872
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Microscopic and Spectroscopic Methods Applied to the Measurements of Nanoparticles in the Environment

, , , , &
Pages 180-206 | Published online: 20 Mar 2012

References

  • ASTM E2456-06 . Standard Terminology Relating to Nanotechnology Available at: http://www.astm.org/Standards/E2456.htm (accessed October 3, 2011)
  • Weinberg , H. , Galyean , A. and Leopold , M. 2011 . Evaluating engineering nanoparticles in natural waters . Trends Anal. Chem. , 30 ( 1 ) : 72 – 83 .
  • Huang , X. , Neretina , S. and El-Sayed , M. A. 2009 . Gold nanorods: From synthesis and properties to biological and biomedical applications . Adv. Mater , 21 : 4880 – 4910 .
  • Klaine , S. J. , Alvarez , P. J.J. , Batley , G. E. , Fernandes , T. F. , Handy , R. D. , Lyon , D. Y. , Mahendra , S. , McLaughlin , M. J. and Lead , J. R. 2008 . Nanomaterials in the environment: Behavior, fate, bioavailability . Environ. Toxicol. Chem. , 27 ( 9 ) : 1825 – 1851 .
  • Handy , R. D. , Owen , R. and Valsami-Jones , E. 2008 . The ecotoxicology of nanoparticles and nanomaterials: Current status, knowledge gaps, challenges, and future needs . Ecotoxicology , 17 : 315 – 325 .
  • Tiede , K. , Boxall , A. B.A. , Tear , S. P. , Lewis , J. , David , H. and Hassellöv , M. 2008 . Detection and characterization of engineered nanoparticles in food and the environment . Food Addit. Contam. , 25 ( 7 ) : 795 – 821 .
  • Marinella , F. , Sanchís , J. and Barceló , D. 2011 . Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment . Trends Anal. Chem. , 30 ( 3 ) : 517 – 527 .
  • Akthakul , A. , Hochbaum , A. I. , Stellacci , F. and Mayes , A. M. 2005 . Size fractionation of metal nanoparticles by membrane filtration . Adv. Mater. , 17 : 532 – 535 .
  • Howell , K. A. , Achterberg , E. P. , Tappin , A. D. and Worsfold , P. J. 2006 . Colloidal metals in the Tamar Estuary and their influence on metal fractionation by membrane filtration . Environ. Chem. , 3 ( 3 ) : 199 – 207 .
  • Jamison , J. , Krueger , K. M. , Mayo , J. T. , Yavuz , C. T. , Redden , J. J. and Covin , V. L. 2009 . Applying analytical ultracentrifugation to nanocrystal suspensions . Nanotechnology , 20 : 355702
  • Scrivens , W. A. , Tour , J. M. , Creek , K. E. and Pirisi , L. 1994 . Uptake of aqueous suspensions of 14C-labeled C60 by human keratinocytes . J. Am. Chem. Soc. , 116 : 4517 – 4518 .
  • Song , Y. , Jimenez , V. , McKinney , C. , Donkers , R. and Murray , R. W. 2003 . Estimation of size for 1–2 nm nanoparticles using an HPLC electrochemical detector of double layer charging . Anal. Chem. , 75 ( 19 ) : 5088 – 5096 .
  • Lyon , D. Y. , Adams , L. K. , Falkner , J. C. and Alvarez , P. J.J. 2006 . Antibacterial activity of fullerene water suspensions: Effect of preparation method and particle size . Environ. Sci. Tech. , 40 ( 14 ) : 4360 – 4366 .
  • Powers , K. W. , Palazuelos , M. , Moudgil , B. M. and Roberts , S. M. 2007 . Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies . Nanotoxicology , 1 ( 1 ) : 42 – 51 .
  • Powell , C. J. and Seah , M. P. 1990 . Precision, accuracy and uncertainty in quantitative surface analysis by auger electron spectroscopy and X-ray photoelectron spectroscopy . . J. Vac. Sci. Tech. , 8 : 735 – 763 .
  • Liu , J. 2005 . Scanning transmission electron microscopy and its application to the study of nanoparticles and nanoparticle systems . J. Electron. Microcs. , 54 : 251 – 278 .
  • Leppard , G. G. , Mavrocordatos , D. and Perret , D. 2004 . Electron-optical characterization of nano- and micro-particles in raw and treated waters: An overview . Water Sci. Tech. , 50 ( 12 ) : 1 – 8 .
  • Wigginton , N. S. , Haus , K. L. and Hochella , M. F. Jr. 2007 . Aquatic environmental nanoparticles . J. Environ. Monit. , 9 ( 12 ) : 1306 – 1316 .
  • Domingos , R. F. , Baalousha , M. A. , Ju-Nam , Y. , Reid , M. M. , Tufenkji , N. , Lead , J. R. , Leppard , G. G. and Wilkinson , K. J. 2009 . Characterizing manufactured nanoparticles in the environment: Multimethod determination of particle sizes . Environ. Sci. Tech. , 43 : 7277 – 7284 .
  • Lead , J. R. and Wilkinson , K. J. 2006 . Aquatic colloids and nanoparticles: Current knowledge and future trends . Environ. Chem. , 3 : 159 – 171 .
  • Hassellöv , M. , Lyvén , B. , Bengtsson , H. , Jansen , R. , Turner , D. R. and Beckett , R. 2001 . Particle size distributions of clay-rich sediments and pure clay minerals: A comparison of grain size analysis with sedimentation field-flow fractionation . Aquat. Geochem. , 7 ( 2 ) : 155 – 171 .
