165
Views
24
CrossRef citations to date
0
Altmetric
PEDIATRIC ONCOLOGY

Metronomic Dosing of Chemotherapy: Applications in Pediatric Oncology

, Ph.D., , N.D. & , M.D.
Pages 432-443 | Published online: 11 Jun 2009

REFERENCES

  • Canadian Cancer Society. Statistics Canada, Provincial/Terretorial Cancer Registries, and Health Canada. Canadian Cancer Statistics 2004. National Cancer Institute of Canada
  • Steen R. G. What is cancer?. Childhood Cancer: A Handbook from St. Jude Children's Research Hospital, G. Steen, J. Mirro. Perseus Publishing, Cambridge 2000; 3–10
  • Baruchel S., Rowell M. Pharmacology of cancer chemotherapy in paediatrics: feasibility and ethical considerations in phase I trials. Paediatric Pharmacology: Towards Evidence-Based Drug Therapy, G. Koren, O. Diav-Citrin. Bailliere Tindall, London 1998; 439–453
  • Canadian Cancer Statistics. Canadian Cancer Statistics 2000—Cancer in Children aged 0–19 years. Cancer Statistics 2000. National Cancer Institute of Canada, TorontoCanada 2000, Accessed June 22nd, 2005. Online: http://www.cancer.ca/stats2000.childe.htm
  • Capizzi R. L. The preclinical basis for broad-spectrum selective cytoprotection of normal tissues from cytotoxic therapies by amifostine. Semin. Oncol. 1999; 26: 3–21, [INFOTRIEVE], [CSA]
  • Blatt J., Copeland D. R., Bleyer W. A. Late effects of childhood cancer and its treatment. Principles and Practice of Pediatric Oncology, P. A. Pizzo, D. G. Poplack. Lippincott-Raven Publishers, Philadelphia 1997; 1303–1329
  • Hahnfeldt P., Folkman J., Hlatky L. Minimizing long-term tumor burden: the logic for metronomic chemotherapeutic dosing and its antiangiogenic basis. J. Theor. Biol. 2003; 220: 545–554, [INFOTRIEVE], [CROSSREF], [CSA]
  • Shimizu K., Oku N. Cancer anti-angiogenic therapy. Biol. Pharm. Bull. 2004; 27: 599–605, [INFOTRIEVE], [CROSSREF], [CSA]
  • Miller K. D., Sweeney C. J., Sledge G. W., Jr. Redefining the target: chemotherapeutics as antiangiogenics. J. Clin. Oncol. 2001; 19: 1195–1206, [INFOTRIEVE], [CSA]
  • Eberhard A., Kahlert S., Goede V., Hemmerlein B., Plate K. H., Augustin H. G. Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res. 2000; 60: 1388–1393, [INFOTRIEVE], [CSA]
  • Klement G., Baruchel S., Rak J., Man S., Clark K., Hicklin D. J., Bohlen P., Kerbel R. S. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J. Clin. Invest. 2000; 105: R15–R24, [PUBMED], [INFOTRIEVE], [CSA]
  • Browder T., Butterfield C. E., Kraling B. M., Shi B., Marshall B., O'Reilly M. S., Folkman J. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 2000; 60: 1878–1886, [INFOTRIEVE], [CSA]
  • Folkman J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 1971; 285: 1182–1186, [INFOTRIEVE], [CSA]
  • Folkman J. What is the evidence that tumors are angiogenesis dependent?. J. Natl. Cancer Inst. 1990; 82: 4–6, [INFOTRIEVE], [CSA]
  • Kerbel R. S., Kamen B. A. The anti-angiogenic basis of metronomic chemotherapy. Nat. Rev. Cancer 2004; 4: 423–436, [INFOTRIEVE], [CROSSREF], [CSA]
  • Kerbel R. S. Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anti-cancer therapeutic agents. Bioessays 1991; 13: 31–36, [INFOTRIEVE], [CROSSREF], [CSA]
  • Hida K., Klagsbrun M. A new perspective on tumor endothelial cells: unexpected chromosome and centrosome abnormalities. Cancer Res. 2005; 65: 2507–2510, [INFOTRIEVE], [CROSSREF], [CSA]
  • Pietras K., Hanahan D. A multitargeted, metronomic, and maximum-tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J. Clin. Oncol. 2005; 23: 939–952, [INFOTRIEVE], [CROSSREF], [CSA]
