108
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Hyperpolarized water via dissolution dynamic nuclear polarization: Applications in biomolecular NMR

ORCID Icon & ORCID Icon

References

  • Hu, Y.; Cheng, K.; He, L.; Zhang, X.; Jiang, B.; Jiang, L.; Li, C.; Wang, G.; Yang, Y.; Liu, M. NMR-Based Methods for Protein Analysis. Anal. Chem. 2021, 93, 1866–1879. DOI: 10.1021/acs.analchem.0c03830.
  • Ardenkjaer-Larsen, J.-H.; Boebinger, G. S.; Comment, A.; Duckett, S.; Edison, A. S.; Engelke, F.; Griesinger, C.; Griffin, R. G.; Hilty, C.; Maeda, H.; et al. Facing and Overcoming Sensitivity Challenges in Biomolecular NMR Spectroscopy. Angew. Chem. Int. Ed. Engl. 2015, 54, 9162–9185. DOI: 10.1002/anie.201410653.
  • Biedenbänder, T.; Aladin, V.; Saeidpour, S.; Corzilius, B. Dynamic Nuclear Polarization for Sensitivity Enhancement in Biomolecular Solid-State NMR. Chem. Rev. 2022, 122, 9738–9794. DOI: 10.1021/acs.chemrev.1c00776.
  • Eills, J.; Budker, D.; Cavagnero, S.; Chekmenev, E. Y.; Elliott, S. J.; Jannin, S.; Lesage, A.; Matysik, J.; Meersmann, T.; Prisner, T.; et al. Spin Hyperpolarization in Modern Magnetic Resonance. Chem. Rev. 2023, 123, 1417–1551. DOI: 10.1021/acs.chemrev.2c00534.
  • Zhang, G.; Hilty, C. Applications of Dissolution Dynamic Nuclear Polarization in Chemistry and Biochemistry. Magn. Reson. Chem. 2018, 56, 566–582. DOI: 10.1002/mrc.4735.
  • Kovtunov, K. V.; Pokochueva, E. V.; Salnikov, O. G.; Cousin, S. F.; Kurzbach, D.; Vuichoud, B.; Jannin, S.; Chekmenev, E. Y.; Goodson, B. M.; Barskiy, D. A.; et al. Hyperpolarized NMR Spectroscopy: D-DNP, PHIP, and SABRE Techniques. Chem. Asian J. 2018, 13, 1857–1871. DOI: 10.1002/asia.201800551.
  • Pinon, A. C.; Capozzi, A.; Ardenkjær-Larsen, J. H. Hyperpolarization via Dissolution Dynamic Nuclear Polarization: New Technological and Methodological Advances. MAGMA 2021, 34, 5–23. DOI: 10.1007/s10334-020-00894-w.
  • Hövener, J.-B.; Pravdivtsev, A. N.; Kidd, B.; Bowers, C. R.; Glöggler, S.; Kovtunov, K. V.; Plaumann, M.; Katz-Brull, R.; Buckenmaier, K.; Jerschow, A.; et al. Parahydrogen-Based Hyperpolarization for Biomedicine. Angew. Chem. Int. Ed. Engl. 2018, 57, 11140–11162. DOI: 10.1002/anie.201711842.
  • Kovtunov, K. V.; Koptyug, I. V.; Fekete, M.; Duckett, S. B.; Theis, T.; Joalland, B.; Chekmenev, E. Y. Parahydrogen-Induced Hyperpolarization of Gases. Angew. Chem. Int. Ed. Engl. 2020, 59, 17788–17797. DOI: 10.1002/anie.201915306.
  • Pravdivtsev, A. N.; Buntkowsky, G.; Duckett, S. B.; Koptyug, I. V.; Hövener, J.-B. Parahydrogen-Induced Polarization of Amino Acids. Angew. Chem. Int. Ed. Engl. 2021, 60, 23496–23507. DOI: 10.1002/anie.202100109.
  • Morozova, O. B.; Ivanov, K. L. Time-Resolved Chemically Induced Dynamic Nuclear Polarization of Biologically Important Molecules. Chemphyschem 2019, 20, 197–215. DOI: 10.1002/cphc.201800566.