  • Hassellöv , M. , Readman , J. W. , Ranville , J. F. and Tiede , K. 2008 . Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles . Ecotoxicology , 17 : 344 – 361 .
  • George , S. , Steinberg , S. M. and Hodge , V. 2000 . The concentration, apparent molecular weight and chemical reactivity of silica from groundwater in southern Nevada . Chemosphere , 40 ( 1 ) : 57 – 63 .
  • Farre , M. , Sanchıs , J. and Barcelo , D. 2011 . Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment . Trends Anal. Chem. , 30 ( 3 ) : 517 – 540 .
  • Nowack , B. and Bucheli , T. D. 2007 . Occurrence, behavior and effects of nanoparticles in the environment . Environ. Pollut. , 150 ( 1 ) : 5 – 22 .
  • Salamon , A. W. , Courtney , P. and Shutler , I. 2010 . Nanotechnology and Engineered Nanomaterials: A Primer , Waltham , MA : Perkin Elmer .
  • Yagodkin , Y. D. and Dobatkin , S. V. 2008 . Application of electron microscopy and X-ray structural analysis for the determination of sizes of structural elements in nanocrystalline materials (review) . Inorg. Mater. , 44 ( 14 ) : 1520 – 1530 .
  • Hagendorfer , H. , Lorenz , C. , Kaegi , R. , Sinnet , B. , Gehrig , R. , Goetz , N. V. , Scheringer , M. , Ludwig , C. and Ulrich , A. 2010 . Size-fractionated characterization and quantification of nanoparticle release rates from a consumer spray product containing engineered nanoparticles . Journal of Nanoparticle Research , 12 : 2481 – 2494 .
  • Available at: http://en.wikipedia.org/wiki/X-ray_scattering_techniques
  • Singh , M. , Sinha , I. , Singh , A. K. and Mandal , R. K. 2011 . Correlating SAXS analysis with LSPR behavior: Poly(vinyl alcohol)-stabilized Ag nanoparticles . Journal of Nanoparticle Research , 13 : 4387 – 4394 .
  • Kim , S. Y. and Zukoski , C. F. 2011 . Role of polymer segment–particle surface interactions in controlling nanoparticle dispersions in concentrated polymer solutions . Langmuir , 27 : 10455 – 10463 .
  • Dieguez , A. , Romano-Rodrıguez , A. , Morante , J. R. , Barsan , N. , Weimar , U. and Gopel , W. 1997 . Nondestructive assessment of the grain size distribution of SnO2 nanoparticles by low-frequency Raman spectroscopy . Appl. Phys. Lett. , 71 ( 14 ) : 1957 – 1959 .
  • Scepanovic , M. , Askrabic , S. , Grujic-Brojcin , M. , Golubovic , A. , Doh·Cevic-Mitrovic , Z. , Kremenovic , A. and Popovi , Z. V. 2009 . Low-frequency Raman spectroscopy of pure and La-doped TiO2 nanopowders synthesized by sol-gel method . Acta Phys. Pol. A , 116 ( 1 ) : 99 – 102 .
  • Vouagner , D. , Bois , L. , Nardou , E. , Sirotkin , S. , Champagnon , B. and Chassagneux , F. 2011 . Orientation of spheroid-shaped silver nanoparticles in mesostructured silica films studied by polarized absorption and low-frequency Raman spectroscopy . Journal of Non-Crystalline Solids , 357 : 2615 – 2619 .
  • Xiong , B. , Cheng , J. , Qiao , X. , Zhou , R. , He , Y. and Yeung , E. S. 2011 . Separation of nanorods by density gradient centrifugation . J. Chrom. A , 1218 : 3823 – 3829 .
  • Garay-Jimenez , J. C. and Turos , E. 2011 . A convenient method to prepare emulsified polyacrylate nanoparticles from for drug delivery applications . Bioorg. Med. Chem. Lett. , 21 : 4589 – 4591 .
  • Staiger , M. , Bowen , P. , Ketterer , J. and Bohonek , J. 2002 . Particle size distribution measurement and assessment of agglomeration of commercial nanosized ceramic particles . J. Disp. Sci. Tech. , 23 ( 5 ) : 619 – 630 .
  • Zordan , C. , Wang , S. and Johnston , M. V. 2008 . Time-resolved chemical composition of individual nanoparticles in urban air . Environ. Sci. Tech. , 42 : 6631 – 6636 .
  • Geller , M. D. , Kim , S. , Misra , C. , Sioutas , C. , Olson , B. A. and Marple , V. A. 2002 . A methodology for measuring size-dependent chemical composition of ultrafine particles . Aerosol Sci. Tech. , 36 : 748 – 762 .
  • Truong , V. K. , Lapovok , R. , Estrin , Y. S. , Rundell , S. , Wang , J. Y. , Fluke , C. J. , Crawford , R. J. and Ivanova , E. P. 2010 . The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium . Biomaterials , 31 : 3674 – 3683 .
  • Yu , D. , Xu , M. , Yao , H. , Liu , X. , Zhou , K. , Wen , C. and Li , L. 2009 . Physicochemical properties and potential health effects of nanoparticles from pulverized coal combustion . Chin. Sci. Bull. , 54 ( 7 ) : 1243 – 1250 .
