Coastal geoindicators and anomalous precipitation patterns associated with variations in the SAM and the ENSO. Rev Bras Geog Fis. 10(5):1419–1434. doi:10.26848/rbgf.v.10.5.p1419-1434
  • Scott JJ, Renaut RW, Owen RB. 2012. Impacts of flamingos on saline lake margin and shallow lacustrine sediments in the Kenya Rift Valley. Sediment Geol. 277–278:32–51.
  • Shepard ELC, Lambertucci SA, Vallmitjana D, Wilson RP, Fenton B. 2011. Energy beyond food: foraging theory informs time spent in thermals by a large soaring bird. PLoS ONE. 6(11):e27375. doi:10.1371/journal.pone.0027375
  • Shochat E, Lerman SB, Katti M, Lewis DB. 2004. Linking optimal foraging behavior to bird community structure in an urban‐desert landscape: field experiments with artificial food patches. Am Nat. 164(2):232–243. doi:10.1086/422222
  • Sotillo A, Baert JM, Müller W, Stienen EWM, Soares AMVM, Lens L. 2019. Time and energy costs of different foraging choices in an avian generalist species. Mov Ecol. 7(1):41. doi:10.1186/s40462-019-0188-y
  • Stahl J, Tolsma PH, Loonen MJJE, Drent RH. 2001. Subordinates explore but dominants profit: resource competition in high Arctic barnacle goose flocks. Anim Behav. 61:257–264. doi:10.1006/anbe.2000.1564
  • Stephens DW. 2008. Decision ecology: foraging and the ecology of animal decision making. Cogn Affect Behav Neurosci. 8(4):475–484. doi:10.3758/CABN.8.4.475
  • Sutherland WJ. 1998. The importance of behavioural studies in conservation biology. Anim Behav. 56(4):801–809. doi:10.1006/anbe.1998.0896
  • Tobar CN, Rau JR, Fuentes N, Gantz A, Suazo CG, Cursach JA, Santibañez A, Pérez-Schultheiss J. 2014. Diet of the Chilean flamingo Phoenicopterus chilensis (Phoenicopteriformes: Phoenicopteridae) in a coastal wetland in Chiloé, southern Chile. Rev Chil de Hist Nat. 87(1):15. doi:10.1186/s40693-014-0015-1
  • Tremblay F, Whelan S, Choy ES, Hatch SA, Elliott KH. 2022. Resting costs too: the relative importance of active and resting energy expenditure in a sub-arctic seabird. J Exp Biol. 225(4):jeb243548. doi:10.1242/jeb.243548
  • Valqui M, Caziani SM, Rocha-O O, Rodriguez-R E. 2000. Abundance and distribution of the South American Altiplano flamingos. Waterbirds. 23:110–113. doi:10.2307/1522154
  • Vaughn SN, Jackson CR. 2022. Evaluating methods of preserving aquatic invertebrates for microbiome analysis. Microorganisms. 10(4):e811. doi:10.3390/microorganisms10040811
  • Vickery WL, Giraldeau L-A, Templeton JJ, Kramer DL, Chapman CA. 1991. Producers, scroungers, and group foraging. Am Nat. 137(6):847–863. doi:10.1086/285197
  • Villafañe VE, Reid EM. 1995. Métodos de microscopía para la cuantificación del fitoplancton [Microscopy methods for the quantification of phytoplankton]. In: Alveal K, et al., editors. Manual de Métodos ficológicos [Manual of phycological methods]. Concepción (Chile): Universidad de Concepción; p. 2–20. Spanish.
  • Weimerskirch H, Bouwhuis S. 2018. Linking demographic processes and foraging ecology in wandering albatross — conservation implications. J Anim Ecol. 87(4):945–955. doi:10.1111/1365-2656.12817
  • Wood SN. 2003. Thin plate regression splines. J R Stat Soc Ser B Stat Methodol. 65(1):95–114. doi:10.1111/1467-9868.00374
  • Wu G-M, Giraldeau L-A. 2005. Risky decisions: a test of risk sensitivity in socially foraging flocks of Lonchura punctulata. Behav Ecol. 16(1):8–14. doi:10.1093/beheco/arh127
  • Yosef R. 2000. Individual distances among greater flamingos as indicators of tourism pressure. Waterbirds. 23:26–31. doi:10.2307/1522143
  • Young M, Howe E, O’Rear T, Berridge K, Moyle P. 2021. Food web fuel differs across habitats and seasons of a tidal freshwater estuary. Estuaries Coast. 44(1):286–301. doi:10.1007/s12237-020-00762-9
  • Zweers G, de Jong F, Berkhoudt H, Berge JCV. 1995. Filter feeding in flamingos (Phoenicopterus ruber). Condor. 97(2):297–324. doi:10.2307/1369017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.