  • Hanahan D., Bergers G., Bergsland E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J. Clin. Invest. 2000; 105: 1045–1047, [PUBMED], [INFOTRIEVE], [CSA]
  • Kachel D. L., Martin W. J. Cyclophosphamide-induced lung toxicity: mechanism of endothelial cell injury. J. Pharmacol. Exp. Ther. 1994; 268: 42–46, [INFOTRIEVE], [CSA]
  • Nuyts R. M., Pels E., Greve E. L. The effects of 5-fluorouracil and mitomycin C on the corneal endothelium. Curr. Eye. Res. 1992; 11: 565–570, [INFOTRIEVE], [CSA]
  • Hoorn C. M., Wagner J. G., Petry T. W., Roth R. A. Toxicity of mitomycin C toward cultured pulmonary artery endothelium. Toxicol. Appl. Pharmacol. 1995; 130: 87–94, [INFOTRIEVE], [CROSSREF], [CSA]
  • Steiner R. Angiostatic activity of anticancer agents in the chick embryo chorioallantoic membrane (CHE-CAM) assay. EXS 1992; 61: 449–454, [INFOTRIEVE], [CSA]
  • Yule S. M., Price L., McMahon A. D., Pearson A. D., Boddy A. V. Cyclophosphamide metabolism in children with non-Hodgkin's lymphoma. Clin. Cancer Res. 2004; 10: 455–460, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Baguley B. C., Holdaway K. M., Thomsen L. L., Zhuang L., Zwi L. J. Inhibition of growth of colon 38 adenocarcinoma by vinblastine and colchicine: evidence for a vascular mechanism. Eur. J. Cancer 1991; 27: 482–487, [INFOTRIEVE], [CSA]
  • Belotti D., Vergani V., Drudis T., Borsotti P., Pitelli M. R., Viale G., Giavazzi R., Taraboletti G. The microtubule-affecting drug paclitaxel has antiangiogenic activity. Clin. Cancer Res. 1996; 2: 1843–1849, [INFOTRIEVE], [CSA]
  • Klauber N., Parangi S., Flynn E., Hamel E., D'Amato R. J. Inhibition of angiogenesis and breast cancer in mice by the microtubule inhibitors 2-methoxyestradiol and taxol. Cancer Res. 1997; 57: 81–86, [INFOTRIEVE], [CSA]
  • Lau D. H., Xue L., Young L. J., Burke P. A., Cheung A. T. Paclitaxel (Taxol): an inhibitor of angiogenesis in a highly vascularized transgenic breast cancer. Cancer Biother. Radiopharm. 1999; 14: 31–36, [INFOTRIEVE], [CSA]
  • Presta M., Rusnati M., Belleri M., Morbidelli L., Ziche M., Ribatti D. Purine analogue 6-methylmercaptopurine riboside inhibits early and late phases of the angiogenesis process. Cancer Res. 1999; 59: 2417–2424, [INFOTRIEVE], [CSA]
  • O'Leary J. J., Shapiro R. L., Ren C. J., Chuang N., Cohen H. W., Potmesil M. Antiangiogenic effects of camptothecin analogues 9-amino-20(S)-camptothecin, topotecan, and CPT-11 studied in the mouse cornea model. Clin. Cancer Res. 1999; 5: 181–187, [INFOTRIEVE], [CSA]
  • Iyer S., Chaplin D. J., Rosenthal D. S., Boulares A. H., Li L. Y., Smulson M. E. Induction of apoptosis in proliferating human endothelial cells by the tumor-specific antiangiogenesis agent combretastatin A-4. Cancer Res. 1998; 58: 4510–4514, [INFOTRIEVE], [CSA]
  • Chaplin D. J., Pettit G. R., Hill S. A. Anti-vascular approaches to solid tumour therapy: evaluation of combretastatin A4 phosphate. Anticancer Res. 1999; 19: 189–195, [INFOTRIEVE], [CSA]
  • Shaked Y., Emmenegger U., Man S., Cervi D., Bertolini F., Ben David Y., Kerbel R. S. The optimal biological dose of metronomic chemotherapy regimens is associated with maximum antiangiogenic activity. Blood 2005, [CSA]
  • Beaudry P., Force J., Naumov G. N., Wang A., Baker C. H., Ryan A., Soker S., Johnson B. E., Folkman J., Heymach J. V. Differential effects of vascular endothelial growth factor receptor-2 inhibitor ZD6474 on circulating endothelial progenitors and mature circulating endothelial cells: implications for use as a surrogate marker of antiangiogenic activity. Clin Cancer Res. 2005; 11: 3514–3522, [INFOTRIEVE], [CROSSREF], [CSA]