  • Shinde , K. P. , Pawar , S. S. and Pawar , S. H. 2011 . Influence of annealing temperature on morphological and magnetic properties of La0.9Sr0.1MnO3 . Appl. Surf. Sci. , 257 : 9996 – 9999 .
  • Sousa , M. H. , da Silva , G. J. , Depeyrot , J. , Tourinho , F. A. and Zara , L. F. 2011 . Chemical analysis of size-tailored magnetic colloids using slurry nebulization in ICP-OES . Microchem. J. , 97 : 182 – 187 .
  • Ojeda , R. , de Paz , J. L. , Barrientos , A. G. , Martin-Lomas , M. and Penades , S. 2007 . Preparation of multifunctional glyconanoparticles as a platform for potential carbohydrate-based anticancer vaccines . Carbohydr. Res. , 342 : 448 – 459 .
  • Dhalmini , M. S. , Terbalns , J. J. , Ntwaeaborwa , O. M. and Swart , H. C. 2007 . Synthesis and degradation of the PbS nanoparticle phosphors embedded in SiO2 (SiO2:PbS) . Surf. Rev. Lett. , 14 ( 4 ) : 697 – 701 .
  • Delavari , H. H. , Madaah Hosseini , H. R. and Simchi , A. 2011 . Effects of particle size, shape and crystal structure on the formation energy of Schottky vacancies in free-standing metal nanoparticles: A model study . Physica B , 406 : 3777 – 3780 .
  • Kuwahara , K. , Sugiyama , S. , Iwasa , K. , Kohgi , M. , Nakamura , M. , Inamura , Y. , Arai , M. and Kunii , S. 2002 . EXCED—Epithermal neutron diffractometer at KENS . Appl. Phys. A , 74 ( Suppl ) : S302 – S304 .
  • Bai , S. , Hu , J. , Li , D. , Luo , R. , Chen , A. and Liu , C. C. 2011 . Quantum-sized ZnO nanoparticles: Synthesis, characterization and sensing properties for NO2 . J. Mater. Chem. , 21 : 12288 – 12294 .
  • Burleson , D. J. , Driessen , M. D. and Penn , R. L. 2004 . On the characterization of environmental nanoparticles . J. Environ. Sci. Health Environ. Sci. Eng. , 39 ( 10 ) : 2707 – 2753 .
  • Gardea-Torresdey , J. L. , Parsons , J. G. , Gomez , E. , Peralta-Videa , J. R. , Troiani , H. E. , Santiago , P. and Jose-Yacaman , M. 2002 . Formation and growth of Au nanoparticles inside live alfalfa plants . Nano Lett. , 2 ( 4 ) : 397 – 401 .
  • Chithrani , B. D. , Ghazani , A. A. and Chan , W. C.W. 2006 . Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells . Nano Lett. , 6 ( 4 ) : 662 – 668 .
  • Ferry , J. L. , Craig , P. , Hexel , C. , Sisco , P. , Frey , R. , Pennington , P. L. , Fulton , M. H. , Scott , I. G. , Decho , A. W. , Kashiwada , S. , Murphy , C. J. and Shaw , T. J. 2009 . Transfer of gold nanoparticles from the water column to the estuarine food web . Nature Nanotechnology , 4 : 441 – 444 .
  • Gardea-Torresdey , J. L. , Gomez , E. , Peralta-Videa , J. R. , Parsons , J. G. , Troiani , H. and Jose-Yacaman , M. 2003 . Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles . Langmuir , 19 : 1357 – 1361 .
  • Baer , D. R. , Gaspar , D. J. , Nachimuthu , P. , Techane , S. D. and Castner , D. G. 2010 . Application of surface chemical analysis tools for characterization of nanoparticles . Anal. Bioanal. Chem. , 396 : 983 – 1002 .
  • Hu , J. D. , Zevi , Y. , Kou , X.-M. , Xiao , J. , Wang , X.-J. and Jin , Y. 2010 . Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions . Sci. Total Environ. , 408 : 3477 – 3489 .
  • Keller , A. A. , Wang , H. , Zhou , D. , Lenihan , H. , Cherr , G. , Cardinale , B. J. , Miller , R. and Ji , X. 2010 . Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices . Environ. Sci. Tech. , 44 : 1962 – 1967 .
  • Fan , Y. F. , Wang , Y. N. , Fan , Y. G. and Ma , J. B. 2006 . Preparation of insulin nanoparticles and their encapsulation with biodegradable polyelectrolytes via the layer-by-layer adsorption . Int. J. Pharm. , 324 : 158 – 167 .
  • Kuo , Y.-C. and Lin , T.-W. 2006 . Electrophoretic mobility zeta potential and fixed charge density of bovine knee chondrocytes, methyl methacrylate-sulfopropyl methacrylate, polybuthylcyanoacrylate, and solid lipid nanoparticles . J. Phys. Chem. B , 110 : 2202 – 2208 .
  • Tantra , R. , Jing , S. , Pichaimuthu , S. K. , Walker , N. , Noble , J. and Hackley , V. A. 2011 . Dispersion stability of nanoparticles in ecotoxicological investigations: The need for adequate measurement tools . Journal of Nanoparticle Research , 13 : 3765 – 3780 .
  • Peltonen , L. and Hirvonen , J. 2008 . Physicochemical characterization of nano- and microparticles . Curr. Nanosci. , 4 : 101 – 107 .