  • Khan, A. S.; Harvey, R. L.; Birchall, J. R.; Irwin, R. K.; Nikolaou, P.; Schrank, G.; Emami, K.; Dummer, A.; Barlow, M. J.; Goodson, B. M.; et al. Enabling Clinical Technologies for Hyperpolarized 129Xenon Magnetic Resonance Imaging and Spectroscopy. Angew. Chem. Int. Ed. Engl. 2021, 60, 22126–22147. DOI: 10.1002/anie.202015200.
  • Lee, Y. Dissolution Dynamic Nuclear Polarization–Enhanced Magnetic Resonance Spectroscopy and Imaging: Chemical and Biochemical Reactions in Nonequilibrium Conditions. Appl. Spectrosc. Rev. 2016, 51, 210–226. DOI: 10.1080/05704928.2015.1116078.
  • Lee, Y.; Zeng, H.; Ruedisser, S.; Gossert, A. D.; Hilty, C. Nuclear Magnetic Resonance of Hyperpolarized Fluorine for Characterization of Protein–Ligand Interactions. J. Am. Chem. Soc. 2012, 134, 17448–17451. DOI: 10.1021/ja308437h.
  • Kim, Y.; Kubena, R.; Axtell, J.; Samouei, H.; Pham, P.; Stauber, J. M.; Spokoyny, A. M.; Hilty, C. Dynamic Nuclear Polarization Using 3D Aromatic Boron Cluster Radicals. J. Phys. Chem. Lett. 2020, 12, 13–18. DOI: 10.1021/acs.jpclett.0c03216.
  • Seo, H.; Choi, I.; Whiting, N.; Hu, J.; Luu, Q. S.; Pudakalakatti, S.; McCowan, C.; Kim, Y.; Zacharias, N.; Lee, S.; et al. Hyperpolarized Porous Silicon Nanoparticles: Potential Theragnostic Material for 29Si Magnetic Resonance Imaging. Chemphyschem 2018, 19, 2143–2147. DOI: 10.1002/cphc.201800461.
  • Luu, Q. S.; Kim, J.; Jo, D.; Jeong, J.; Lee, Y. Applications and Perspective of Silicon Particles in Hyperpolarized 29Si Magnetic Resonance Imaging. Appl. Spectrosc. Rev. 2020, 55, 476–490. DOI: 10.1080/05704928.2019.1676255.
  • Kim, J.; Jo, D.; Yang, S.-H.; Joo, C.-G.; Whiting, N.; Pudakalakatti, S.; Seo, H.; Son, H. Y.; Min, S.-J.; Bhattacharya, P.; et al. 29Si Isotope-Enriched Silicon Nanoparticles for an Efficient Hyperpolarized Magnetic Resonance Imaging Probe. ACS Appl. Mater. Interfaces. 2021, 13, 56923–56930. DOI: 10.1021/acsami.1c16617.
  • Luu, Q. S.; Nguyen, Q. T.; Kim, J.; Kim, J.; Do, U. T.; Whiting, N.; Shim, J. H.; Min, S.-J.; Lee, Y. Hyperpolarized 29Si Magnetic Resonance Spectroscopy of Selectively Radical-Embedded Silica Nanoparticles. Analyst 2022, 147, 5607–5612. DOI: 10.1039/D2AN01684B.
  • Kim, J.; Heo, I.; Luu, Q. S.; Nguyen, Q. T.; Do, U. T.; Whiting, N.; Yang, S.-H.; Huh, Y.-M.; Min, S.-J.; Shim, J. H.; et al. Dynamic Nuclear Polarization of Selectively 29Si-Enriched Core@Shell Silica Nanoparticles. Anal. Chem. 2023, 95, 907–916. DOI: 10.1021/acs.analchem.2c03464.
  • Yang, S.-H.; Kim, J.; Geol Lee, T.; Park, M.; Young Son, H.; Gyu Joo, C.; Hyun Shim, J.; Lee, Y.; Huh, Y.-M. Background Free in Vivo 29Si MR Imaging with Hyperpolarized PEGylated Silicon Nanoparticles. Analyst 2023, 148, 5355–5360. DOI: 10.1039/D3AN01395B.
  • Hilty, C.; Kurzbach, D.; Frydman, L. Hyperpolarized Water as Universal Sensitivity Booster in Biomolecular NMR. Nat. Protoc. 2022, 17, 1621–1657. DOI: 10.1038/s41596-022-00693-8.