  • Funkhouser E. M., Sharp G. B. Aspirin and reduced risk of esophageal carcinoma. Cancer 1995; 76: 1116–1119, [INFOTRIEVE], [CSA]
  • Bocci G., Francia G., Man S., Lawler J., Kerbel R. S. Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proc. Natl. Acad. Sci. U.S.A. 2003; 100: 12917–12922, [INFOTRIEVE], [CROSSREF], [CSA]
  • Colleoni M., Rocca A., Sandri M. T., Zorzino L., Masci G., Nole F., Peruzzotti G., Robertson C., Orlando L., Cinieri S., et al. Low-dose oral methotrexate and cyclophosphamide in metastatic breast cancer: antitumor activity and correlation with vascular endothelial growth factor levels. Ann. Oncol. 2002; 13: 73–80, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Gasparini G. Metronomic scheduling: the future of chemotherapy?. Lancet Oncol. 2001; 2: 733–740, [INFOTRIEVE], [CROSSREF], [CSA]
  • Kim E., Moore J., Huang J., Soffer S., Manley C. A., O'Toole K., Middlesworth W., Stolar C. J., Kandel J. J., Yamashiro D. J. All angiogenesis is not the same: Distinct patterns of response to antiangiogenic therapy in experimental neuroblastoma and Wilms tumor. J. Pediatr. Surg. 2001; 36: 287–290, [INFOTRIEVE], [CROSSREF], [CSA]
  • Soffer S. Z., Kim E., Moore J. T., Huang J., Yokoi A., Manley C., O'Toole K., Middlesworth W., Stolar C., Yamashiro D., et al. Novel use of an established agent: Topotecan is anti-angiogenic in experimental Wilms tumor. J. Pediatr. Surg. 2001; 36: 1781–1784, [INFOTRIEVE], [CROSSREF], [CSA]
  • Beppu K., Nakamura K., Linehan W. M., Rapisarda A., Thiele C. J. Topotecan blocks hypoxia-inducible factor-1alpha and vascular endothelial growth factor expression induced by insulin-like growth factor-I in neuroblastoma cells. Cancer Res. 2005; 65: 4775–4781, [INFOTRIEVE], [CROSSREF], [CSA]
  • Soffer S. Z., Moore J. T., Kim E., Huang J., Yokoi A., Manley C., O'Toole K., Stolar C., Middlesworth W., Yamashiro D. J., et al. Combination antiangiogenic therapy: increased efficacy in a murine model of Wilms tumor. J. Pediatr. Surg. 2001; 36: 1177–1181, [INFOTRIEVE], [CROSSREF], [CSA]
  • McCrudden K. W., Yokoi A., Thosani A., Soffer S. Z., Kim E. S., Huang J., Manley C., O'Toole K., Yamashiro D. J., Kandel J. J., et al. Topotecan is anti-angiogenic in experimental hepatoblastoma. J. Pediatr. Surg. 2002; 37: 857–861, [INFOTRIEVE], [CROSSREF], [CSA]
  • Gately S., Kerbel R. Therapeutic potential of selective cyclooxygenase-2 inhibitors in the management of tumor angiogenesis. Prog. Exp. Tumor Res. 2003; 37: 179–192, [INFOTRIEVE], [CSA]
  • Klement G., Huang P., Mayer B., Green S. K., Man S., Bohlen P., Hicklin D., Kerbel R. S. Differences in therapeutic indexes of combination metronomic chemotherapy and an anti-VEGFR-2 antibody in multidrug-resistant human breast cancer xenografts. Clin. Cancer Res. 2002; 8: 221–232, [INFOTRIEVE], [CSA]
  • Bello L., Carrabba G., Giussani C., Lucini V., Cerutti F., Scaglione F., Landre J., Pluderi M., Tomei G., Villani R., et al. Low-dose chemotherapy combined with an antiangiogenic drug reduces human glioma growth in vivo. Cancer Res. 2001; 61: 7501–7506, [INFOTRIEVE], [CSA]
  • Teicher B. A., Sotomayor E. A., Huang Z. D. Antiangiogenic agents potentiate cytotoxic cancer therapies against primary and metastatic disease. Cancer Res. 1992; 52: 6702–6704, [INFOTRIEVE], [CSA]
  • Kakeji Y., Teicher B. A. Preclinical studies of the combination of angiogenic inhibitors with cytotoxic agents. Invest New Drugs 1997; 15: 39–48, [INFOTRIEVE], [CROSSREF], [CSA]
  • Cervi D., Klement G., Stempak D., Baruchel S., Koki A., Ben David Y. Targeting cyclooxygenase-2 reduces overt toxicity toward low-dose vinblastine and extends survival of juvenile mice with Friend disease. Clin. Cancer Res. 2005; 11: 712–719, [INFOTRIEVE], [CSA]