  • U.S. Department of Commerce . “ National Institute of Standards and Technology. Reference Material 8012—Gold nanoparticles, report of investigation ” . Available at: https://www-s.nist.gov/srmors/view_detail.cfm?srm=8012 (accessed October 20, 2011)
  • Poda , A. R. , Bednar , A. J. , Kennedy , A. J. , Harmon , A. , Hull , M. , Mitrano , D. M. , Ranville , J. E. and Steevens , J. 2011 . Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry . J. Chrom. A , 1218 : 4219 – 4225 .
  • Rahman , A. , Zidan , A. S. and Khan , M. A. 2010 . Non-destructive methods of characterization of risperidone solid lipid nanoparticles . Eur. J. Pharm. Biopharm. , 76 : 127 – 137 .
  • Bhatt , I. and Tripathy , B. N. 2011 . Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment . Chemosphere , 82 : 308 – 317 .
  • Hoyt , M. 2009 . “ Analyses of nanoparticles in the environment ” . In Nanotechnology and the Environment , Edited by: Sellers , K. , Mackay , C. , Bergeson , L. L. , Clough , S. R. , Hoyt , M. , Chen , J. , Henry , K. and Hamblen , J. 99 – 123 . Boca Raton : CRC Press .
  • Sipzner , L. , Stettin , J. , Pan , Z. , Fang , X. , Lee , W. , Pernodet , N. and Rafailovich , M. 2006 . “ The penetration of titanium dioxide nanoparticles: From dermal fibroblasts to skin tissue ” . Available at: http://meetings.aps.org/Meeting/MAR06/Event/44906 (accessed October 25, 2011)
  • Utsunomiya , S. , Jensen , K. , Keeler , G. and Ewing , R. 2004 . Direct identification of trace metals in fine and ultrafine particles in the Detroit urban atmosphere . Environ. Sci. Tech. , 38 : 2289 – 2297 .
  • Doucet , F. J. , Lead , J. R. , Maguire , L. , Achterberg , E. P. and Millward , G. E. 2005 . Visualisation of natural aquatic colloids and particles—A comparison of conventional high vacuum and environmental scanning electron microscopy . J. Environ. Monit. , 7 ( 2 ) : 115 – 121 .
  • Bogner , A. , Thollet , G. , Basset , D. , Jouneau , P. H. and Gauthier , C. 2005 . Wet STEM: A new development in environmental SEM for imaging nano-objects included in a liquid phase . Ultramicroscopy , 104 : 290 – 301 .
  • Lead , J. R. , Muirhead , D. and Gibson , C. T. 2005 . Characterization of freshwater natural aquatic colloids by atomic force microscopy (AFM) . Environ. Sci. Tech. , 39 : 6930 – 6936 .
  • Köllensperger , G. , Friedbacher , G. , Krammer , A. and Grasserbauer , M. 1999 . Application of atomic force microscopy to particle sizing . Fresen. J. Anal. Chem. , 363 : 323 – 332 .
  • Baalousha , M. and Lead , J. R. 2007 . Characterization of natural aquatic colloids (<5 nm) by flow field fractionation and atomic force microscopy . Environ. Sci. Tech. , 41 : 1111 – 1117 .
  • Doucet , F. , Maguire , L. and Lead , J. 2004 . Size fractionation of aquatic colloids and particles by cross-flow filtration: Analysis by scanning electron and atomic force microscopy . Anal. Chim. Acta , 522 : 59 – 71 .
  • Corle , T. R. and Kino , G. S. 1996 . Confocal Scanning Optical Microscopy and Related Imaging Systems , Academic Press .
  • Paddock , S. 1999 . Confocal Microscopy Methods and Protocols , Humana Press .
  • Wokovich , A. , Tyner , K. , Doub , W. , Sadrieh , N. and Buhse , L. F. 2009 . Particle size determination of sunscreens formulated with various forms of titanium dioxide . Drug Dev. Ind. Pharm. , 35 ( 10 ) : 1180 – 1189 .
  • Ito , S. and Aoki , H. 2005 . Nano-imaging of polymers by optical microscopy . Adv. Polymer Sci. , 182 : 131 – 169 .
  • Song , L. , Hennink , E. J. , Young , I. T. and Tanke , H. J. 1995 . Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy . Biophys. J. , 68 : 2588 – 2600 .
  • Minati , L. , Torrengo , S. , Rossi , B. , Dalla-Serra , M. , Antonini , V. and Speranza , G. 2011 . Synthesis and characterization of Raman active gold nanoparticles . Physicochem. Eng. Aspect. , 386 : 92 – 97 .
  • Chang , S. , Kang , B. , Dai , Y. and Chen , D. 2008 . A novel route to synthesize CdS quantum dots on the surface of silk fibers via γ-radiation . Mater. Lett. , 62 : 3447 – 3449 .
  • Snyder , M. A. , Demirgoz , D. , Kokkoli , E. and Tsapatsis , M. 2009 . Benign 3D encapsulation of sensitive mammalian cells in porous silica gels formed by Lys–Sil nanoparticle assembly . Microporous and Mesoporous Materials , 118 : 387 – 395 .
  • Tran , L. D. , Hoang , N. M.T. , Mai , T. T. , Tran , H. V. , Nguyen , N. T. , Tran , T. D. , Do , M. H. , Nguyen , Q. T. , Pham , D. G. , Ha , T. P. , Le , H. V. and Nguyen , P. X. 2010 . Nanosized magnetofluorescent Fe3O4–curcumin conjugate for multimodal monitoring and drug targeting . Physicochem. Eng. Aspect. , 371 : 104 – 112 .