  • Ardenkjaer-Larsen, J. H.; Fridlund, B.; Gram, A.; Hansson, G.; Hansson, L.; Lerche, M. H.; Servin, R.; Thaning, M.; Golman, K. Increase in Signal-to-Noise Ratio of > 10,000 Times in Liquid-State NMR. Proc. Natl. Acad. Sci. U S A 2003, 100, 10158–10163. DOI: 10.1073/pnas.1733835100.
  • Bowen, S.; Hilty, C. Rapid Sample Injection for Hyperpolarized NMR Spectroscopy. Phys. Chem. Chem. Phys. 2010, 12, 5766–5770. DOI: 10.1039/C002316G.
  • Negroni, M.; Turhan, E.; Kress, T.; Ceillier, M.; Jannin, S.; Kurzbach, D. Frémy’s Salt as a Low-Persistence Hyperpolarization Agent: Efficient Dynamic Nuclear Polarization plus Rapid Radical Scavenging. J. Am. Chem. Soc. 2022, 144, 20680–20686. DOI: 10.1021/jacs.2c07960.
  • Elliott, S. J.; Stern, Q.; Ceillier, M.; El Daraï, T.; Cousin, S. F.; Cala, O.; Jannin, S. Practical Dissolution Dynamic Nuclear Polarization. Prog. Nucl. Magn. Reson. Spectrosc. 2021, 126-127, 59–100. DOI: 10.1016/j.pnmrs.2021.04.002.
  • Li, Y.; Equbal, A.; Tabassum, T.; Han, S. 1H Thermal Mixing Dynamic Nuclear Polarization with BDPA as Polarizing Agents. J. Phys. Chem. Lett. 2020, 11, 9195–9202. DOI: 10.1021/acs.jpclett.0c01721.
  • Menzildjian, G.; Lund, A.; Yulikov, M.; Gajan, D.; Niccoli, L.; Karthikeyan, G.; Casano, G.; Jeschke, G.; Ouari, O.; Lelli, M.; et al. Efficient Dynamic Nuclear Polarization up to 230 K with Hybrid BDPA-Nitroxide Radicals at a High Magnetic Field. J. Phys. Chem. B 2021, 125, 13329–13338. DOI: 10.1021/acs.jpcb.1c07307.
  • Kuzhelev, A. A.; Denysenkov, V.; Ahmad, I. M.; Rogozhnikova, O. Y.; Trukhin, D. V.; Bagryanskaya, E. G.; Tormyshev, V. M.; Sigurdsson, S. T.; Prisner, T. F. Solid-Effect Dynamic Nuclear Polarization in Viscous Liquids at 9.4 T Using Narrow-Line Polarizing Agents. J. Am. Chem. Soc. 2023, 145, 10268–10274. DOI: 10.1021/jacs.3c01358.
  • Shankar Palani, R.; Mardini, M.; Quan, Y.; Griffin, R. G. Dynamic Nuclear Polarization with Trityl Radicals. J. Magn. Reson. 2023, 349, 107411. DOI: 10.1016/j.jmr.2023.107411.
  • Chen, H.-Y.; Hilty, C. Implementation and Characterization of Flow Injection in Dissolution Dynamic Nuclear Polarization NMR Spectroscopy. Chemphyschem 2015, 16, 2646–2652. DOI: 10.1002/cphc.201500292.
  • Schanda, P.; Kupce, E.; Brutscher, B. SOFAST-HMQC Experiments for Recording Two-Dimensional Heteronuclear Correlation Spectra of Proteins within a Few Seconds. J. Biomol. NMR 2005, 33, 199–211. DOI: 10.1007/s10858-005-4425-x.
  • Gal, M.; Schanda, P.; Brutscher, B.; Frydman, L. UltraSOFAST HMQC NMR and the Repetitive Acquisition of 2D Protein Spectra at Hz Rates. J. Am. Chem. Soc. 2007, 129, 1372–1377. DOI: 10.1021/ja066915g.
  • Frydman, L.; Blazina, D. Ultrafast Two-Dimensional Nuclear Magnetic Resonance Spectroscopy of Hyperpolarized Solutions. Nature Phys. 2007, 3, 415–419. DOI: 10.1038/nphys597.
  • Kim, J.; Liu, M.; Chen, H.-Y.; Hilty, C. Determination of Intermolecular Interactions Using Polarization Compensated Heteronuclear Overhauser Effect of Hyperpolarized Spins. Anal. Chem. 2015, 87, 10982–10987. DOI: 10.1021/acs.analchem.5b02934.