  • Kakolyris S., Samonis G., Koukourakis M., Vlachonicolis I., Chalkiadakis G., Kalbakis K., Souglakos I., Agelaki S., Toloudis P., Georgoulias V. Treatment of non-small-cell lung cancer with prolonged oral etoposide. Am. J. Clin. Oncol. 1998; 21: 505–508, [INFOTRIEVE], [CROSSREF], [CSA]
  • Fennelly D., Aghajanian C., Shapiro F., O'Flaherty C., McKenzie M., O'Connor C., Tong W., Norton L., Spriggs D., Phase I. and pharmacologic study of paclitaxel administered weekly in patients with relapsed ovarian cancer. J. Clin. Oncol. 1997; 15: 187–192, [INFOTRIEVE], [CSA]
  • Glode L. M., Barqawi A., Crighton F., Crawford E. D., Kerbel R. Metronomic therapy with cyclophosphamide and dexamethasone for prostate carcinoma. Cancer 2003; 98: 1643–1648, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Nicolini A., Mancini P., Ferrari P., Anselmi L., Tartarelli G., Bonazzi V., Carpi A., Giardino R. Oral low-dose cyclophosphamide in metastatic hormone refractory prostate cancer (MHRPC). Biomed. Pharmacother. 2004; 58: 447–450, [INFOTRIEVE], [CROSSREF], [CSA]
  • Kieran M. W. Anti-angiogenic chemotherapy in central nervous system tumors. Cancer Treat. Res. 2004; 117: 337–349, [INFOTRIEVE], [CSA]
  • Shah M. A., Ilson D., Ramanathan R. K., Levner A., D'Adamo D., Schwartz L., Casper E., Schwartz G. K., Kelsen D. P. A Multicenter Phase II study of Irinotecan(CPT), Cisplatin(CIS), and Bevacizumab(BEV) in patients with Unresectable or Metastatic Gastric or Gastroesophageal Junction(GEJ) Adenocarcinoma. J. Clin. Oncol. 2005; 23: 4025, Abstr.[CROSSREF], [CSA]
  • Garcia A. A., Oza A. M., Hirte H., Fleming G., Tsao-Wei D., Roman L., Swenson S., Gandara D., Scudder S., Morgan R. Interim report of a phase II clinical trial of bevacizumab (Bev) and low dose metronomic oral cyclophosphamide (mCTX) in recurrent ovarian (OC) and primary peritoneal carcinoma: A California Cancer Consortium Trial. J. Clin. Oncol. 2005; 23: 5000, Abstr.[CSA]
  • Margolin J. F., Poplack D. G. Acute Lymphoblastic Leukemia. Principles and Practice of Pediatric Oncology, P. A. Pizzo, D. G. Poplack. Lippincott-Raven Publishers, Philadelphia 1997; 409–461
  • Brugieres L., Quartier P., Le Deley M. C., Pacquement H., Perel Y., Bergeron C., Schmitt C., Landmann J., Patte C., Terrier-Lacombe M. J., et al. Relapses of childhood anaplastic large-cell lymphoma: treatment results in a series of 41 children–a report from the French Society of Pediatric Oncology. Ann. Oncol. 2000; 11: 53–58, [INFOTRIEVE], [CSA]
  • Baruchel S., Diezi M., Hargrave D., Stempak D., Gammon J., Moghrabi A., Coppes M., Fernandez C. V., Bouffet E. Safety and Pharmacokinetics of Temozolomide using a Dose Escalation Metronomic Schedule in Recurrent Pediatric Brain Tumors. European Journal of Cancer, In press[CSA]
  • Sterba J., Pavelka Z., Slampa P. Concomitant radiotherapy and metronomic temozolomide in pediatric high-risk brain tumors. Neoplasma 2002; 49: 117–120, [INFOTRIEVE], [CSA]
  • Kuo D. J., Weiner H. L., Wisoff J., Miller D. C., Knopp E. A., Finlay J. L. Temozolomide is active in childhood, progressive, unresectable, low-grade gliomas. J. Pediatr. Hematol. Oncol. 2003; 25: 372–378, [INFOTRIEVE], [CROSSREF], [CSA]
  • Stempak D., Gammon J., Koren G., Baruchel S. Does metronomic chemotherapy combined with celecoxib provide anti-angiogenic therapy for pediatric recurrent solid tumors?. New Directions in Angiogenesis Research—an AACR Special Conference in Cancer Research. 2003, Abstr.