  • Sun , Y. , Zha , L. , Zhang , J. , Guan , C. , Zheng , L. , Li , W. and Qiao , J. 2011 . Synthesis, modification and cell image of fluorescent silica nanoparticles . Acta Chim. Sinica , 69 ( 8 ) : 967 – 972 .
  • Lippincott-Schwartz , J. and Patterson , G. 2003 . Development and use of fluorescent protein markers in living cells . Science , 300 : 87 – 91 .
  • Zhang , J. , Campbell , R. E. , Ting , A. Y. and Tsien , R. Y. 2002 . Creating new fluorescent probes for cell biology . Nat. Rev. Mol. Cell Biol. , 3 ( 12 ) : 906 – 918 .
  • DeMaggio , S. 2002 . Running and setting up a confocal microscope core facility . Meth. Cell Biol. , 70 : 475 – 485 .
  • Hassellöv , M. , Lyvén , B. , Haraldsson , C. and Sirinawin , W. 1999 . Determination of continuous size and trace element distribution of colloidal material in natural water by on-line coupling of flow field-flow fractionation with ICP-MS . Anal. Chem. , 71 ( 16 ) : 3497 – 3502 .
  • Hassellöv , M. and Kaegi , R. 2009 . “ Analysis and characterization of manufactured nanoparticles in aquatic environments ” . In Environmental and Human Health Impacts of Nanotechnology , Edited by: Lead , J. R. and Smith , M. 211 – 266 . Chippenham , , UK : John Wiley .
  • Haus , K. L. , von der Kammer , F. , Hassellöv , M. , Moore , J. N. and Hochella , M. F. Jr. 2009 . Determining trace metal–nanoparticle associations in contaminated sediment using analytical TEM and FFF coupled to MALLS and HR-ICPMS . Geochim. Cosmochim. Acta , 73 : A504
  • Lyvén , B. , Hassellöv , M. , Turner , D. R. , Haraldsson , C. and Andersson , K. 2003 . Competition between iron- and carbon-based colloidal carriers for trace metals in a freshwater assessed using flow field-flow fractionation coupled to ICPMS . Geochim. Cosmochim. Acta , 67 ( 20 ) : 3791 – 3802 .
  • Plathe , K. L. , von der Kammer , F. , Hassellöv , M. , Moore , J. , Murayama , M. , Hofmann , T. and Hochella , M. F. 2010 . Using FlFFF and TEM to determine trace metal-nanoparticle associations in riverbed sediment . Environ. Chem. , 7 ( 1 ) : 82 – 93 .
  • Stolpe , B. and Hassellöv , M. 2007 . Changes in size distribution of fresh water nanoscale colloidal matter and associated elements on mixing with seawater . Geochim. Cosmochim. Acta , 71 ( 13 ) : 3292 – 3301 .
  • Dahlqvist , R. , Benedetti , M. F. , Andersson , K. , Turner , D. , Larsson , T. , Stolpe , B. and Ingri , J. 2004 . Association of calcium with colloidal particles and speciation of calcium in the Kalix and Amazon rivers . Geochim. Cosmochim. Acta , 68 ( 20 ) : 4059 – 4075 .
  • Dubascoux , S. , Heroult , J. , Le Hécho , I. , Potin-Gautier , M. and Lespes , G. 2008 . Evaluation of a combined fractionation and speciation approach for study of size-based distribution of organotin species on environmental colloids . Anal. Bioanal. Chem. , 390 ( 7 ) : 1805 – 1813 .
  • Geckeis , H. , Rabung , T. , Manh , T. N. , Kim , J. I. and Beck , H. P. 2002 . Humic colloid-borne natural polyvalent metal ions:  Dissociation experiment . Environ. Sci. Tech. , 36 ( 13 ) : 2946 – 2952 .
  • Lesher , E. K. , Ranville , J. F. and Honeyman , B. D. 2009 . Analysis of pH dependent uranium (VI) sorption to nanoparticulate hematite by flow field-flow fractionation–inductively coupled plasma mass spectrometry . Environ. Sci. Tech. , 43 ( 14 ) : 5403 – 5409 .
  • Tiede , K. , Boxall , A. B.A. , Tiede , D. , Tear , S. P. , David , H. and Lewis , J. 2009 . A robust size-characterisation methodology for studying nanoparticle behaviour in “real” environmental samples, using hydrodynamic chromatography coupled to ICP-MS . JAAS: Journal of Analytical Atomic Spectrometry , 24 ( 7 ) : 964 – 972 .
  • Siripinyanond , A. , Barnes , R. M. and Amarasiriwardena , D. 2002 . Flow field-flow fractionation–inductively coupled plasma mass spectrometry for sediment bound trace metal characterization . JAAS: Journal of Analytical Atomic Spectrometry , 17 ( 9 ) : 1055 – 1064 .
  • Reszat , T. N. and Hendry , M. J. 2007 . Complexation of aqueous elements by DOC in a clay aquitard . Ground Water , 45 ( 5 ) : 542 – 553 .
  • Prestel , H. , Schott , L. , Niessner , R. and Panne , U. 2005 . Characterization of sewage plant hydrocolloids using asymmetrical flow field-flow fractionation and ICP–mass spectrometry . Water Res. , 39 ( 15 ) : 3541 – 3552 .