  • Harris, T.; Szekely, O.; Frydman, L. On the Potential of Hyperpolarized Water in Biomolecular NMR Studies. J. Phys. Chem. B 2014, 118, 3281–3290. DOI: 10.1021/jp4102916.
  • Kim, J.; Liu, M.; Hilty, C. Modeling of Polarization Transfer Kinetics in Protein Hydration Using Hyperpolarized Water. J. Phys. Chem. B 2017, 121, 6492–6498. DOI: 10.1021/acs.jpcb.7b03052.
  • Olsen, G.; Markhasin, E.; Szekely, O.; Bretschneider, C.; Frydman, L. Optimizing Water Hyperpolarization and Dissolution for Sensitivity-Enhanced 2D Biomolecular NMR. J. Magn. Reson. 2016, 264, 49–58. DOI: 10.1016/j.jmr.2016.01.005.
  • Vijay-Kumar, S.; Bugg, C. E.; Cook, W. J. Structure of Ubiquitin Refined at 1.8Åresolution. J. Mol. Biol. 1987, 194, 531–544. DOI: 10.1016/0022-2836(87)90679-6.
  • Kadeřávek, P.; Ferrage, F.; Bodenhausen, G.; Kurzbach, D. High-Resolution NMR of Folded Proteins in Hyperpolarized Physiological Solvents. Chemistry 2018, 24, 13418–13423. DOI: 10.1002/chem.201802885.
  • Szekely, O.; Olsen, G. L.; Felli, I. C.; Frydman, L. High-Resolution 2D NMR of Disordered Proteins Enhanced by Hyperpolarized Water. Anal. Chem. 2018, 90, 6169–6177. DOI: 10.1021/acs.analchem.8b00585.
  • Olsen, G. L.; Szekely, O.; Mateos, B.; Kadeřávek, P.; Ferrage, F.; Konrat, R.; Pierattelli, R.; Felli, I. C.; Bodenhausen, G.; Kurzbach, D.; Frydman, L. Sensitivity-Enhanced Three-Dimensional and Carbon-Detected Two-Dimensional NMR of Proteins Using Hyperpolarized Water. J. Biomol. NMR 2020, 74, 161–171. DOI: 10.1007/s10858-020-00301-5.
  • Szekely, O.; Olsen, G. L.; Novakovic, M.; Rosenzweig, R.; Frydman, L. Assessing Site-Specific Enhancements Imparted by Hyperpolarized Water in Folded and Unfolded Proteins by 2D HMQC NMR. J. Am. Chem. Soc. 2020, 142, 9267–9284. DOI: 10.1021/jacs.0c00807.
  • Anderson, J. S.; Hernández, G.; LeMaster, D. M. Sidechain Conformational Dependence of Hydrogen Exchange in Model Peptides. Biophys. Chem. 2010, 151, 61–70. DOI: 10.1016/j.bpc.2010.05.006.
  • Dass, R.; Corlianò, E.; Mulder, F. A. A. The Contribution of Electrostatics to Hydrogen Exchange in the Unfolded Protein State. Biophys. J. 2021, 120, 4107–4114. DOI: 10.1016/j.bpj.2021.08.003.
  • Marzolf, D. R.; Seffernick, J. T.; Lindert, S. Protein Structure Prediction from NMR Hydrogen–Deuterium Exchange Data. J. Chem. Theory Comput. 2021, 17, 2619–2629. DOI: 10.1021/acs.jctc.1c00077.
  • Kim, J.; Mandal, R.; Hilty, C. Observation of Fast Two-Dimensional NMR Spectra during Protein Folding Using Polarization Transfer from Hyperpolarized Water. J. Phys. Chem. Lett. 2019, 10, 5463–5467. DOI: 10.1021/acs.jpclett.9b02197.
  • Kim, J.; Mandal, R.; Hilty, C. 2D NMR Spectroscopy of Refolding RNase Sa Using Polarization Transfer from Hyperpolarized Water. J. Magn. Reson. 2021, 326, 106942. DOI: 10.1016/j.jmr.2021.106942.
  • Hebert, E. J.; Grimsley, G. R.; Hartley, R. W.; Horn, G.; Schell, D.; Garcia, S.; Both, V.; Sevcik, J.; Pace, C. N. Purification of Ribonucleases Sa, Sa2, and Sa3 after Expression in Escherichia Coli. Protein Expr. Purif. 1997, 11, 162–168. DOI: 10.1006/prep.1997.0776.