  • Stempak D., Bukaveckas B. L., Linder M., Koren G., Baruchel S. CYP2C9 genotype: impact on celecoxib safety and pharmacokinetics in a pediatric patient. Clin. Pharmacol. Ther. 2005, in press[CSA]
  • Solomon S. D., McMurray J. J., Pfeffer M. A., Wittes J., Fowler R., Finn P., Anderson W. F., Zauber A., Hawk E., Bertagnolli M. Cardiovascular Risk Associated with Celecoxib in a Clinical Trial for Colorectal Adenoma Prevention. N. Engl. J. Med. 2005, [CSA]
  • Kamen B., Kieran M. Don't throw out the baby with the bathwater. J Pediatr. Hematol. Oncol. 2005; 27: 59–60, [INFOTRIEVE], [CROSSREF], [CSA]
  • Stempak D., Gammon J., Halton J., Champagne M., Koren G., Baruchel S. Modulation of celecoxib pharmacokinetics by food in pediatric patients. Clin. Pharmacol. Ther. 2005; 77: 226–228, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Bowers D. C., Aquino V. M., Leavey P. J., Bash R. O., Journeycake J. M., Tomlinson G., Mulne A. F., Haynes H. J., Winick N. J. Phase I study of oral cyclophosphamide and oral topotecan for children with recurrent or refractory solid tumors. Pediatr. Blood Cancer 2004; 42: 93–98, [INFOTRIEVE], [CROSSREF], [CSA]
  • Kebudi R., Gorgun O., Ayan I. Oral etoposide for recurrent/progressive sarcomas of childhood. Pediatr. Blood Cancer 2004; 42: 320–324, [INFOTRIEVE], [CROSSREF], [CSA]
  • Jain R. K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 2001; 7: 987–989, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Schneider M., Tjwa M., Carmeliet P. A surrogate marker to monitor angiogenesis at last. Cancer Cell 2005; 7: 3–4, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Shaked Y., Bertolini F., Man S., Rogers M. S., Cervi D., Foutz T., Rawn K., Voskas D., Dumont D. J., Ben David Y., et al. Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis; Implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell 2005; 7: 101–111, [PUBMED], [INFOTRIEVE], [CSA]
  • Maraveyas A., Lam T., Hetherington J. W., Greenman J. Can a rational design for metronomic chemotherapy dosing be devised?. Br. J. Cancer 2005; 92: 1588–1590, [INFOTRIEVE], [CROSSREF], [CSA]
  • Kauffman R. E. Drug Therapeutics in the Infant and Child. Pediatric Pharmacology: Therapeutic Principles in Practice, S. J. Yaffe, J. V. Aranda. Saunders, Philadelphia 1992; 212–219
  • Rodman J. H. Pharmacokinetic variability in the adolescent: implications of body size and organ function for dosage regimen design. J. Adolesc. Health 1994; 15: 654–662, [INFOTRIEVE], [CROSSREF], [CSA]
  • Kearns G. L., Reed M. D. Clinical pharmacokinetics in infants and children. A reappraisal. Clin Pharmacokinet. 1989; 1: 29–67, 17 Suppl[CSA]
  • Blanco J. G., Harrison P. L., Evans W. E., Relling M. V. Human cytochrome P450 maximal activities in pediatric versus adult liver. Drug Metab Dispos. 2000; 28: 379–382, [INFOTRIEVE], [CSA]
  • Boreus L. O. Pharmacokinetics in Children. Principles of Pediatric Pharmacology, D. L. Azarnoff. Churchill Livingstone, New York 1982; 135–175
  • Kerbel R. S. Tumor angiogenesis: past, present and the near future. Carcinogenesis 2000; 21: 505–515, [INFOTRIEVE], [CROSSREF], [CSA]
  • Margolin K., Gordon M. S., Holmgren E., Gaudreault J., Novotny W., Fyfe G., Adelman D., Stalter S., Breed J. Phase Ib trial of intravenous recombinant humanized monoclonal antibody to vascular endothelial growth factor in combination with chemotherapy in patients with advanced cancer: pharmacologic and long-term safety data. J. Clin. Oncol. 2001; 19: 851–856, [INFOTRIEVE], [CSA]
  • Thomas J. P., Arzoomanian R. Z., Alberti D., Marnocha R., Lee F., Friedl A., Tutsch K., Dresen A., Geiger P., Pluda J., et al. Phase I pharmacokinetic and pharmacodynamic study of recombinant human endostatin in patients with advanced solid tumors. J. Clin. Oncol. 2003; 21: 223–231, [INFOTRIEVE], [CROSSREF], [CSA]