  • von der Kammer , F. , Legros , S. , Hofmann , T. , Larsen , E. H. and Loeschner , K. 2011 . Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation . Trends Anal. Chem. , 30 ( 3 ) : 425 – 436 .
  • Tadjiki , S. , Assemi , S. , Deering , C. , Veranth , J. and Miller , J. 2009 . Detection, separation, and quantification of unlabeled silica nanoparticles in biological media using sedimentation field-flow fractionation . Journal of Nanoparticle Research , 11 ( 4 ) : 981 – 988 .
  • Kumtabtim , U. , Shiowatana , J. and Siripinyanond , A. 2005 . Sedimentation field-flow fractionation–inductively coupled plasma optical emission spectrometry: Size-based elemental speciation of air particulates . JAAS: Journal of Analytical Atomic Spectrometry , 20 ( 11 ) : 1185 – 1190 .
  • Schimpf , M. E. , Caldwell , K. D. and Giddings , J. C. 2000 . Field Flow Fractionation Handbook , New York : Wiley Interscience .
  • Dubascoux , S. , Von Der Kammer , F. , Le Hécho , I. , Gautier , M. P. and Lespes , G. 2008 . Optimisation of asymmetrical flow field flow fractionation for environmental nanoparticles separation . J. Chrom. A , 1206 ( 2 ) : 160 – 165 .
  • Dubascoux , S. , Le Hecho , I. , Hassellöv , M. , Von Der Kammer , F. , Potin Gautier , M. and Lespes , G. 2010 . Field-flow fractionation and inductively coupled plasma mass spectrometer coupling: History, development and applications . JAAS: Journal of Analytical Atomic Spectrometry , 25 ( 5 ) : 613 – 623 .
  • Assemi , S. , Tadjiki , S. , Donose , B. C. , Nguyen , A. V. and Miller , J. D. 2010 . Aggregation of fullerol C60(OH)24 nanoparticles as revealed using flow field-flow fractionation and atomic force microscopy . Langmuir , 26 ( 20 ) : 16063 – 16070 .
  • Baalousha , M. , von der Kammer , F. , Motelica-Heino , M. , Baborowski , M. , Hofmeister , C. and Le Coustumer , P. 2006 . Size-based speciation of natural colloidal particles by flow field flow fractionation, inductively coupled plasma–mass spectroscopy, and transmission electron microscopy/X-ray energy dispersive spectroscopy:  Colloids–trace element interaction . Environ. Sci. Tech. , 40 ( 7 ) : 2156 – 2162 .
  • Hassellöv , M. , Lyvén , B. and Beckett , R. 1999 . Sedimentation field-flow fractionation coupled online to inductively coupled plasma mass spectrometry new possibilities for studies of trace metal adsorption onto natural colloids . Environ. Sci. Tech. , 33 ( 24 ) : 4528 – 4531 .
  • Bolea , E. , Gorriz , M. P. , Bouby , M. , Laborda , F. , Castillo , J. R. and Geckeis , H. 2006 . Multielement characterization of metal-humic substances complexation by size exclusion chromatography, asymmetrical flow field-flow fractionation, ultrafiltration and inductively coupled plasma–mass spectrometry detection: A comparative approach . J. Chrom. A , 1129 ( 2 ) : 236 – 246 .
  • Bouby , M. , Geckeis , H. and Geyer , F. 2008 . Application of asymmetric flow field–flow fractionation (AsFlFFF) coupled to inductively coupled plasma mass spectrometry (ICPMS) to the quantitative characterization of natural colloids and synthetic nanoparticles . Anal. Bioanal. Chem. , 392 ( 7 ) : 1447 – 1457 .
  • Jiménez , M. S. , Gómez , M. T. , Bolea , E. , Laborda , F. and Castillo , J. 2011 . An approach to the natural and engineered nanoparticles analysis in the environment by inductively coupled plasma mass spectrometry . Int. J. Mass Spectrom. , 307 ( 1–2 ) : 99 – 104 .
  • Chun , J. , Fagan , J. A. , Hobbie , E. K. and Bauer , B. J. 2008 . Size separation of single-wall carbon nanotubes by flow-field flow fractionation . Anal. Chem. , 80 ( 7 ) : 2514 – 2523 .
  • Bolea , E. , Laborda , F. and Castillo , J. R. 2010 . Metal associations to microparticles, nanocolloids and macromolecules in compost leachates: Size characterization by asymmetrical flow field-flow fractionation coupled to ICP-MS . Anal. Chim. Acta , 661 ( 2 ) : 206 – 214 .
  • Garcia , C. C. , Murtazin , A. , Groh , S. , Horvatic , V. and Niemax , K. 2010 . Characterization of single Au and SiO2 nano- and microparticles by ICP-OES using monodisperse droplets of standard solutions for calibration . JAAS: Journal of Analytical Atomic Spectrometry , 25 ( 5 ) : 645 – 653 .
  • Lyvén , B. , Hassellöv , M. , Haraldsson , C. and Turner , D. R. 1997 . Optimisation of on-channel preconcentration in flow field-flow fractionation for the determination of size distributions of low molecular weight colloidal material in natural waters . Anal. Chim. Acta , 357 ( 3 ) : 187 – 196 .
  • Neubauer , E. , von der Kammer , F. and Hofmann , T. 2011 . Influence of carrier solution ionic strength and injected sample load on retention and recovery of natural nanoparticles using flow field–flow fractionation . J. Chrom. A , 1218 ( 38 ) : 6763 – 6773 .