  • Laurents, D. V.; Pérez-Cañadillas, J. M.; Santoro, J.; Rico, M.; Schell, D.; Hebert, E. J.; Pace, C. N.; Bruix, M. Letter to the Editor: Sequential Assignment and Solution Secondary Structure of Doubly Labelled Ribonuclease Sa. J. Biomol. NMR 1999, 14, 89–90. DOI: 10.1023/A:1008312619872.
  • Sevcík, J.; Lamzin, V. S.; Dauter, Z.; Wilson, K. S. Atomic Resolution Data Reveal Flexibility in the Structure of RNase Sa. Acta Crystallogr. D Biol. Crystallogr. 2002, 58, 1307–1313. DOI: 10.1107/s0907444902010090.
  • Trefethen, J. M.; Pace, C. N.; Scholtz, J. M.; Brems, D. N. Charge–Charge Interactions in the Denatured State Influence the Folding Kinetics of Ribonuclease Sa. Protein Sci. 2005, 14, 1934–1938. DOI: 10.1110/ps.051401905.
  • Novakovic, M.; Olsen, G. L.; Pintér, G.; Hymon, D.; Fürtig, B.; Schwalbe, H.; Frydman, L. A 300-Fold Enhancement of Imino Nucleic Acid Resonances by Hyperpolarized Water Provides a New Window for Probing RNA Refolding by 1D and 2D NMR. Proc. Natl. Acad. Sci. U S A 2020, 117, 2449–2455. DOI: 10.1073/pnas.1916956117.
  • Buck, J.; Fürtig, B.; Noeske, J.; Wöhnert, J.; Schwalbe, H. Time-Resolved NMR Methods Resolving Ligand-Induced RNA Folding at Atomic Resolution. Proc. Natl. Acad. Sci. U S A 2007, 104, 15699–15704. DOI: 10.1073/pnas.0703182104.
  • Palmer, A. G. I. NMR Characterization of the Dynamics of Biomacromolecules. Chem. Rev. 2004, 104, 3623–3640. DOI: 10.1021/cr030413t.
  • Mittermaier, A.; Kay, L. E. New Tools Provide New Insights in NMR Studies of Protein Dynamics. Science 2006, 312, 224–228. DOI: 10.1126/science.1124964.
  • Piazza, I.; Kochanowski, K.; Cappelletti, V.; Fuhrer, T.; Noor, E.; Sauer, U.; Picotti, P. A Map of Protein-Metabolite Interactions Reveals Principles of Chemical Communication. Cell 2018, 172, 358–372.e23. DOI: 10.1016/j.cell.2017.12.006.
  • Cerofolini, L.; Giuntini, S.; Barbieri, L.; Pennestri, M.; Codina, A.; Fragai, M.; Banci, L.; Luchinat, E.; Ravera, E. Real-Time Insights into Biological Events: In-Cell Processes and Protein-Ligand Interactions. Biophys. J. 2019, 116, 239–247. DOI: 10.1016/j.bpj.2018.11.3132.
  • Lu, H.; Zhou, Q.; He, J.; Jiang, Z.; Peng, C.; Tong, R.; Shi, J. Recent Advances in the Development of Protein–Protein Interactions Modulators: Mechanisms and Clinical Trials. Signal Transduct. Target. Ther. 2020, 5, 23. DOI: 10.1038/s41392-020-00315-3.
  • Cala, O.; Guillière, F.; Krimm, I. NMR-Based Analysis of Protein–Ligand Interactions. Anal. Bioanal. Chem. 2014, 406, 943–956. DOI: 10.1007/s00216-013-6931-0.
  • Becker, W.; Bhattiprolu, K. C.; Gubensäk, N.; Zangger, K. Investigating Protein–Ligand Interactions by Solution Nuclear Magnetic Resonance Spectroscopy. Chemphyschem 2018, 19, 895–906. DOI: 10.1002/cphc.201701253.
  • Chappuis, Q.; Milani, J.; Vuichoud, B.; Bornet, A.; Gossert, A. D.; Bodenhausen, G.; Jannin, S. Hyperpolarized Water to Study Protein–Ligand Interactions. J. Phys. Chem. Lett. 2015, 6, 1674–1678. DOI: 10.1021/acs.jpclett.5b00403.