  • Gasparini G. Prognostic value of vascular endothelial growth factor in breast cancer. Oncologist 2000; 5: 37–44, Suppl 1[INFOTRIEVE], [CROSSREF], [CSA]
  • Dosquet C., Coudert M. C., Lepage E., Cabane J., Richard F. Are angiogenic factors, cytokines, and soluble adhesion molecules prognostic factors in patients with renal cell carcinoma?. Clin. Cancer Res. 1997; 3: 2451–2458, [INFOTRIEVE], [CSA]
  • Dirix L. Y., Vermeulen P. B., Pawinski A., Prove A., Benoy I., De Pooter C., Martin M., van Oosterom A. T. Elevated levels of the angiogenic cytokines basic fibroblast growth factor and vascular endothelial growth factor in sera of cancer patients. Br. J. Cancer 1997; 76: 238–243, [INFOTRIEVE], [CSA]
  • Bertolini F., Paolucci M., Peccatori F., Cinieri S., Agazzi A., Ferrucci P. F., Cocorocchio E., Goldhirsch A., Martinelli G. Angiogenic growth factors and endostatin in non-Hodgkin's lymphoma. Br. J. Haematol. 1999; 106: 504–509, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Poon R. T., Fan S. T., Wong J. Clinical implications of circulating angiogenic factors in cancer patients. J. Clin. Oncol. 2001; 19: 1207–1225, [INFOTRIEVE], [CSA]
  • Byrne G. J., Ghellal A., Iddon J., Blann A. D., Venizelos V., Kumar S., Howell A., Bundred N. J. Serum soluble vascular cell adhesion molecule-1: role as a surrogate marker of angiogenesis. J. Natl. Cancer Inst. 2000; 92: 1329–1336, [INFOTRIEVE], [CROSSREF], [CSA]
  • Poon R. T., Chung K. K., Cheung S. T., Lau C. P., Tong S. W., Leung K. L., Yu W. C., Tuszynski G. P., Fan S. T. Clinical significance of thrombospondin 1 expression in hepatocellular carcinoma. Clin. Cancer Res. 2004; 10: 4150–4157, [INFOTRIEVE], [CROSSREF], [CSA]
  • Feldman A. L., Tamarkin L., Paciotti G. F., Simpson B. W., Linehan W. M., Yang J. C., Fogler W. E., Turner E. M., Alexander H. R., Jr., Libutti S. K. Serum endostatin levels are elevated and correlate with serum vascular endothelial growth factor levels in patients with stage IV clear cell renal cancer. Clin. Cancer Res. 2000; 6: 4628–4634, [INFOTRIEVE], [CSA]
  • Lin R. Y., Argenta P. A., Sullivan K. M., Adzick N. S. Diagnostic and prognostic role of basic fibroblast growth factor in Wilms' tumor patients. Clin Cancer Res. 1995; 1: 327–331, [INFOTRIEVE], [CSA]
  • Jeha S., Smith F. O., Estey E., Shen Y., Liu D., Manshouri T., Albitar M. Comparison between pediatric acute myeloid leukemia (AML) and adult AML in VEGF and KDR (VEGF-R2) protein levels. Leuk. Res. 2002; 26: 399–402, [INFOTRIEVE], [CROSSREF], [CSA]
  • de Bont E. S., Fidler V., Meeuwsen T., Scherpen F., Hahlen K., Kamps W. A. Vascular endothelial growth factor secretion is an independent prognostic factor for relapse-free survival in pediatric acute myeloid leukemia patients. Clin. Cancer Res. 2002; 8: 2856–2861, [INFOTRIEVE], [CSA]
  • Tabone M. D., Landman-Parker J., Arcil B., Coudert M. C., Gerota I., Benbunan M., Leverger G., Dosquet C. Are basic fibroblast growth factor and vascular endothelial growth factor prognostic indicators in pediatric patients with malignant solid tumors?. Clin Cancer Res. 2001; 7: 538–543, [INFOTRIEVE], [CSA]
  • Pavlakovic H., Von S. V., Rossler J., Koscielniak E., Havers W., Schweigerer L. Quantification of angiogenesis stimulators in children with solid malignancies. Int. J. Cancer 2001; 92: 756–760, [INFOTRIEVE], [CROSSREF], [CSA]
  • Hamano Y., Sugimoto H., Soubasakos M. A., Kieran M., Olsen B. R., Lawler J., Sudhakar A., Kalluri R. Thrombospondin-1 associated with tumor microenvironment contributes to low-dose cyclophosphamide-mediated endothelial cell apoptosis and tumor growth suppression. Cancer Res. 2004; 64: 1570–1574, [INFOTRIEVE], [CROSSREF], [CSA]
  • Bocci G., Man S., Green S. K., Francia G., Ebos J. M., du Manoir J. M., Weinerman A., Emmenegger U., Ma L., Thorpe P., et al. Increased plasma vascular endothelial growth factor (VEGF) as a surrogate marker for optimal therapeutic dosing of VEGF receptor-2 monoclonal antibodies. Cancer Res. 2004; 64: 6616–6625, [INFOTRIEVE], [CROSSREF], [CSA]