  • Gale , B. K. and Sant , H. J. 2007 . “ Nanoparticle analysis using microscale field flow fractionation ” . In Proc. SPIE Vol. 6465 , 64650I–64650I-12 Available at: http://www.mems.utah.edu/Papers/SPIE%20Paper%20FFF%20Decade%20of%20Progress.pdf
  • Wagner , T. , Bundschuh , T. , Schick , R. , Schwartz , T. and Koster , R. 2003 . Investigation of colloidal water content with laser-induced breakdown detection during drinking water purification . Acta Hydrochim. Hydrobiol. , 30 : 266 – 274 .
  • Wagner , T. , Bundschuh , T. , Schick , R. and Koster , R. 2004 . Detection of aquatic colloids in drinking water during its distribution via a water pipeline network . Water Sci. Tech. , 50 : 27 – 37 .
  • Ju-Nam , Y. and Lead , J. R. 2008 . Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications . Sci. Total Environ. , 400 ( 1–3 ) : 396 – 414 .
  • Amodeo , T. , Dutouquet , C. , Le Bihan , O. , Attoui , M. and Frejafon , E. 2009 . On-line determination of nanometric and sub-micrometric particle physicochemical characteristics using spectral imaging-aided laser-induced breakdown spectroscopy coupled with a scanning mobility particle sizer . Spectrochim. Acta B , 64 ( 10 ) : 1141 – 1152 .
  • Haskell , R. J. 2005 . “ Physical characterization of nanoparticles ” . In Nanoparticle Technology for Drug Delivery , Edited by: Gupta , R. B. and Kompella , U. B. 98 – 115 . New York : Taylor & Francis .
  • Jonsson , A. S. and Tragardh , G. 1990 . Ultrafiltration applications . Desalination , 77 : 135 – 179 .
  • Kim , S. , Marion , M. , Jeong , B. H. and Hoek , E. 2006 . Crossflow membrane filtration of interacting nanoparticle suspensions . J. Membr. Sci. , 284 : 361 – 372 .
  • Mulder , M. 1991 . Basic Principles of Membrane Technology , 2nd ed. , Dordrecht , , The Netherlands : Kluwer Academic Publishers .
  • Cheryan , M. 1998 . Ultrafiltration and Microfiltration Handbook , Lancaster , , UK : Technomic Publishing Company .
  • Huisman , I. H. , Pradanos , P. and Hernandez , A. 2000 . The effect of protein–protein and protein–membrane interactions on membrane fouling in ultrafiltration . J. Membr. Sci. , 179 : 79 – 90 .
  • Sweeney , S. F. , Woehrle , G. H. and Hutchison , J. E. 2004 . Rapid purification and size separation of gold nanoparticles via diafiltration . J. Am. Chem. Soc. , 128 : 3190 – 3197 .
  • Gao , W. , Liang , H. , Ma , J. , Han , M. , Chen , Z. , Han , Z. and Li , G. 2011 . Membrane fouling control in ultrafiltration technology for drinking water production: A review . Desalination , 272 : 1 – 8 .
  • Mehta , A. and Zydney , A. L. 2005 . Permeability and selectivity analysis for ultrafiltration membranes . J. Membr. Sci. , 249 : 245 – 249 .
  • Kanani , D. M. and Ghosh , R. 2007 . A constant flux based mathematical model for predicting permeate flux decline in constant pressure protein ultrafiltration . J. Membr. Sci. , 290 : 207 – 215 .
  • Madaeni , S. S. , Ghaemi , N. , Alizadeh , A. and Joshaghani , M. 2011 . Influence of photo-induced superhydrophilicity of titanium dioxide nanoparticles on the anti-fouling performance of ultrafiltration membranes . Appl. Surf. Sci. , 257 : 6175 – 6180 .
  • Zeman , L. J. and Zydney , A. L. 1996 . Microfiltration and Ultrafiltration Principles and Applications , New York : Marcel Dekker .
  • Trefry , J. , Monahan , J. L. , Weaver , K. M. , Meyerhoefer , A. , Markopolous , M. M. , Zachary , S. , Dawn , A. , Wooley , P. and Pavel , I. E. 2010 . Size selection and concentration of silver nanoparticles by tangential flow ultrafiltration for SERS-based biosensors. . J. Am. Chem. Soc. , 132 : 10970 – 10972 .
  • Mukai , Y. and Nishio , A. 2011 . Characteristics of filter cake exfoliation in upward ultrafiltration of nanoparticle suspensions . Membranes , 1 : 59 – 69 .
  • Feins , M. and Sirkar , K. K. 2004 . Highly selective membranes in protein ultrafiltration . Biotechnol. Bioeng. , 86 : 603 – 611 .
  • Powell , M. J. and Timperman , A. T. 2005 . Quantitative analysis of protein recovery from dilute, large volume samples by tangential flow ultrafiltration . J. Membr. Sci. , 252 : 227 – 236 .
  • Grzenia , D. L. , Carlsonb , J. and Wickramasinghea , S. 2008 . Tangential flow filtration for virus purification . J. Membr. Sci. , 321 : 373 – 380 .
  • Rigler , R. , Mets , U. , Widengren , J. and Kask , P. 1993 . Fluorescence correlation spectroscopy with high count rate and low background analysis of translational diffusion . Eur. Biophys. J. , 22 : 169 – 175 .