  • Dalvit, C.; Fogliatto, G.; Stewart, A.; Veronesi, M.; Stockman, B. WaterLOGSY as a Method for Primary NMR Screening: Practical Aspects and Range of Applicability. J. Biomol. NMR 2001, 21, 349–359. DOI: 10.1023/A:1013302231549.
  • Hu, J.; Kim, J.; Hilty, C. Detection of Protein–Ligand Interactions by 19F Nuclear Magnetic Resonance Using Hyperpolarized Water. J. Phys. Chem. Lett. 2022, 13, 3819–3823. DOI: 10.1021/acs.jpclett.2c00448.
  • Wai, P. Y.; Kuo, P. C. The Role of Osteopontin in Tumor Metastasis. J. Surg. Res. 2004, 121, 228–241. DOI: 10.1016/j.jss.2004.03.028.
  • Rodrigues, L. R.; Teixeira, J. A.; Schmitt, F. L.; Paulsson, M.; Lindmark-Mänsson, H. The Role of Osteopontin in Tumor Progression and Metastasis in Breast Cancer. Cancer Epidemiol. Biomarkers Prev. 2007, 16, 1087–1097. DOI: 10.1158/1055-9965.EPI-06-1008.
  • Anborgh, P. H.; Mutrie, J. C.; Tuck, A. B.; Chambers, A. F. Role of the Metastasis-Promoting Protein Osteopontin in the Tumour Microenvironment. J. Cell. Mol. Med. 2010, 14, 2037–2044. DOI: 10.1111/j.1582-4934.2010.01115.x.
  • Kurzbach, D.; Platzer, G.; Schwarz, T. C.; Henen, M. A.; Konrat, R.; Hinderberger, D. Cooperative Unfolding of Compact Conformations of the Intrinsically Disordered Protein Osteopontin. Biochemistry 2013, 52, 5167–5175. DOI: 10.1021/bi400502c.
  • Platzer, G.; Schedlbauer, A.; Chemelli, A.; Ozdowy, P.; Coudevylle, N.; Auer, R.; Kontaxis, G.; Hartl, M.; Miles, A. J.; Wallace, B. A.; et al. The Metastasis-Associated Extracellular Matrix Protein Osteopontin Forms Transient Structure in Ligand Interaction Sites. Biochemistry 2011, 50, 6113–6124. DOI: 10.1021/bi200291e.
  • Kurzbach, D.; Canet, E.; Flamm, A. G.; Jhajharia, A.; Weber, E. M. M.; Konrat, R.; Bodenhausen, G. Investigation of Intrinsically Disordered Proteins through Exchange with Hyperpolarized Water. Angew. Chem. Int. Ed. Engl. 2017, 56, 389–392. DOI: 10.1002/anie.201608903.
  • Sadet, A.; Stavarache, C.; Bacalum, M.; Radu, M.; Bodenhausen, G.; Kurzbach, D.; Vasos, P. R. Hyperpolarized Water Enhances Two-Dimensional Proton NMR Correlations: A New Approach for Molecular Interactions. J. Am. Chem. Soc. 2019, 141, 12448–12452. DOI: 10.1021/jacs.9b03651.
  • Kurzbach, D.; Schwarz, T. C.; Platzer, G.; Höfler, S.; Hinderberger, D.; Konrat, R. Compensatory Adaptations of Structural Dynamics in an Intrinsically Disordered Protein Complex. Angew. Chem. Int. Ed. Engl. 2014, 53, 3840–3843. DOI: 10.1002/anie.201308389.
  • Kurzbach, D.; Flamm, A. G.; Sára, T. Network Representation of Protein Interactions—Experimental Results. Protein Sci. 2016, 25, 1628–1636. DOI: 10.1002/pro.2964.
  • Fieber, W.; Schneider, M. L.; Matt, T.; Kräutler, B.; Konrat, R.; Bister, K. Structure, Function, and Dynamics of the Dimerization and DNA-Binding Domain of Oncogenic Transcription Factor v-Myc11Edited by P. E. Wright. J. Mol. Biol. 2001, 307, 1395–1410. DOI: 10.1006/jmbi.2001.4537.
  • Epasto, L. M.; Che, K.; Kozak, F.; Selimovic, A.; Kadeřávek, P.; Kurzbach, D. Toward Protein NMR at Physiological Concentrations by Hyperpolarized Water—Finding and Mapping Uncharted Conformational Spaces. Sci. Adv. 2022, 8, eabq5179. DOI: 10.1126/sciadv.abq5179.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.