  • Herbst R. S., Hess K. R., Tran H. T., Tseng J. E., Mullani N. A., Charnsangavej C., Madden T., Davis D. W., McConkey D. J., O'Reilly M. S., et al. Phase I study of recombinant human endostatin in patients with advanced solid tumors. J. Clin. Oncol. 2002; 20: 3792–3803, [INFOTRIEVE], [CROSSREF], [CSA]
  • Bertolini F., Paul S., Mancuso P., Monestiroli S., Gobbi A., Shaked Y., Kerbel R. S. Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res. 2003; 63: 4342–4346, [INFOTRIEVE], [CSA]
  • Asahara T., Masuda H., Takahashi T., Kalka C., Pastore C., Silver M., Kearne M., Magner M., Isner J. M. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 1999; 85: 221–228, [INFOTRIEVE], [CSA]
  • Asahara T., Takahashi T., Masuda H., Kalka C., Chen D., Iwaguro H., Inai Y., Silver M., Isner J. M. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J. 1999; 18: 3964–3972, [INFOTRIEVE], [CROSSREF], [CSA]
  • Rafii S., Lyden D., Benezra R., Hattori K., Heissig B. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy?. Nat. Rev. Cancer 2002; 2: 826–835, [INFOTRIEVE], [CROSSREF], [CSA]
  • Lyden D., Hattori K., Dias S., Costa C., Blaikie P., Butros L., Chadburn A., Heissig B., Marks W., Witte L., et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med. 2001; 7: 1194–1201, [INFOTRIEVE], [CROSSREF], [CSA]
  • Sikder H., Huso D. L., Zhang H., Wang B., Ryu B., Hwang S. T., Powell J. D., Alani R. M. Disruption of Id1 reveals major differences in angiogenesis between transplanted and autochthonous tumors. Cancer Cell 2003; 4: 291–299, [INFOTRIEVE], [CROSSREF], [CSA]
  • Padera T. P., Stoll B. R., So P. T., Jain R. K. Conventional and high-speed intravital multiphoton laser scanning microscopy of microvasculature, lymphatics, and leukocyte-endothelial interactions. Mol. Imaging 2002; 1: 9–15, [INFOTRIEVE], [CROSSREF], [CSA]
  • Schuch G., Heymach J. V., Nomi M., Machluf M., Force J., Atala A., Eder J. P., Jr., Folkman J., Soker S. Endostatin inhibits the vascular endothelial growth factor-induced mobilization of endothelial progenitor cells. Cancer Res. 2003; 63: 8345–8350, [INFOTRIEVE], [CSA]
  • Willett C. G., Boucher Y., di Tomaso E., Duda D. G., Munn L. L., Tong R. T., Chung D. C., Sahani D. V., Kalva S. P., Kozin S. V., et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat. Med. 2004; 10: 145–147, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Mancuso P., Burlini A., Pruneri G., Goldhirsch A., Martinelli G., Bertolini F. Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood 2001; 97: 3658–3661, [INFOTRIEVE], [CROSSREF], [CSA]
  • Monestiroli S., Mancuso P., Burlini A., Pruneri G., Dell'Agnola C., Gobbi A., Martinelli G., Bertolini F. Kinetics and viability of circulating endothelial cells as surrogate angiogenesis marker in an animal model of human lymphoma. Cancer Res. 2001; 61: 4341–4344, [INFOTRIEVE], [CSA]
  • Gill M., Dias S., Hattori K., Rivera M. L., Hicklin D., Witte L., Girardi L., Yurt R., Himel H., Rafii S. Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circ. Res. 2001; 88: 167–174, [INFOTRIEVE], [CSA]
  • Asahara T., Murohara T., Sullivan A., Silver M., van der Z. R., Li T., Witzenbichler B., Schatteman G., Isner J. M. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964–967, [INFOTRIEVE], [CROSSREF], [CSA]
  • Lin Y., Weisdorf D. J., Solovey A., Hebbel R. P. Origins of circulating endothelial cells and endothelial outgrowth from blood. J. Clin. Invest. 2000; 105: 71–77, [PUBMED], [INFOTRIEVE], [CSA]
  • Capillo M., Mancuso P., Gobbi A., Monestiroli S., Pruneri G., Dell'Agnola C., Martinelli G., Shultz L., Bertolini F. Continuous infusion of endostatin inhibits differentiation, mobilization, and clonogenic potential of endothelial cell progenitors. Clin. Cancer Res. 2003; 9: 377–382, [INFOTRIEVE], [CSA]