  • Adkins , E. M. , Samuvel , D. J. , Fog , J. U. , Eriksen , J. , Jayanthi , L. D. , Vaegter , C. B. , Ramamoorthy , S. and Gether , U. 2007 . Membrane mobility and microdomain association of the dopamine transporter studied with fluorescence correlation spectroscopy and fluorescence recovery after photobleaching . Biochemistry , 46 : 10484 – 10497 .
  • Rusu , L. , Gambhir , A. , McLaughlin , S. and Radler , J. 2004 . Fluorescence correlation spectroscopy studies of peptide and protein binding to phospholipid vesicles . Biophys. J. , 87 ( 2 ) : 1044 – 1053 .
  • Chen , Y. , Wei , L. N. and Muller , J. 2003 . Probing protein oligomerization in living cells with fluorescence fluctuation spectroscopy . Proc. Nat. Acad. Sci. , 100 : 15492 – 15497 .
  • Ohsugi , Y. 2006 . Lateral mobility of membrane-binding proteins in living cells measured by total internal reflection fluorescence correlation spectroscopy . Biophys. J. , 91 : 3456 – 3464 .
  • Briddon , S. J. and Hill , S. J. 2007 . Pharmacology under the microscope: The use of fluorescence correlation spectroscopy to determine the properties of ligand–receptor complexes . Trends Pharmacol. Sci. , 28 ( 12 ) : 637 – 645 .
  • Mayboroda , O. A. , Remoortere , A. V. , Tanke , H. J. , Hokke , C. H. and Deelder , A. M. 2004 . A new approach for fluorescence correlation spectroscopy (FCS) based immunoassays . J. Biotechnol. , 107 : 185 – 192 .
  • Tang , L. , Dong , C. and Ren , J. 2010 . Highly sensitive homogenous immunoassay of cancer biomarker using silver nanoparticles enhanced fluorescence correlation spectroscopy . Talanta , 81 : 1560 – 1567 .
  • Wang , Q. , Lu , L. , Hou , L. , Zhang , T. , Luo , C. , Yang , H. , Barbillon , G. , Lei , F. , Marquette , C. , Perriat , P. , Tillement , O. , Roux , S. , Ouyang , Q. and Gong , Q. G. 2011 . Fluorescence correlation spectroscopy near individual gold nanoparticles Chemical . Phys. Lett. , 503 : 256 – 261 .
  • Tcherniak , A. , Prakash , A. , Mayo , J. T. , Colvin , V. L. and Link , S. 2009 . Fluorescence correlation spectroscopy of magnetite nanocrystal diffusion . J. Phys. Chem. , 113 : 844 – 848 .
  • Lakowicz , R. 2005 . Radiative decay engineering 5: Metal-enhanced fluorescence and plasmon emission . Anal. Biochem. , 337 : 171 – 194 .
  • Tang , L. , Dong , C. and Ren , J. 2010 . Highly sensitive homogenous immunoassay of cancer biomarker using silver nanoparticles enhanced fluorescence correlation spectroscopy . Talanta , 81 : 1560 – 1567 .
  • Kuyper , C. L. , Budzinski , K. L. , Lorenz , R. M. and Chiu , D. T. 2005 . Real-time sizing of nanoparticles in microfluidic channels using confocal correlation spectroscopy . J. Am. Chem. Soc. , 128 : 730 – 731 .
  • Remaut , K. , Lucas , B. , Braeckmans , K. , Sanders , N. N. , De Smedt , S. C. and Demeester , J. 2005 . FRET-FCS as a tool to evaluate the stability of oligonucleotide drugs after intracellular delivery . J. Contr. Release , 103 : 259 – 271 .
  • Carr , B. , Hole , P. , Malloy , A. , Nelson , P. , Wright , M. and Smith , J. 2009 . Applications of nanoparticle tracking analysis in nanoparticle research—A mini review . European Journal of Parenteral and Pharmaceutical Sciences , 14 ( 2 ) : 45 – 50 .
  • Filipe , V. , Howe , A. and Jiskoot , W. 2010 . Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates . Pharm. Res. , 27 ( 5 ) : 796 – 810 .
  • Farkas , J. , Christian , P. , Urrea , J. A. , Roos , N. , Hassellöv , M. , Tollefsen , K. E. and Thomas , K. V. 2010 . Effects of silver and gold nanoparticles on rainbow trout (Oncorhyncus mykiss) hepatocytes . Aquat. Toxicol. , 96 : 44 – 52 .
  • Hoecke , K. V. , Quik , J. T.K. , Makiewicz-Boczek , J. , De Schamphelaere , K. A.C. , Elsaesser , A. , Van Der Meeren , P. , Barnes , C. , Mckerr , G. , Howard , C. V. , van de Meent , D. , Rydinski , K. , Dawson , K. A. , Salvati , A. , Lynch , I. , Sylverstermit , G. , De Samber , B. , Vincze , L. and Janssen , C. R. 2009 . Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests . Environ. Sci. Tech. , 43 : 4537 – 4545 .
  • Gallego-Urrea , J. A. , Tuoriniemi , J. , Pallander , T. and Hassellöv , M. 2010 . Measurements of nanoparticle number concentrations and size distributions in contrasting aquatic environments using nanoparticle tracking analysis . Environ. Chem. , 7 : 67 – 81 .
  • Siminet , B. M. and Valcarcel , M. 2009 . Monitoring nanoparticles in the environment . Anal. Bioanal. Chem. , 393 : 17 – 21 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.