  • Sussman L. K., Upalakalin J. N., Roberts M. J., Kocher O., Benjamin L. E. Blood markers for vasculogenesis increase with tumor progression in patients with breast carcinoma. Cancer Biol. Ther. 2003; 2: 255–256, [PUBMED], [INFOTRIEVE], [CSA]
  • Beerepoot L. V., Mehra N., Vermaat J. S., Zonnenberg B. A., Gebbink M. F., Voest E. E. Increased levels of viable circulating endothelial cells are an indicator of progressive disease in cancer patients. Ann. Oncol. 2004; 15: 139–145, [INFOTRIEVE], [CROSSREF], [CSA]
  • Rabascio C., Muratori E., Mancuso P., Calleri A., Raia V., Foutz T., Cinieri S., Veronesi G., Pruneri G., Lampertico P., et al. Assessing tumor angiogenesis: increased circulating VE-cadherin RNA. in patients with cancer indicates viability of circulating endothelial cells. Cancer Res. 2004; 64: 4373–4377, [INFOTRIEVE], [CROSSREF], [CSA]
  • Rafii S. Circulating endothelial precursors: mystery, reality, and promise. J. Clin. Invest. 2000; 105: 17–19, [PUBMED], [INFOTRIEVE], [CSA]
  • Lyden D., Hattori K., Dias S., Costa C., Blaikie P., Butros L., Chadburn A., Heissig B., Marks W., Witte L., et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med. 2001; 7: 1194–1201, [INFOTRIEVE], [CROSSREF], [CSA]
  • Bolontrade M. F., Zhou R. R., Kleinerman E. S. Vasculogenesis Plays a Role in the Growth of Ewing's Sarcoma in Vivo. Clin. Cancer Res. 2002; 8: 3622–3627, [INFOTRIEVE], [CSA]
  • Shirakawa K., Furuhata S., Watanabe I., Hayase H., Shimizu A., Ikarashi Y., Yoshida T., Terada M., Hashimoto D., Wakasugi H. Induction of vasculogenesis in breast cancer models. Br. J. Cancer 2002; 87: 1454–1461, [INFOTRIEVE], [CROSSREF], [CSA]
  • Bergers G., Benjamin L. E. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 2003; 3: 401–410, [INFOTRIEVE], [CROSSREF], [CSA]
  • Bocci G., Tuccori M., Emmenegger U., Liguori V., Falcone A., Kerbel R. S., Del Tacca M. Cyclophosphamide-methotrexate ‘metronomic’ chemotherapy for the palliative treatment of metastatic breast cancer. A comparative pharmacoeconomic evaluation. Ann. Oncol. 2005, [CSA]
  • Marshal J. L., Rizvi N. A., Bhargava P., Wojtoqicz-Praga S., Hawkins M. J. New Developmental Therapies. Clinical Oncology, M. D. Abeloff. Churchill Livingstone, Inc. 2000; 242–251, Chapter 12
  • Shusterman S., Maris J. M. Prospects for therapeutic inhibition of neuroblastoma angiogenesis. Cancer Lett. 2005, [CSA]
  • Emmenegger U., Man S., Shaked Y., Francia G., Wong J. W., Hicklin D. J., Kerbel R. S. A comparative analysis of low-dose metronomic cyclophosphamide reveals absent or low-grade toxicity on tissues highly sensitive to the toxic effects of maximum tolerated dose regimens. Cancer Res. 2004; 64: 3994–4000, [INFOTRIEVE], [CROSSREF], [CSA]
  • Su Y. B., Sohn S., Krown S. E., Livingston P. O., Wolchok J. D., Quinn C., Williams L., Foster T., Sepkowitz K. A., Chapman P. B. Selective CD4+ lymphopenia in melanoma patients treated with temozolomide: a toxicity with therapeutic implications. J. Clin. Oncol. 2004; 22: 610–616, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Su Y. W., Chang M. C., Chiang M. F., Hsieh R. K. Treatment-related myelodysplastic syndrome after temozolomide for recurrent high-grade glioma. J. Neurooncol. 2005; 71: 315–318, [INFOTRIEVE], [CROSSREF], [CSA]
  • McDonald D. M., Choyke P. L. Imaging of angiogenesis: from microscope to clinic. Nat. Med. 2003; 9: 713–725, [INFOTRIEVE], [CROSSREF], [CSA]
  • Cristofanilli M., Charnsangavej C., Hortobagyi G. N. Angiogenesis modulation in cancer research: novel clinical approaches. Nat. Rev. Drug Discov. 2002; 1: 415–426, [INFOTRIEVE], [CROSSREF], [CSA]
  • Morgan B., Thomas A. L., Drevs J., Hennig J., Buchert M., Jivan A., Horsfield M. A., Mross K., Ball H. A., Lee L., et al. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J. Clin. Oncol. 2003; 21: 3955–3964, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.